Evolutionary History and Taxonomy of Neotropical Mara Ioid Ferns

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary History and Taxonomy of Neotropical Mara Ioid Ferns TURUN YLIOPISTON JULKAISUJA ANNALES UNIVERSITATIS TURKUENSIS SARJA - SER. AII OSA - TOM. 216 BIOLOGICA - GEOGRAPHICA - GEOLOGICA Evolutionary History and Taxonomy of Neotropical Mara�ioid Ferns: Studies of an Ancient Lineage of Plants by Maarten J. M. Christenhusz TURUN YLIOPISTO Turku 2007 From the Section of Biodiversity and Environmental Science, Department of Biology, University of Turku, Finland Supervised by Dr Hanna Tuomisto Section for Biodiversity and Environmental Science Department of Biology University of Turku, Finland Dr Soili Stenroos Botanical Museum Finnish Museum of Natural History University of Helsinki, Finland Reviewed by Dr Harald Schneider Department of Botany The Natural History Museum London, England, UK Dr Alan R. Smith University Herbarium University of California Berkeley, California, USA Examined by Dr Michael Kessler Alexander von Humboldt Institut Abteilung Systematische Botanik Universität Göttingen, Germany ISBN 978-951-29-3423-2 (PRINT) ISBN 978-951-29-3424-9 (PDF) ISSN 0082-6979 Painosalama Oy - Turku, Finland 2007 They arrived at an inconvenient time I was hiding in a room in my mind They made me look at myself, I saw it well I’d shut the people out of my life So now I take the opportunities Wonderful teachers ready to teach me I must work on my mind, for now I realise Every one of us has a heaven inside They open doorways that I thought were shut for good They read me Gurdjieff and Jesu They build up my body, break me emotionally It’s nearly killing me, but what a lovely feeling! I love the whirling of the dervishes I love the beauty of rare innocence You don’t need no crystal ball Don’t fall for a magic wand We humans got it all, we perform the miracles Them heavy people hit me in a soft spot Them heavy people help me Them heavy people hit me in a soft spot Rolling the ball, rolling the ball, rolling the ball to me Kate Bush The Kick Inside, 1978 This dissertation is based on the following studies, which are referred to by their Roman numerals in the text: I Christenhusz, M. J. M. 2006. Three new species of Danaea (Marattiaceae) from French Guiana and the Lesser Antilles. Annales Botanici Fennici 43: 212-219. II Christenhusz, M. J. M. and Tuomisto, H. 2006. Five new species of Danaea (Marattiaceae) from Peru and a new status for D. elliptica. Kew Bulletin 61: 17- 30. III Christenhusz, M. J. M. and Cremers, G., in review. Two new epitypes in Danaea (Marattiaceae, Pteridophyta) selected from original historical collections in Paris. Manuscript submitted to Candollea. IV Christenhusz, M. J. M., Tuomisto, H., Metzgar, J. and Pryer, K. M., in press. Evolutionary relationships within the Neotropical, eusporangiate fern genus Danaea (Marattiaceae). Molecular Phylogenetics and Evolution. V Christenhusz, M. J. M. and Toivonen, T. K., in review. Giants invading the tropics: The Oriental vessel fern, Angiopteris evecta (Marattiaceae). Manuscript submitted to Biological Invasions. Study I is reprinted with kind permission from the Finnish Zoological and Botanical Publishing Board. The Royal Botanic Gardens, Kew, kindly permitted the reprinting of study II. The manuscript of study IV is included with permission from Elsevier. CONTENTS 1. INTRODUCTION ..................................................................................................................7 1.1. IMPORTANCE AND HISTORY OF GIVING NAMES...................................................................7 1.2. FOCUS................................................................................................................................9 1.3. THE FAMILY MARATTIACEAE ..........................................................................................10 1.3.1. Description and geographic distribution ................................................................10 1.3.2. The genera Angiopteris, Archangiopteris and Macroglossum................................12 1.3.3. The genus Christensenia..........................................................................................13 1.3.4. The genus Danaea....................................................................................................14 1.3.5. The genus Marattia ..................................................................................................14 1.3.6. Conservation ...........................................................................................................15 1.4. PALAEOHISTORY OF MARATTIOID FERNS..........................................................................15 1.4.1. Palaeozoic Period (345-248 Ma) ............................................................................15 1.4.2. Mesozoic Period (248-65 Ma).................................................................................17 1.4.3. Cainozoic Period (65-1.8 Ma).................................................................................19 1.4.4. Evolutionary trends.................................................................................................19 1.5. AIMS ................................................................................................................................20 2. MATERIAL AND METHODS ...........................................................................................21 2.1. DATA COLLECTION...........................................................................................................21 2.1.1. Field studies ............................................................................................................21 2.1.2. Herbarium studies...................................................................................................23 2.2. MOLECULAR PHYLOGENETICS .........................................................................................23 2.2.1. Taxon sampling .......................................................................................................23 2.2.2. Laboratory work......................................................................................................24 2.2.3. Alignment and analyses...........................................................................................24 2.3. SPECIES DISTRIBUTION MODELLING .................................................................................25 3. RESULTS AND DISCUSSION ...........................................................................................26 3.1. STUDY OF THE GENUS ANGIOPTERIS .................................................................................26 3.1.1. Potential distribution modelling..............................................................................26 3.2. STUDY OF THE GENUS DANAEA.........................................................................................26 3.2.1. Species delineation and synonyms...........................................................................26 3.2.2. Taxonomic history ...................................................................................................29 3.2.3. Classification...........................................................................................................31 3.2.4. The Danaea leprieurii group....................................................................................31 3.2.5. The Danaea nodosa group .......................................................................................32 3.2.6. The Danaea alata group...........................................................................................34 3.2.7. Species diversity ......................................................................................................35 3.2.8. New Danaea species ................................................................................................38 3.2.9. Species distribution patterns ...................................................................................39 3.2.10. Ecology and speciation .........................................................................................41 3.3. STUDY OF THE GENUS MARATTIA ......................................................................................42 3.3.1. Redefined species and new synonyms......................................................................42 3.3.2. Taxonomic history ...................................................................................................43 3.4. DIAGNOSTIC KEYS TO NEOTROPICAL MARATTIACEAE.....................................................45 3.8.1. Key to genera of Neotropical Marattiaceae............................................................45 3.8.2. Key to species of Danaea .........................................................................................45 3.8.3. Key to Neotropical species of Marattia....................................................................50 4. CONCLUSIONS ...................................................................................................................51 5. ACKNOWLEDGEMENTS .................................................................................................53 6. REFERENCES .....................................................................................................................55 APPENDIX: TYPE SPECIMENS OF NEOTROPICAL MARATTIACEAE ...................60 ORIGINAL PUBLICATIONS ................................................................................................77 Introduction 7 1. INTRODUCTION 1.1. Importance and history of giving names ‘Is it you, Moonchild?’ Bastian asked. She laughed in a strangely lilting way. ‘Who else would I
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Medicinal Plants in Papua New Guinea
    ___________________________________________________________________________ 2015/CSA/014 Agenda Item: 7b PNG Traditional Knowledge System and Science Advice: PNG Perspective Purpose: Information Submitted by: Papua New Guinea Third APEC Chief Science Advisors and Equivalents Meeting Kuala Lumpur, Malaysia 14-16 October 2015 19/10/2015 PNG Traditional Knowledge System and Science Advice: PNG Perspective Teatulohi Matainaho Chairman/ CEO and Chief Science Advisor PNG Science and Technology Council/ Secretariat Traditional (Indigenous) Knowledge System “Traditional Knowledge System (TKS) is the basis upon which many indigenous communities survive on. Indigenous people value their unique knowledge systems, their languages, their agriculture, folklore, arts, medicinal knowledge, and their philosophies of life as important systems of knowledge” Steven Winduo (2009) 1 19/10/2015 • In Papua New Guinea, like many Pacific Islands societies, indigenous knowledge systems continue to remain the strength of survival, for many groups of people living within their tribal boundaries in the islands, in the valleys, in the mountains, or along rivers. • Indigenous knowledge may not necessarily be in its original form, but transformed in a form that has incorporated aspects of the introduced knowledge together with the inherited knowledge. PNG Traditional knowledge systems Agriculture and Foods Health and Navigation Wellbeing PNG Fishing Forestry and Traditional Methods and Botanicals Knowledge Harvest Systems Biodiversity Building and and Construction Conservation Cultural Expression and Language 2 19/10/2015 PNG Traditional Medical Knowledge • Documentation of herbs used in traditional medicine in PNG including traditional medical practices • A systematic survey conducted throughout the country over 16 years • Leading to establishment of Traditional Medicine Database PNG Traditional Medicine Database A national repository of medicinal plants usage in PNG.
    [Show full text]
  • South Africa's Coalfields — a 2014 Perspective
    International Journal of Coal Geology 132 (2014) 170–254 Contents lists available at ScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo South Africa's coalfields — A 2014 perspective P. John Hancox a,⁎,AnnetteE.Götzb,c a University of the Witwatersrand, School of Geosciences and Evolutionary Studies Institute, Private Bag 3, 2050 Wits, South Africa b University of Pretoria, Department of Geology, Private Bag X20, Hatfield, 0028 Pretoria, South Africa c Kazan Federal University, 18 Kremlyovskaya St., Kazan 420008, Republic of Tatarstan, Russian Federation article info abstract Article history: For well over a century and a half coal has played a vital role in South Africa's economy and currently bituminous Received 7 April 2014 coal is the primary energy source for domestic electricity generation, as well as being the feedstock for the Received in revised form 22 June 2014 production of a substantial percentage of the country's liquid fuels. It furthermore provides a considerable source Accepted 22 June 2014 of foreign revenue from exports. Available online 28 June 2014 Based on geographic considerations, and variations in the sedimentation, origin, formation, distribution and quality of the coals, 19 coalfields are generally recognised in South Africa. This paper provides an updated review Keywords: Gondwana coal of their exploration and exploitation histories, general geology, coal seam nomenclature and coal qualities. With- Permian in the various coalfields autocyclic variability is the norm rather than the exception, whereas allocyclic variability Triassic is much less so, and allows for the correlation of genetically related sequences. During the mid-Jurassic break up Coalfield of Gondwana most of the coal-bearing successions were intruded by dolerite.
    [Show full text]
  • Asterotheca Meriani (Brongn.) Stur and Its Spores from the Upper Triassic of Lunz (Austria)
    ASTEROTHECA MERIANI (BRONGN.) STUR AND ITS SPORES FROM THE UPPER TRIASSIC OF LUNZ (AUSTRIA) D. C. BHARDWAJ & HARI PALL SINGH Birbal Sahni Institute of Palaeobotany, Lucknow ABSTRACT Horizon-Lunzer Schichten, UpperTriassic. This paper deals with the morphological study of The compressions were examined under A ste"otheca rneriani (Brongn.) Stur, a species of strong reflected light. The transfer prepara­ ferns from the Upper Triassic of Lunz, Austria. tions were made following Walton's transfer well preserved in the form of carbonaceous crust on the shales. The frond is bipinnate. Pinnules method ( WALTON, 1923 ) and studied under are longer than broad and the venation is typically strong reflected ligh t. The synangia were of Pecopteris type. Synangia are circular, borne picked up with the help of a needle from the intramarginally, comprising 4 sessile sporangia in transfers and treated separately with com­ close cohesion at the anterior end but slightly apart at the apical end. Spores are bilateral, circular to mercial nitric acid for about 24 hours. Then oval in polar view and indisputably show a longi­ the oxidized products were washed with tudinal ( monolete) slit, slightly bent in the middle. water and followed by a treatment with 10 The spore exine is thick and finely granulose. per cent potassium hydroxide solution for 4 hours. After several washings with water, INTRODUCTION till the residue was free from alkali, the spores thus recovered were mounted in OR the last few decades the study of Canada balsam. For the recovery of the plant microfossils, especially the spores cuticles, the organic crust in the transfers F and pollen grains from the sedimen­ was separated with the help of xylol and tary strata such as shales and coals is being passed through alcohol to bring it to water.
    [Show full text]
  • Epidermal Morphology of the Pinnae of Angiopteris, Danaea, and Maraffia
    American Fern Journal 81(2]:44-62 (1991) Epidermal Morphology of the Pinnae of Angiopteris, Danaea, and Maraffia CRISTINAROLLERI,AMVIBLIA DEFERRARI, AND MAR~ADEL CARMENLAVALLE Laboratory of Botany, Museo de La Plata, Paseo del Bosque, 1900 La Plata, Argentina This is a study of adult epidermis morphology in 17 species of Angiopteris Hoffm., Danaea J. E. Smith, and Marattia Swartz. Epidermal patterns, adult stomata, indument, and idioblasts were studied. Hill and Camus (1986) made an overview of characters of some extant species of Marattiales as part of a cladistic study of extant and fossil members of the order. The epidermal characters they used were subsidiary cells of the stomata, dimensions of the stomata, walls of epidermal cells, and idioblasts. The only character of indument they included in their study was the presence or absence of scales. Rolleri et al. (1987) made the first detailed study dealing with pinna and pinnule indument in the Marattiaceae, although Holttum (1978) had made some general comments on petiole and rhizome scales of Angiopteris, illustrating two species. He suggested that Angiopteris pinna trichomes were diagnostic but needed detailed study. Rolleri et al. (1987) strongly pointed out that epidermal characters are diagnostic at the species level in the Marattiaceae and speculated on generic affinities within the Marattiales. Adult epidermis was described according to the terminology of Rolleri and Deferrari (1986) and Rolleri et al. (1987). Adult stomata were described following the criteria of Stace (1965),van Cotthem (1970, 1971),and Wilkinson (1979). Lellinger's (1985) concept of trichomes was adopted, as well as the terminology of Theobald et al.
    [Show full text]
  • Insights on Reticulate Evolution in Ferns, with Special Emphasis on the Genus Ceratopteris
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2021 Insights on Reticulate Evolution in Ferns, with Special Emphasis on the Genus Ceratopteris Sylvia P. Kinosian Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Kinosian, Sylvia P., "Insights on Reticulate Evolution in Ferns, with Special Emphasis on the Genus Ceratopteris" (2021). All Graduate Theses and Dissertations. 8159. https://digitalcommons.usu.edu/etd/8159 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INSIGHTS ON RETICULATE EVOLUTION IN FERNS, WITH SPECIAL EMPHASIS ON THE GENUS CERATOPTERIS by Sylvia P. Kinosian A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Ecology Approved: Zachariah Gompert, Ph.D. Paul G. Wolf, Ph.D. Major Professor Committee Member William D. Pearse, Ph.D. Karen Mock, Ph.D Committee Member Committee Member Karen Kaphiem, Ph.D Michael Sundue, Ph.D. Committee Member Committee Member D. Richard Cutler, Ph.D. Interim Vice Provost of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2021 ii Copyright © Sylvia P. Kinosian 2021 All Rights Reserved iii ABSTRACT Insights on reticulate evolution in ferns, with special emphasis on the genus Ceratopteris by Sylvia P. Kinosian, Doctor of Philosophy Utah State University, 2021 Major Professor: Zachariah Gompert, Ph.D.
    [Show full text]
  • Ferns, Cycads, Conifers and Vascular Plants
    Flora of Australia Glossary — Ferns, Cycads, Conifers and Vascular plants A main glossary for the Flora of Australia was published in Volume 1 of both printed editions (1981 and 1999). Other volumes contain supplementary glossaries, with specific terms needed for particular families. This electronic glossary is a synthesis of all hard-copy Flora of Australia glossaries and supplementary glossaries published to date. The first Flora of Australia glossary was compiled by Alison McCusker. Mary D. Tindale compiled most of the fern definitions, and the conifer definitions were provided by Ken D. Hill. Russell L. Barrett combined all of these to create the glossary presented here, incorporating additional terms from the printed version of Volume 37. This electronic glossary contains terms used in all volumes, but with particular reference to the flowering plants (Volumes 2–50). This glossary will be updated as future volumes are published. It is the standard to be used by authors compiling future taxon treatments for the Flora of Australia. It also comprises the terms used in Species Plantarum — Flora of the World. Alternative terms For some preferred terms (in bold), alternative terms are also highlighted (in parentheses). For example, apiculum is the preferred term, and (=apiculus) is an alternative. Preferred terms are those also used in Species Plantarum — Flora of the World. © Copyright Commonwealth of Australia, 2017. Flora of Australia Glossary — Ferns, Cycads, Conifers and Vascular plants is licensed by the Commonwealth of Australia for use under a Creative Commons Attribution 4.0 International licence with the exception of the Coat of Arms of the Commonwealth of Australia, the logo of the agency responsible for publishing the report, content supplied by third parties, and any images depicting people.
    [Show full text]
  • Chapter 23: the Early Tracheophytes
    Chapter 23 The Early Tracheophytes THE LYCOPHYTES Lycopodium Has a Homosporous Life Cycle Selaginella Has a Heterosporous Life Cycle Heterospory Allows for Greater Parental Investment Isoetes May Be the Only Living Member of the Lepidodendrid Group THE MONILOPHYTES Whisk Ferns Ophioglossalean Ferns Horsetails Marattialean Ferns True Ferns True Fern Sporophytes Typically Have Underground Stems Sexual Reproduction Usually Is Homosporous Fern Have a Variety of Alternative Means of Reproduction Ferns Have Ecological and Economic Importance SUMMARY PLANTS, PEOPLE, AND THE ENVIRONMENT: Sporophyte Prominence and Survival on Land PLANTS, PEOPLE, AND THE ENVIRONMENT: Coal, Smog, and Forest Decline THE OCCUPATION OF THE LAND PLANTS, PEOPLE, AND THE The First Tracheophytes Were ENVIRONMENT: Diversity Among the Ferns Rhyniophytes Tracheophytes Became Increasingly Better PLANTS, PEOPLE, AND THE Adapted to the Terrestrial Environment ENVIRONMENT: Fern Spores Relationships among Early Tracheophytes 1 KEY CONCEPTS 1. Tracheophytes, also called vascular plants, possess lignified water-conducting tissue (xylem). Approximately 14,000 species of tracheophytes reproduce by releasing spores and do not make seeds. These are sometimes called seedless vascular plants. Tracheophytes differ from bryophytes in possessing branched sporophytes that are dominant in the life cycle. These sporophytes are more tolerant of life on dry land than those of bryophytes because water movement is controlled by strongly lignified vascular tissue, stomata, and an extensive cuticle. The gametophytes, however still require a seasonally wet habitat, and water outside the plant is essential for the movement of sperm from antheridia to archegonia. 2. The rhyniophytes were the first tracheophytes. They consisted of dichotomously branching axes, lacking roots and leaves. They are all extinct.
    [Show full text]
  • Curitiba, Southern Brazil
    data Data Descriptor Herbarium of the Pontifical Catholic University of Paraná (HUCP), Curitiba, Southern Brazil Rodrigo A. Kersten 1,*, João A. M. Salesbram 2 and Luiz A. Acra 3 1 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil 2 REFLORA Project, Curitiba, Brazil; [email protected] 3 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-41-3721-2392 Academic Editor: Martin M. Gossner Received: 22 November 2016; Accepted: 5 February 2017; Published: 10 February 2017 Abstract: The main objective of this paper is to present the herbarium of the Pontifical Catholic University of Parana’s and its collection. The history of the HUCP had its beginning in the middle of the 1970s with the foundation of the Biology Museum that gathered both botanical and zoological specimens. In April 1979 collections were separated and the HUCP was founded with preserved specimens of algae (green, red, and brown), fungi, and embryophytes. As of October 2016, the collection encompasses nearly 25,000 specimens from 4934 species, 1609 genera, and 297 families. Most of the specimens comes from the state of Paraná but there were also specimens from many Brazilian states and other countries, mainly from South America (Chile, Argentina, Uruguay, Paraguay, and Colombia) but also from other parts of the world (Cuba, USA, Spain, Germany, China, and Australia). Our collection includes 42 fungi, 258 gymnosperms, 299 bryophytes, 2809 pteridophytes, 3158 algae, 17,832 angiosperms, and only one type of Mimosa (Mimosa tucumensis Barneby ex Ribas, M.
    [Show full text]
  • A Journal on Taxonomic Botany, Plant Sociology and Ecology Reinwardtia
    A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY REINWARDTIA A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY Vol. 13(4): 317 —389, December 20, 2012 Chief Editor Kartini Kramadibrata (Herbarium Bogoriense, Indonesia) Editors Dedy Darnaedi (Herbarium Bogoriense, Indonesia) Tukirin Partomihardjo (Herbarium Bogoriense, Indonesia) Joeni Setijo Rahajoe (Herbarium Bogoriense, Indonesia) Teguh Triono (Herbarium Bogoriense, Indonesia) Marlina Ardiyani (Herbarium Bogoriense, Indonesia) Eizi Suzuki (Kagoshima University, Japan) Jun Wen (Smithsonian Natural History Museum, USA) Managing editor Himmah Rustiami (Herbarium Bogoriense, Indonesia) Secretary Endang Tri Utami Lay out editor Deden Sumirat Hidayat Illustrators Subari Wahyudi Santoso Anne Kusumawaty Reviewers Ed de Vogel (Netherlands), Henk van der Werff (USA), Irawati (Indonesia), Jan F. Veldkamp (Netherlands), Jens G. Rohwer (Denmark), Lauren M. Gardiner (UK), Masahiro Kato (Japan), Marshall D. Sunberg (USA), Martin Callmander (USA), Rugayah (Indonesia), Paul Forster (Australia), Peter Hovenkamp (Netherlands), Ulrich Meve (Germany). Correspondence on editorial matters and subscriptions for Reinwardtia should be addressed to: HERBARIUM BOGORIENSE, BOTANY DIVISION, RESEARCH CENTER FOR BIOLOGY-LIPI, CIBINONG 16911, INDONESIA E-mail: [email protected] REINWARDTIA Vol 13, No 4, pp: 367 - 377 THE NEW PTERIDOPHYTE CLASSIFICATION AND SEQUENCE EM- PLOYED IN THE HERBARIUM BOGORIENSE (BO) FOR MALESIAN FERNS Received July 19, 2012; accepted September 11, 2012 WITA WARDANI, ARIEF HIDAYAT, DEDY DARNAEDI Herbarium Bogoriense, Botany Division, Research Center for Biology-LIPI, Cibinong Science Center, Jl. Raya Jakarta -Bogor Km. 46, Cibinong 16911, Indonesia. E-mail: [email protected] ABSTRACT. WARD AM, W., HIDAYAT, A. & DARNAEDI D. 2012. The new pteridophyte classification and sequence employed in the Herbarium Bogoriense (BO) for Malesian ferns.
    [Show full text]
  • The Carboniferous Evolution of Nova Scotia
    Downloaded from http://sp.lyellcollection.org/ by guest on September 27, 2021 The Carboniferous evolution of Nova Scotia J. H. CALDER Nova Scotia Department of Natural Resources, PO Box 698, Halifax, Nova Scotia, Canada B3J 2T9 Abstract: Nova Scotia during the Carboniferous lay at the heart of palaeoequatorial Euramerica in a broadly intermontane palaeoequatorial setting, the Maritimes-West-European province; to the west rose the orographic barrier imposed by the Appalachian Mountains, and to the south and east the Mauritanide-Hercynide belt. The geological affinity of Nova Scotia to Europe, reflected in elements of the Carboniferous flora and fauna, was mirrored in the evolution of geological thought even before the epochal visits of Sir Charles Lyell. The Maritimes Basin of eastern Canada, born of the Acadian-Caledonian orogeny that witnessed the suture of Iapetus in the Devonian, and shaped thereafter by the inexorable closing of Gondwana and Laurasia, comprises a near complete stratal sequence as great as 12 km thick which spans the Middle Devonian to the Lower Permian. Across the southern Maritimes Basin, in northern Nova Scotia, deep depocentres developed en echelon adjacent to a transform platelet boundary between terranes of Avalon and Gondwanan affinity. The subsequent history of the basins can be summarized as distension and rifting attended by bimodal volcanism waning through the Dinantian, with marked transpression in the Namurian and subsequent persistence of transcurrent movement linking Variscan deformation with Mauritainide-Appalachian convergence and Alleghenian thrusting. This Mid- Carboniferous event is pivotal in the Carboniferous evolution of Nova Scotia. Rapid subsidence adjacent to transcurrent faults in the early Westphalian was succeeded by thermal sag in the later Westphalian and ultimately by basin inversion and unroofing after the early Permian as equatorial Pangaea finally assembled and subsequently rifted again in the Triassic.
    [Show full text]
  • Marattiaceae)
    FERN GAZ. 20(1):15-18. 2015 15 NOTE ON THE REDISCOVERED TYPE SPECIMEN OF ANGIOPTERIS INDICA DESV. (MARATTIACEAE) J. MAZUMDAR Department of Biological Sciences, Burdwan Town School, Burdwan-713101, India Email: [email protected] Key words: Angiopteris indica , Herb. Desvaux, India, Marattiaceae, type. ABSTRACT The type of the tree fern Angiopteris indica Desv. (Marattiaceae) was rediscovered in Herb. Desvaux at P and its status is discussed. INTRODUCTION Three species of the marattioid fern genus Angiopteris Hoffm. (Marattiaceae) are generally accepted to occur in India (Fraser-Jenkins, 2008; Fraser-Jenkins & Benniamin 2010), namely Angiopteris indica Desv., A. helferiana C.Presl, and A. palmiformis (Cav.) C.Chr. Fraser-Jenkins (2008) accepted A. indica as the oldest available name for plants characterized by the combination of the following characters: the soral lines are located close or at the margin, the lamina segments possess prominent teeth near their tips, the lamina colour is darker than in other Indian species, and with the false (recurrent) veins reaching the soral line or just passing beyond it. In contrast, A. helferiana is distinguishable from A. indica by its inframarginal sori, whereas A. palmiformis has long false veins extended up to the pinnule-midrib. Angiopteris indica was described by Desvaux in 1813 (Desvaux 1813: 267) and not in 1811 (Desvaux 1811: 207), as misquoted by Moore (1857: 75) and Christensen (1906: 57), but see Hooker & Greville (1831) for the correct citation of the name. In the protologue, Desvaux (1813: 267) described the plants as “frondibus pinnatis, pinnis lanceolatis utrinque attenuates” and mentioned the area of origin as “Habitat in India orientali”.
    [Show full text]