Hortonworks Data Platform Feb 3, 2015

Total Page:16

File Type:pdf, Size:1020Kb

Hortonworks Data Platform Feb 3, 2015 docs.hortonworks.com Hortonworks Data Platform Feb 3, 2015 Hortonworks Data Platform: Data Integration Services with HDP Copyright © 2012-2015 Hortonworks, Inc. Some rights reserved. The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open source platform for storing, processing and analyzing large volumes of data. It is designed to deal with data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks Data Platform consists of the essential set of Apache Hadoop projects including YARN, Hadoop Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the major contributor of code and patches to many of these projects. These projects have been integrated and tested as part of the Hortonworks Data Platform release process and installation and configuration tools have also been included. Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and completely open source. We sell only expert technical support, training and partner-enablement services. All of our technology is, and will remain free and open source. Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For more information on Hortonworks services, please visit either the Support or Training page. Feel free to Contact Us directly to discuss your specific needs. Except where otherwise noted, this document is licensed under Creative Commons Attribution ShareAlike 3.0 License. http://creativecommons.org/licenses/by-sa/3.0/legalcode ii Hortonworks Data Platform Feb 3, 2015 Table of Contents 1. Using Data Integration Services Powered by Talend ..................................................... 1 1.1. Prerequisites ..................................................................................................... 1 1.2. Instructions ....................................................................................................... 2 1.2.1. Deploying Talend Open Studio .............................................................. 2 1.2.2. Writing a Talend Job for Data Import .................................................... 3 1.2.3. Modifying the Job to Perform Data Analysis ........................................... 4 2. Using Apache Hive ...................................................................................................... 8 2.1. Hive Documentation ......................................................................................... 8 2.2. New Feature: Cost-based SQL Optimization ...................................................... 9 2.3. New Feature: Streaming Data Ingestion .......................................................... 10 2.4. Vectorization .................................................................................................. 11 2.4.1. Enable Vectorization in Hive ................................................................ 11 2.4.2. Log Information about Vectorized Execution of Queries ....................... 11 2.4.3. Supported Functionality ....................................................................... 11 2.4.4. Unsupported Functionality ................................................................... 12 2.5. Comparing Beeline to the Hive CLI ................................................................. 12 2.5.1. Beeline Operating Modes and HiveServer2 Transport Modes ................. 12 2.5.2. Connecting to Hive with Beeline .......................................................... 14 2.6. Hive ODBC and JDBC Drivers .......................................................................... 15 2.7. Storage-based Authorization in Hive ............................................................... 21 2.8. Troubleshooting Hive ...................................................................................... 21 2.9. Hive JIRAs ...................................................................................................... 21 3. SQL Compliance ........................................................................................................ 22 3.1. New Feature: Authorization with Grant And Revoke ....................................... 22 3.2. New Feature: Transactions .............................................................................. 23 3.3. New Feature: Subqueries in WHERE Clauses .................................................... 30 3.3.1. Understanding Subqueries in SQL ......................................................... 30 3.3.2. Restrictions on Subqueries in WHERE Clauses ........................................ 31 3.4. New Feature: Common Table Expressions ....................................................... 32 3.5. New Feature: Quoted Identifiers in Column Names ......................................... 33 3.6. New Feature:CHAR Data Type Support ........................................................... 33 4. Using HDP for Metadata Services (HCatalog) ............................................................. 35 4.1. Using HCatalog ............................................................................................... 35 4.2. Using WebHCat .............................................................................................. 36 4.2.1. Technical Update: WebHCat Standard Parameters ................................ 37 5. Using Apache HBase ................................................................................................. 39 5.1. New Feature: Cell-level ACLs ........................................................................... 39 5.2. New Feature: Column Family Encryption ......................................................... 39 6. Using HDP for Workflow and Scheduling (Oozie) ....................................................... 40 7. Using Apache Sqoop ................................................................................................. 42 7.1. Apache Sqoop Connectors .............................................................................. 42 7.2. Sqoop Import Table Commands ...................................................................... 43 7.3. Netezza Connector ......................................................................................... 43 7.3.1. Extra Arguments .................................................................................. 43 7.3.2. Direct Mode ........................................................................................ 43 7.3.3. Null String Handling ............................................................................. 44 7.4. Sqoop-HCatalog Integration ........................................................................... 45 7.4.1. HCatalog Background .......................................................................... 45 iii Hortonworks Data Platform Feb 3, 2015 7.4.2. Exposing HCatalog Tables to Sqoop ..................................................... 46 7.4.3. Controlling Transaction Isolation .......................................................... 48 7.4.4. Automatic Table Creation .................................................................... 48 7.4.5. Delimited Text Formats and Field and Line Delimiter Characters ............ 48 7.4.6. HCatalog Table Requirements .............................................................. 49 7.4.7. Support for Partitioning ....................................................................... 49 7.4.8. Schema Mapping ................................................................................. 49 7.4.9. Support for HCatalog Data Types ......................................................... 50 7.4.10. Providing Hive and HCatalog Libraries for the Sqoop Job .................... 50 7.4.11. Examples ........................................................................................... 50 iv Hortonworks Data Platform Feb 3, 2015 List of Tables 2.1. CBO Configuration Parameters ............................................................................... 10 2.2. Beeline Modes of Operation ................................................................................... 12 2.3. HiveServer2 Transport Modes ................................................................................. 13 2.4. Authentication Schemes with TCP Transport Mode ................................................. 13 2.5. JDBC Connection Parameters .................................................................................. 15 2.6. ................................................................................................................................ 18 2.7. ................................................................................................................................ 19 2.8. ................................................................................................................................ 20 3.1. Configuration Parameters for Standard SQL Authorization ...................................... 22 3.2. HiveServer2 Command-Line Options ....................................................................... 22 3.3. Hive Compaction Types .......................................................................................... 24 3.4. Hive Transaction Configuration Parameters ............................................................. 24 3.5. Trailing Whitespace Characters on Various Databases ............................................
Recommended publications
  • Combined Documents V2
    Outline: Combining Brainstorming Deliverables Table of Contents 1. Introduction and Definition 2. Reference Architecture and Taxonomy 3. Requirements, Gap Analysis, and Suggested Best Practices 4. Future Directions and Roadmap 5. Security and Privacy - 10 Top Challenges 6. Conclusions and General Advice Appendix A. Terminology Glossary Appendix B. Solutions Glossary Appendix C. Use Case Examples Appendix D. Actors and Roles 1. Introduction and Definition The purpose of this outline is to illustrate how some initial brainstorming documents might be pulled together into an integrated deliverable. The outline will follow the diagram below. Section 1 introduces a definition of Big Data. An extended terminology Glossary is found in Appendix A. In section 2, a Reference Architecture diagram is presented followed by a taxonomy describing and extending the elements of the Reference Architecture. Section 3 maps requirements from use case building blocks to the Reference Architecture. A description of the requirement, a gap analysis, and suggested best practice is included with each mapping. In Section 4 future improvements in Big Data technology are mapped to the Reference Architecture. An initial Technology Roadmap is created on the requirements and gap analysis in Section 3 and the expected future improvements from Section 4. Section 5 is a placeholder for an extended discussion of Security and Privacy. Section 6 gives an example of some general advice. The Appendices provide Big Data terminology and solutions glossaries, Use Case Examples, and some possible Actors and Roles. Big Data Definition - “Big Data refers to the new technologies and applications introduced to handle increasing Volumes of data while enhancing data utilization capabilities such as Variety, Velocity, Variability, Veracity, and Value.” The key attribute is the large Volume of data available that forces horizontal scalability of storage and processing and has implications for all the other V-attributes.
    [Show full text]
  • E6895 Advanced Big Data Analytics Lecture 4: Data Store
    E6895 Advanced Big Data Analytics Lecture 4: Data Store Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science Chief Scientist, Graph Computing, IBM Watson Research Center E6895 Advanced Big Data Analytics — Lecture 4 © CY Lin, 2016 Columbia University Reference 2 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Spark SQL 3 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Spark SQL 4 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Apache Hive 5 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Using Hive to Create a Table 6 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Creating, Dropping, and Altering DBs in Apache Hive 7 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Another Hive Example 8 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Hive’s operation modes 9 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Using HiveQL for Spark SQL 10 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Hive Language Manual 11 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Using Spark SQL — Steps and Example 12 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Query testtweet.json Get it from Learning Spark Github ==> https://github.com/databricks/learning-spark/tree/master/files 13 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University SchemaRDD 14 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Row Objects Row objects represent records inside SchemaRDDs, and are simply fixed-length arrays of fields.
    [Show full text]
  • Apache Sentry
    Apache Sentry Prasad Mujumdar [email protected] [email protected] Agenda ● Various aspects of data security ● Apache Sentry for authorization ● Key concepts of Apache Sentry ● Sentry features ● Sentry architecture ● Integration with Hadoop ecosystem ● Sentry administration ● Future plans ● Demo ● Questions Who am I • Software engineer at Cloudera • Committer and PPMC member of Apache Sentry • also for Apache Hive and Apache Flume • Part of the the original team that started Sentry work Aspects of security Perimeter Access Visibility Data Authentication Authorization Audit, Lineage Encryption, what user can do data origin, usage Kerberos, LDAP/AD Masking with data Data access Access ● Provide user access to data Authorization ● Manage access policies what user can do ● Provide role based access with data Agenda ● Various aspects of data security ● Apache Sentry for authorization ● Key concepts of Apache Sentry ● Sentry features ● Sentry architecture ● Integration with Hadoop ecosystem ● Sentry administration ● Future plans ● Demo ● Questions Apache Sentry (Incubating) Unified Authorization module for Hadoop Unlocks Key RBAC Requirements Secure, fine-grained, role-based authorization Multi-tenant administration Enforce a common set of policies across multiple data access path in Hadoop. Key Capabilities of Sentry Fine-Grained Authorization Permissions on object hierarchie. Eg, Database, Table, Columns Role-Based Authorization Support for role templetes to manage authorization for a large set of users and data objects Multi Tanent Administration
    [Show full text]
  • Unravel Data Systems Version 4.5
    UNRAVEL DATA SYSTEMS VERSION 4.5 Component name Component version name License names jQuery 1.8.2 MIT License Apache Tomcat 5.5.23 Apache License 2.0 Tachyon Project POM 0.8.2 Apache License 2.0 Apache Directory LDAP API Model 1.0.0-M20 Apache License 2.0 apache/incubator-heron 0.16.5.1 Apache License 2.0 Maven Plugin API 3.0.4 Apache License 2.0 ApacheDS Authentication Interceptor 2.0.0-M15 Apache License 2.0 Apache Directory LDAP API Extras ACI 1.0.0-M20 Apache License 2.0 Apache HttpComponents Core 4.3.3 Apache License 2.0 Spark Project Tags 2.0.0-preview Apache License 2.0 Curator Testing 3.3.0 Apache License 2.0 Apache HttpComponents Core 4.4.5 Apache License 2.0 Apache Commons Daemon 1.0.15 Apache License 2.0 classworlds 2.4 Apache License 2.0 abego TreeLayout Core 1.0.1 BSD 3-clause "New" or "Revised" License jackson-core 2.8.6 Apache License 2.0 Lucene Join 6.6.1 Apache License 2.0 Apache Commons CLI 1.3-cloudera-pre-r1439998 Apache License 2.0 hive-apache 0.5 Apache License 2.0 scala-parser-combinators 1.0.4 BSD 3-clause "New" or "Revised" License com.springsource.javax.xml.bind 2.1.7 Common Development and Distribution License 1.0 SnakeYAML 1.15 Apache License 2.0 JUnit 4.12 Common Public License 1.0 ApacheDS Protocol Kerberos 2.0.0-M12 Apache License 2.0 Apache Groovy 2.4.6 Apache License 2.0 JGraphT - Core 1.2.0 (GNU Lesser General Public License v2.1 or later AND Eclipse Public License 1.0) chill-java 0.5.0 Apache License 2.0 Apache Commons Logging 1.2 Apache License 2.0 OpenCensus 0.12.3 Apache License 2.0 ApacheDS Protocol
    [Show full text]
  • Talend Open Studio for Big Data Release Notes
    Talend Open Studio for Big Data Release Notes 6.0.0 Talend Open Studio for Big Data Adapted for v6.0.0. Supersedes previous releases. Publication date July 2, 2015 Copyleft This documentation is provided under the terms of the Creative Commons Public License (CCPL). For more information about what you can and cannot do with this documentation in accordance with the CCPL, please read: http://creativecommons.org/licenses/by-nc-sa/2.0/ Notices Talend is a trademark of Talend, Inc. All brands, product names, company names, trademarks and service marks are the properties of their respective owners. License Agreement The software described in this documentation is licensed under the Apache License, Version 2.0 (the "License"); you may not use this software except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.html. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. This product includes software developed at AOP Alliance (Java/J2EE AOP standards), ASM, Amazon, AntlR, Apache ActiveMQ, Apache Ant, Apache Avro, Apache Axiom, Apache Axis, Apache Axis 2, Apache Batik, Apache CXF, Apache Cassandra, Apache Chemistry, Apache Common Http Client, Apache Common Http Core, Apache Commons, Apache Commons Bcel, Apache Commons JxPath, Apache
    [Show full text]
  • Hive, Spark, Presto for Interactive Queries on Big Data
    DEGREE PROJECT IN INFORMATION AND COMMUNICATION TECHNOLOGY, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2018 Hive, Spark, Presto for Interactive Queries on Big Data NIKITA GUREEV KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE TRITA TRITA-EECS-EX-2018:468 www.kth.se Abstract Traditional relational database systems can not be efficiently used to analyze data with large volume and different formats, i.e. big data. Apache Hadoop is one of the first open-source tools that provides a dis- tributed data storage system and resource manager. The space of big data processing has been growing fast over the past years and many tech- nologies have been introduced in the big data ecosystem to address the problem of processing large volumes of data, and some of the early tools have become widely adopted, with Apache Hive being one of them. How- ever, with the recent advances in technology, there are other tools better suited for interactive analytics of big data, such as Apache Spark and Presto. In this thesis these technologies are examined and benchmarked in or- der to determine their performance for the task of interactive business in- telligence queries. The benchmark is representative of interactive business intelligence queries, and uses a star-shaped schema. The performance Hive Tez, Hive LLAP, Spark SQL, and Presto is examined with text, ORC, Par- quet data on different volume and concurrency. A short analysis and con- clusions are presented with the reasoning about the choice of framework and data format for a system that would run interactive queries on big data.
    [Show full text]
  • Realization of Big Data Ana- Lytics Tool for Optimization Processes Within the Finnish Engineering Company
    OPINNÄYTETYÖ - AMMATTIKORKEAKOULUTUTKINTO TEKNIIKAN JA LIIKENTEEN ALA REALIZATION OF BIG DATA ANA- LYTICS TOOL FOR OPTIMIZATION PROCESSES WITHIN THE FINNISH ENGINEERING COMPANY A u t h o r / s : Karapetyan Karina SAVONIA UNIVERSITY OF APPLIED SCIENCES THESIS Abstract Field of Study Technology, Communication and Transport Degree Programme Degree Programme in Information Technology Author(s) Karapetyan Karina Title of Thesis Realization of Big Data Analytics Tool for optimization processes within the Finnish engineering company Date 23.05.2016 Pages/Appendices 54 Supervisor(s) Mr. Arto Toppinen, Principal Lecturer at Savonia University of Applied Sciences, Mr. Anssi Suhonen, Lecturer at Savonia University of Applied Sciences Client Organisation /Partners Hydroline Oy Abstract Big Data Analytics Tool offers an entire business picture for making both operational and strategic deci- sions from selecting the product price to establishing the priorities for the further vendor’s enhancement. The purpose of the thesis was to explore the industrial system of Hydroline Oy and provide a software solution for the elaboration of the manufacture, due to the internal analyzing within the company. For the development of Big Data Analytics Tool, several software programs and tools were employed. Java-written server controls all components in the project and visualizes the processed data via a user- friendly client web application. The SQL Server maintains data, observed from the ERP system. Moreo- ver, it is responsible for the login and registration procedure to enforce the information security. In the Hadoop environment, two research methods were implemented. The Overall Equipment Effectiveness model investigated the production data to obtain daily, monthly and annual efficiency indices of equip- ment utilization, employees’ workload, resource management, quality degree, among others.
    [Show full text]
  • Mapreduce Service
    MapReduce Service Troubleshooting Issue 01 Date 2021-03-03 HUAWEI TECHNOLOGIES CO., LTD. Copyright © Huawei Technologies Co., Ltd. 2021. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd. Trademarks and Permissions and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd. All other trademarks and trade names mentioned in this document are the property of their respective holders. Notice The purchased products, services and features are stipulated by the contract made between Huawei and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied. The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied. Issue 01 (2021-03-03) Copyright © Huawei Technologies Co., Ltd. i MapReduce Service Troubleshooting Contents Contents 1 Account Passwords.................................................................................................................. 1 1.1 Resetting
    [Show full text]
  • HDP 3.1.4 Release Notes Date of Publish: 2019-08-26
    Release Notes 3 HDP 3.1.4 Release Notes Date of Publish: 2019-08-26 https://docs.hortonworks.com Release Notes | Contents | ii Contents HDP 3.1.4 Release Notes..........................................................................................4 Component Versions.................................................................................................4 Descriptions of New Features..................................................................................5 Deprecation Notices.................................................................................................. 6 Terminology.......................................................................................................................................................... 6 Removed Components and Product Capabilities.................................................................................................6 Testing Unsupported Features................................................................................ 6 Descriptions of the Latest Technical Preview Features.......................................................................................7 Upgrading to HDP 3.1.4...........................................................................................7 Behavioral Changes.................................................................................................. 7 Apache Patch Information.....................................................................................11 Accumulo...........................................................................................................................................................
    [Show full text]
  • Apache Hadoop Goes Realtime at Facebook
    Apache Hadoop Goes Realtime at Facebook Dhruba Borthakur Joydeep Sen Sarma Jonathan Gray Kannan Muthukkaruppan Nicolas Spiegelberg Hairong Kuang Karthik Ranganathan Dmytro Molkov Aravind Menon Samuel Rash Rodrigo Schmidt Amitanand Aiyer Facebook {dhruba,jssarma,jgray,kannan, nicolas,hairong,kranganathan,dms, aravind.menon,rash,rodrigo, amitanand.s}@fb.com ABSTRACT 1. INTRODUCTION Facebook recently deployed Facebook Messages, its first ever Apache Hadoop [1] is a top-level Apache project that includes user-facing application built on the Apache Hadoop platform. open source implementations of a distributed file system [2] and Apache HBase is a database-like layer built on Hadoop designed MapReduce that were inspired by Googles GFS [5] and to support billions of messages per day. This paper describes the MapReduce [6] projects. The Hadoop ecosystem also includes reasons why Facebook chose Hadoop and HBase over other projects like Apache HBase [4] which is inspired by Googles systems such as Apache Cassandra and Voldemort and discusses BigTable, Apache Hive [3], a data warehouse built on top of the applications requirements for consistency, availability, Hadoop, and Apache ZooKeeper [8], a coordination service for partition tolerance, data model and scalability. We explore the distributed systems. enhancements made to Hadoop to make it a more effective realtime system, the tradeoffs we made while configuring the At Facebook, Hadoop has traditionally been used in conjunction system, and how this solution has significant advantages over the with Hive for storage and analysis of large data sets. Most of this sharded MySQL database scheme used in other applications at analysis occurs in offline batch jobs and the emphasis has been on Facebook and many other web-scale companies.
    [Show full text]
  • Apache Ranger 0.5.0 Installation
    Apache Ranger 0.5.0 Installation 1 Overview 2 Prerequisites 3 Installation Instructions 3.1 Preparing to install 3.1.1 Install Maven 3.1.2 Install git 3.1.3 Install gcc 3.1.4 Install MySQL 3.2 Build Ranger Admin from source 3.2.1 Clone the ranger source code 3.2.2 Build the source 3.2.3 Install Steps for Ranger Policy Admin on RHEL/CentOS 3.2.3.1 Lay down the build into appropriate places. 3.2.3.2 Install and configure Solr or SolrCloud 3.3 Installing the Ranger UserSync Process 3.4 Installing Apache Hadoop 3.4.1 Enabling Ranger HDFS Plugins 3.5 Installing Apache Hive(1.2.0) 3.5.1 Enabling Ranger Hive Plugin 3.5.2 Helpful info Ranger Hive Plugin / Hive Services 3.6 Installing Apache HBase (1.1.0.1) 3.6.1 Enabling Ranger HBase Plugins 3.6.2 Helpful info Ranger HBase Plugin / HBase Services 3.7 Installing Apache Knox Gateway 3.7.1 Enabling Ranger Knox Plugins 3.7.2 Helpful info Ranger Knox Plugin / Knox Services 3.7.3 Trusting Self Signed Knox Certificate 3.8 Enabling Ranger Solr Plugin 3.8.1 Install and configure Apache Solr in SolrCloud mode 3.8.2 Solr Service in Ranger Admin 3.8.3 Install and Enable Solr Plugin 3.8.4 Configuring Solr for Ranger 3.9 Installing Apache Storm (0.10.0) 3.9.1 Enabling Ranger Storm Plugins 3.9.2 Enabling Ranger Yarn Plugin 4 Installing Ranger KMS (0.5.0) 5 Enabling Audit Logging To HDFS 6 Enabling Audit Logging To SOLR 7 Configuring Kerberos Authentication 7.1 Installing and Configuring the KDC 7.2 Creating the Kerberos Database 7.3 Installing and Configuring the Kerberos Clients 7.4 Configure Storm to Work with a Secured Zookeeper Cluster 7.5 Configure Kerberos Authentication for Storm 7.6 Ranger UI setup Overview This document details the steps involved in Installing latest version of Apache Incubator Ranger independently on RHEL / Ubuntu / SUSE / Debian OS.
    [Show full text]
  • International Journal of Advanced Research in Computer Science And
    Volume 5, Issue 9, September 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Effective Image Analysis on Twitter Streaming using Hadoop Eco System on Amazon Web Service EC2 Gautam Goswami Irisidea Technologies Pvt. Limited, India Abstract: Twitter is becoming the most popular online micro blogging network of real time post that enables users to send and read short 140-character messages called "tweets". Registered users can read and post tweets, but unregistered users can only read them. Today's Twitter is now less focused on what are you doing but has emerged as a source for discovery, with a focus on sharing relevant information and engaging in conversation. Sharing various visual information in the form of images/photos are becoming very popular where all the follower can see what images/photos have been posted/twitted instantly. In this paper I am going to explain how effectively registered users shares/uploads images among the followers. This information/statistics would be of great value for any organization/company when they launch their new product in market. If a particular image/photo sharing is high among tweeter community, organization/company can be assured that their product is penetrating more in the market. Here I have analyzed the momentum of visual information propagation . So that followers can be aware of that something new have been lunched in market and subsequently will have the curiosity to dig more on it. In this paper, the collected twitter steaming which has been (rich amount of data in semi structure format JSON for an interval of time) referred to as big data are processed efficiently to achieve mentioned output.
    [Show full text]