Vortex Fluid for Gaseous Phenomena

Total Page:16

File Type:pdf, Size:1020Kb

Vortex Fluid for Gaseous Phenomena Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2005) K. Anjyo, P. Faloutsos (Editors) Vortex Fluid for Gaseous Phenomena Sang Il Park† and Myoung Jun Kim‡ † Carnegie Mellon University, Pittsburgh, PA – [email protected] ‡ Ewha Womans University, Korea – [email protected] Abstract In this paper, we present a method for visual simulation of gaseous phenomena based on the vortex method. This method uses a localized vortex flow as a basic building block and combines those blocks to describe a whole flow field. As a result, we achieve computational efficiency by concentrating only on a localized vorticity region while generating dynamic swirling fluid flows. Based on the Lagrangian framework, we resolve various boundary conditions. By exploiting the panel method, we satisfy the no-through boundary condition in a Lagrangian way. A simple and effective way of handling the no-slip boundary condition is also presented. In treating the no-slip boundary condition, we allow a user to control the roughness of the boundary surface, which further improves visual realism. Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and RealismAnimation 1. Introduction ibility condition, as does the superposition of multiple parti- cles. In this paper, we present a novel approach to generating gas animation based on the vortex formulation. Our scheme is Information about the strength of the circulation carried by different from previous methods in computer graphics be- the particles forms another field over space and time, called a cause we are concerned with a higher level field description. vorticity field. Vortex methods deal with the evolution of this Instead of simulating the individual velocity vector at every vorticity field and consequently make it possible to deter- fixed grid point, we simulate a set of localized basis veloc- mine the position and the circulation strength of each vortex ity fields. By placing and scaling each of the basis fields particle over time. Although these vortex methods have not based on underlying physical laws and user-given boundary yet received much attention in the graphics community, they conditions, we synthesize a plausible fluid animation. This have been regarded as distinct alternatives to the established method allows us to concentrate only on the region of impor- computational techniques such as finite difference methods tance that contributes to the whole flow area. Consequently, a in the computational fluid dynamics community. small number of computational elements are needed for gen- erating a fluid animation even though the whole flow area is Besides the efficiency from the localized computation as large or unbound. mentioned above, the vortex method is suitable for the sys- tem based on the Lagrangian description; we track the vortex We choose a purely circulating flow as a basis velocity field, particles convected along the velocity field freely without and represent it as a particle, vortex particle. This circulating grid. This Lagrangian description has several potential ad- fluid is an appropriate basic building block because the vivid vantages over grid-based Eulerian methods. First, it is free spinning movement and property of incompressibility often of numerical dissipation from which the grid-based methods make flow look fluid-like; a combination of even a few spin- generally suffer in advection process. Therefore, the gener- ning fields can generate a visually complex swirling move- ated flow is less damped and does not require any additional ment in the flow. Furthermore, a circulating flow field from reinforcement to keep the fluid moving. Second, the number each vortex particle automatically satisfies the incompress- of numerical elements can be easily adapted to the complex- c The Eurographics Association 2005. S. I. Park & M. J. Kim / Vortex Fluid for Gaseous Phenomena ity of the flow. Finally, it is suitable for either open or closed Smoothed Particle Hydrodynamics(SPH), Lagrangian meth- environments. ods have been gradually attracting more interest. The Lagrangian description also allows us to represent a Based on the Eulerian description, Kajiya and Von Herzen boundary condition easily and accurately. Grid-based meth- adapted fluid dynamics for the first time for generating fluid ods require that boundaries such as walls or obstacles should animation [KvH84]. Later, Foster and Metaxas presented a be discretized along with the grid or the grid should be realistic gas simulation by considering full 3D dynamics of well aligned with the boundaries in advance. However, our the fluid [FM97]. Although it could generate realistic move- method uses conventional geometry representations such as ment of the gas, it required a very fine timestep for a stable polygonal objects consisting of line segments in 2D or trian- simulation. By using a semi-Lagrangian formulation in the gles in 3D for describing the boundary condition. advection process, Stam guaranteed unconditional stability in simulation, which, thus, enables a large timestep and inter- Our contribution in adapting the vortex method to visual ap- active controls over the fluid [Sta99]. However, this method plications is as follows: First, for efficient simulation, we ex- suffered from the rapidly vanishing movement due to the nu- ploit the Lagrangian nature of the vortex method and present merical dissipation. Fedkiw et al. alleviated this problem by an efficient method for evolving the vorticity fields without adding the artificial vorticity confinement term [FSJ01]. introducing a system of matrix equations. Second, we re- solve the various boundary conditions in a Lagrangian way, Most methods based on the Lagrangian description are based in which the boundary geometry is treated accurately. Fi- on the SPH. Stam and Fiume were the first in the graphics nally, we address the importance of the no-slip boundary community to exploit it to simulate fire and gases [SF95]. condition for visual appearance of the fluid and present a Desbrun and Cani-Gascuel used it both for modeling a de- simple and effective scheme for it. We also suggest a con- formable surfaces and solving the governing equation of trollable parameter for the roughness of the boundary sur- substances [DCG98, DCG99]. SPH and its extension Mov- face. ing Particle Semi-implicit (MPS) were also used to simulate water [MCG03,PTB∗03]. The remainder of this paper is organized as follows: We first review related work in Section 2. The basic concept and the Differently from SPH, the vortex method has not got much formulation of the vortex method are given in Section 3.In attention since it was first introduced by Gamito et al. to Section 4, we present our numerical method in detail. We the graphics community [GLG95]. Although they showed explain how to satisfy the boundary condition in Section 5. impressive demonstrations of a turbulent jet stream, their Experimental results are provided in Section 6. In section 7, method had several limitations: they limited their simulation we discuss limitations and further issues and conclude this to simple 2D cases without any boundary walls or obstacles. paper. Furthermore, their method relied on a fixed grid for the vor- ticity evolution and did not take advantage of the Lagrangian nature of the vortex method. In this paper, we fully exploit 2. Related Work the potential of the vortex method for visual simulation of In the computer graphics community, the essence of fluid gasses including full 3D extension, imposition of bound- animation is laid upon visual appearance but not upon strict ary conditions and control of the boundary surface prop- physical accuracy. Thus, early methods concentrated on de- erty. Most recently, Salle et al. presented a method, in which veloping ad-hocs which can imitate a visual behavior of a they exploited vortex particles for the vorticity confinement fluid based on intuition of the authors [SF92, SF93, Sta97]. on top of the conventional Eulerian method [SRF05]. Our However, due to the many control parameters provided, the method is different from theirs because our method is en- quality of the resulting animations was heavily dependent tirely based on the Lagragian description. upon the skill of an animator. Another problem is the lack of interactivity: it was very hard to make the fluid react on an external force or satisfy the user given boundary conditions. 3. Vortex Method To overcome those problems, the computer graphics com- In this section we will briefly introduce the basic concept munity has adopted physics-based schemes from the Com- and formulations of the vortex method. First, we introduce putational Fluid Dynamics. There have been two different the definition of the vorticity and its transportation equation points of view in dealing with the fluid dynamics. The first describing the fluid dynamics (Section 3.1). Second, the dis- view is to describe the flow field at the fixed computational cretization of the vorticity field is presented for numerical points, called the Eulerian method. The other method, called computation (Section 3.2). Finally, we deal with calculat- the Lagrangian method, concentrates on the motion of an in- ing the velocity field numerically back from the descritized dividual particle which roughly imitates a molecule of the vorticity field (Section 3.3). For further mathematical de- fluid. Eulerian methods have been important in simulating tails and applications of vortex methods, we refer the read- fluid dynamics. However, due to the recent development in ers to the book by Cottet and Koumoutsakos [CK98], and c The Eurographics Association 2005. S. I. Park & M. J. Kim / Vortex Fluid for Gaseous Phenomena the survey articles by Leonard [Leo80] and Anderson and 3.2. Vorticity Discretization Graham [AG91]. We represent the vorticity field as a set of numerical ele- ments in order to facilitate the numerical computation. In 3.1. Vorticity Equation grid-based methods, this is done by using regularly distrib- uted nodal points, where the spatial differentiation of a given Let us start with the definition of vorticity.
Recommended publications
  • Kármán Vortex Street Energy Harvester for Picoscale Applications
    Kármán Vortex Street Energy Harvester for Picoscale Applications 22 March 2018 Team Members: James Doty Christopher Mayforth Nicholas Pratt Advisor: Professor Brian Savilonis A Major Qualifying Project submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfilment of the requirements for the degree of Bachelor of Science This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects. Cover Picture Credit: [1] Abstract The Kármán Vortex Street, a phenomenon produced by fluid flow over a bluff body, has the potential to serve as a low-impact, economically viable alternative power source for remote water-based electrical applications. This project focused on creating a self-contained device utilizing thin-film piezoelectric transducers to generate hydropower on a pico-scale level. A system capable of generating specific-frequency vortex streets at certain water velocities was developed with SOLIDWORKS modelling and Flow Simulation software. The final prototype nozzle’s velocity profile was verified through testing to produce a velocity increase from the free stream velocity. Piezoelectric testing resulted in a wide range of measured dominant frequencies, with corresponding average power outputs of up to 100 nanowatts. The output frequencies were inconsistent with predicted values, likely due to an unreliable testing environment and the complexity of the underlying theory. A more stable testing environment, better verification of the nozzle velocity profile, and fine-tuning the piezoelectric circuit would allow for a higher, more consistent power output.
    [Show full text]
  • A Concept of the Vortex Lift of Sharp-Edge Delta Wings Based on a Leading-Edge-Suction Analogy Tech Library Kafb, Nm
    I A CONCEPT OF THE VORTEX LIFT OF SHARP-EDGE DELTA WINGS BASED ON A LEADING-EDGE-SUCTION ANALOGY TECH LIBRARY KAFB, NM OL3042b NASA TN D-3767 A CONCEPT OF THE VORTEX LIFT OF SHARP-EDGE DELTA WINGS BASED ON A LEADING-EDGE-SUCTION ANALOGY By Edward C. Polhamus Langley Research Center Langley Station, Hampton, Va. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - Price $1.00 A CONCEPT OF THE VORTEX LIFT OF SHARP-EDGE DELTA WINGS BASED ON A LEADING-EDGE-SUCTION ANALOGY By Edward C. Polhamus Langley Research Center SUMMARY A concept for the calculation of the vortex lift of sharp-edge delta wings is pre­ sented and compared with experimental data. The concept is based on an analogy between the vortex lift and the leading-edge suction associated with the potential flow about the leading edge. This concept, when combined with potential-flow theory modified to include the nonlinearities associated with the exact boundary condition and the loss of the lift component of the leading-edge suction, provides excellent prediction of the total lift for a wide range of delta wings up to angles of attack of 20° or greater. INTRODUCTION The aerodynamic characteristics of thin sharp-edge delta wings are of interest for supersonic aircraft and have been the subject of theoretical and experimental studies for many years in both the subsonic and supersonic speed ranges. Of particular interest at subsonic speeds has been the formation and influence of the leading-edge separation vor­ tex that occurs on wings having sharp, highly swept leading edges.
    [Show full text]
  • Three Types of Horizontal Vortices Observed in Wildland Mass And
    1624 JOURNAL OF CLIMATE AND APPLIED METEOROLOGY VOLUME26 Three Types of Horizontal Vortices Observed in Wildland Mas~ and Crown Fires DoNALD A. HAINES U.S. Department ofAgriculture, Forest Service, North Central Forest Experiment Station, East Lansing, Ml 48823 MAHLON C. SMITH Department ofMechanical Engineering, Michigan State University, East Lansing, Ml 48824 (Manuscript received 25 October 1986, in final form 4 May 1987) ABSTRACT Observation shows that three types of horizontal vortices may form during intense wildland fires. Two of these vortices are longitudinal relative to the ambient wind and the third is transverse. One of the longitudinal types, a vortex pair, occurs with extreme heat and low to moderate wind speeds. It may be a somewhat common structure on the flanks of intense crown fires when burning is concentrated along the fire's perimeter. The second longitudinal type, a single vortex, occurs with high winds and can dominate the entire fire. The third type, the transverse vortex, occurs on the upstream side of the convection column during intense burning and relatively low winds. These vortices are important because they contribute to fire spread and are a threat to fire fighter safety. This paper documents field observations of the vortices and supplies supportive meteorological and fuel data. The discussion includes applicable laboratory and conceptual studies in fluid flow and heat transfer that may apply to vortex formation. 1. Introduction experiments showed that when air flowed parallel to a heated metal ribbon that simulated the flank of a crown The occurrence of vertical vortices in wildland fires fire, a thin, buoyant plume capped with a vortex pair has been well documented as well as mathematically developed above the ribbon along its length.
    [Show full text]
  • Hurricane Vortex Dynamics During Atlantic Extratropical Transition
    714 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 65 Hurricane Vortex Dynamics during Atlantic Extratropical Transition CHRISTOPHER A. DAVIS National Center for Atmospheric Research,* Boulder, Colorado ϩ SARAH C. JONES AND MICHAEL RIEMER Universität Karlsruhe, Forschungszentrum Karlsruhe, Karlsruhe, Germany (Manuscript received 2 April 2007, in final form 6 July 2007) ABSTRACT Simulations of six Atlantic hurricanes are diagnosed to understand the behavior of realistic vortices in varying environments during the process of extratropical transition (ET). The simulations were performed in real time using the Advanced Research Weather Research and Forecasting (WRF) model (ARW), using a moving, storm-centered nest of either 4- or 1.33-km grid spacing. The six simulations, ranging from 45 to 96 h in length, provide realistic evolution of asymmetric precipitation structures, implying control by the synoptic scale, primarily through the vertical wind shear. The authors find that, as expected, the magnitude of the vortex tilt increases with increasing shear, but it is not until the shear approaches 20 m sϪ1 that the total vortex circulation decreases. Furthermore, the total vertical mass flux is proportional to the shear for shears less than about 20–25 m sϪ1, and therefore maximizes, not in the tropical phase, but rather during ET. This has important implications for predicting hurricane-induced perturbations of the midlatitude jet and its consequences on downstream predictability. Hurricane vortices in the sample resist shear by either adjusting their vertical structure through preces- sion (Helene 2006), forming an entirely new center (Irene 2005), or rapidly developing into a baroclinic cyclone in the presence of a favorable upper-tropospheric disturbance (Maria 2005).
    [Show full text]
  • 04 Delta Wings
    ExperimentalExperimental AerodynamicsAerodynamics Lecture 4: Delta wing experiments G. Dimitriadis Experimental Aerodynamics Introduction •! In this course we will demonstrate the use of several different experimental aerodynamic methodologies •! The particular application will be the aerodynamics of Delta wings at low airspeeds. •! Delta wings are of particular interest because of their lift generation mechanism. Experimental Aerodynamics Delta wing history •! Until the 1930s the vast majority of aircraft featured rectangular, trapezoidal or elliptical wings. •! Delta wings started being studied in the 1930s by Alexander Lippisch in Germany. •! Lippisch wanted to create tail-less aircraft, and Delta wings were one of the solutions he proposed. Experimental Aerodynamics Delta Lippisch DM-1 Designed as an interceptor jet but never produced. The photos show a glider prototype version. Experimental Aerodynamics High speed flight •! After the war, the potential of Delta wings for supersonic flight was recognized both in the US and the USSR. MiG-21 Convair XF-92 Experimental Aerodynamics Low speed performance •! Although Delta wings are designed for high speeds, they still have to take off and land at small airspeeds. •! It is important to determine the aerodynamic forces acting on Delta wings at low speed. •! The lift generated by such wings are low speeds can be split into two contributions: –! Potential flow lift –! Vortex lift Experimental Aerodynamics Delta wing geometry cb Wing surface: S = 2 2b Aspect ratio: AR = "! c c! b AR Sweep angle: tan ! = = 2c 4 b/2! Experimental Aerodynamics Potential flow lift •! Slender wing theory •! The wind is discretized into transverse segments. •! The flow around each segment is modeled as a 2D flow past a flat plate perpendicular to the free stream Experimental Aerodynamics Slender wing theory •! The problem of calculating the flow around the wing becomes equivalent to calculating the flow around each 2D segment.
    [Show full text]
  • Fluids – Lecture 16 Notes 1
    Fluids – Lecture 16 Notes 1. Vortex 2. Lifting flow about circular cylinder Reading: Anderson 3.14 – 3.16 Vortex Flowfield Definition A vortex flow has the following radial and tangential velocity components C V = 0 , V = r θ r where C is a scaling constant. The circulation around any closed circuit is computed as θ2 C Γ ≡ − V~ · d~s = − Vθ r dθ = − r dθ = −C (θ2 − θ1) I I Zθ1 r y y V r dθ ds dθ x x The integration range θ2−θ1 =2π if the circuit encircles the origin, but is zero otherwise. −2πC , (circuit encircles origin) Γ = ( 0 , (circuit doesn’t encircle origin) y y θ1 θ2 θ1 θ2 x x In lieu of C, it is convenient to redefine the vortex velocity field directly in terms of the circulation of any circuit which encloses the vortex origin. Γ V = − θ 2πr 1 A positive Γ corresponds to clockwise flow, while a negative Γ corresponds to counterclock- wise flow. Cartesian representation The cartesian velocity components of the vortex are Γ y u(x, y) = 2π x2 + y2 Γ x v(x, y) = − 2π x2 + y2 and the corresponding potential and stream functions are as follows. Γ Γ φ(x, y) = − arctan(y/x) = − θ 2π 2π Γ Γ ψ(x, y) = ln x2 + y2 = ln r 2π 2π q Singularity As with the source and doublet, the origin location (0, 0) is called a singular point of the vortex flow. The magnitude of the tangential velocity tends to infinity as 1 V ∼ θ r Hence, the singular point must be located outside the flow region of interest.
    [Show full text]
  • The Multiple Vortex Structure of a Tornado
    THE MULTIPLE VORTEX STRUCTURE OF A TORNADO Joshua Wurman University of Oklahoma 1. Introduction Conceptual models (Davies-Jones 1976), and 1 km computer (Rotunno 1984, Lewellen 1993, Lewellen et al 1997, Fiedler 1998) and laboratory simulations (Ward 1972, Church and Snow 1993, Church et al. 1979) of tornado structure predict that, under certain conditions, a primary tornado vortex will break down into several sub-tornadic scale multiple vortices (hereinafter “multiple-vortices”). Multiple vortices have been observed visually and in patterns of damage for decades (Fujita 1970, Pauley and Snow 1988). Direct radar evidence of sub-tornado- scale wind maxima probably associated with multiple-vortices was first obtained in a large tornado Figure 1.Doppler Velocity and Power in Spencer SD that destroyed much of the small town of Spencer, SD in tornado illustrating multiple vortices (black ovals). 1998 (Wurman 1999, Fig. 1). The tornado was observed W W ’ ’ at ranges of 1.7-5 km (to center). The vortices were Fig 2. Path of torn near Mulhall4 3 2 2 ° ° Tornado Core Region OK. Core flow diameter shown.7 7 weaker than the tornadic flow, with perturbations of ~ 9 9 20-30 ms-1 on a parent flow of ~ 85-95 ms-1. The 25m and vortices caused a degradation of the typical clear eye 37.5m non- 03:17:38 structure observed frequently in received power data oversampled 03:16:38 obtained in tornadoes not exhibiting strong multiple range vortices (Wurman and Gill 2000, Burgess et al 2001. resolution. 03:15:27 3x° xx’ N Sometimes, several “eyes” were evident.
    [Show full text]
  • Von Kármán Vortex Streets
    Von Karm´ an´ Vortex Streets: Simulating Natural Phenomena at Scale By: Sean Wang April 25th, 2019 1 Introduction The turn of the 19th century ushered in a golden era of fluid and aerodynamics research, with many scientists attacking the great questions that not only arose from advent of the powered airplane, but also those posed by the founders of fluid dynamics decades or centuries before. Possibly the greatest fluid dynamicist of all time, Ludwig Prandtl sought to answer of these questions, particularly as they related to flight forces. In his exploration of bluff body drag in near potential flows, Prandtl observed a natural phenomenon, an oscillatory sheet of shed vortices. This paper will explore this phenomenon as well as its outreaching applications in modelling at scale. 2 The Karm´ an´ Vortex Street The original understanding behind vortex shedding comes from a combination of Prandtl’s boundary layer theory (1904) and the existing potential flow theory. In potential flow theory, for an inviscid, incompressible (∇·U~ ), and irrotational (∇×U~ ) fluid, d’Alembert’s paradox states that there is zero drag. Experimentally, this is never true, with the closest examples being flows of ex- tremely low Reynolds numbers paired with a relatively slow free stream velocity (gen- erally M < :3). In the case of bluff bodies I.E. a cylinder in a flow, there is a strong adverse pressure gradient past the half chord, which causes almost immediate flow separation and a subsequent low pressure wake, integrating across the imbalance of pressures gives the resulting the drag. An additional consequence of separation is the phenomenon discussed earlier, alternating vortices caused by imbalances in the rotat- ing, separating wake; this is what is known as a Karm´ an´ street, after Theodore Van Karm´ an.´ Figure 1: A low pressure wake is visible on a simulated vortex street, a result of separation past the half chord.
    [Show full text]
  • A Vortex Model for Forces and Moments on Low-Aspect-Ratio Wings in Side-Slip with Experimental Validation Adam Devoria, Kamran Mohseni
    A vortex model for forces and moments on low-aspect-ratio wings in side-slip with experimental validation Adam Devoria, Kamran Mohseni To cite this version: Adam Devoria, Kamran Mohseni. A vortex model for forces and moments on low-aspect-ratio wings in side-slip with experimental validation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Royal Society, The, 2017, 473 (2198), 10.1098/rspa.2016.0760. hal-01918593 HAL Id: hal-01918593 https://hal.archives-ouvertes.fr/hal-01918593 Submitted on 11 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A vortex model for forces and rspa.royalsocietypublishing.org moments on low-aspect-ratio wings in side-slip with experimental validation Research Adam C. DeVoria1 and Kamran Mohseni1,2 Cite this article: DeVoria AC, Mohseni K. 2017 A vortex model for forces and moments on 1Department of Mechanical and Aerospace Engineering, and low-aspect-ratio wings in side-slip with 2Department of Electrical and Computer Engineering, experimental validation. Proc.R.Soc.A473: University of Florida, Gainesville, FL 32611, USA 20160760. http://dx.doi.org/10.1098/rspa.2016.0760 KM, 0000-0002-1382-221X This paper studies low-aspect-ratio (A) rectangular Received: 7 October 2016 wings at high incidence and in side-slip.
    [Show full text]
  • A Revised Tornado Definition and Changes in Tornado Taxonomy
    1256 WEATHER AND FORECASTING VOLUME 29 A Revised Tornado Definition and Changes in Tornado Taxonomy ERNEST M. AGEE Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana (Manuscript received 4 June 2014, in final form 30 July 2014) ABSTRACT The tornado taxonomy presented by Agee and Jones is revised to account for the new definition of a tor- nado provided by the American Meteorological Society (AMS) in October 2013, resulting in the elimination of shear-driven vortices from the taxonomy, such as gustnadoes and vortices in the eyewall of hurricanes. Other relevant research findings since the initial issuance of the taxonomy are also considered and in- corporated, where appropriate, to help improve the classification system. Multiple misoscale shear-driven vortices in a single tornado event, when resulting from an inertial instability, are also viewed to not meet the definition of a tornado. 1. Introduction and considerations from a cumuliform cloud, and often visible as a funnel cloud and/or circulating debris/dust at the ground.’’ In The first proposed tornado taxonomy was presented view of the latest definition, a few changes are warranted by Agee and Jones (2009, hereafter AJ) consisting of in the AJ taxonomy. Considering the roles played by three types and 15 species, ranging from the type I buoyancy and shear on a variety of spatial and temporal (potentially strong and violent) tornadoes produced by scales (from miso to meso to synoptic), coupled with the the classic supercell, to the more benign type III con- requirement in the latest definition that a tornado must vective and shear-driven vortices such as landspouts and be pendant from a cumuliform cloud, it is necessary to gustnadoes.
    [Show full text]
  • Vortex Dynamics Resulting from the Interaction Between Two NACA 23 012 Airfoils Thierry M
    Vortex dynamics resulting from the interaction between two NACA 23 012 airfoils Thierry M. Faure, Laurent Hétru, Olivier Montagnier To cite this version: Thierry M. Faure, Laurent Hétru, Olivier Montagnier. Vortex dynamics resulting from the interaction between two NACA 23 012 airfoils. 50th 3AF International Conference on Applied Aerodynamics, Association Aéronautique et Astronautique de France - 3AF, Mar 2015, Toulouse, France. hal- 01157857 HAL Id: hal-01157857 https://hal.archives-ouvertes.fr/hal-01157857 Submitted on 28 May 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 50h 3AF International Conference on Applied Aerodynamics 29-30 March – 01 April 2015, Toulouse - France FP10-2015-faure Vortex dynamics resulting from the interaction between two NACA 23 012 airfoils Thierry M. Faure (1,2), Laurent Hétru (1), Olivier Montagnier (1,3) (1) Centre de Recherche de l’Armée de l’air, École de l’Air, B.A. 701, 13661 Salon-de-Provence, France, Email: [email protected], [email protected], [email protected] (2) Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur, bâtiment 508, rue J. Von Neumann 91403 Orsay, France (3) Laboratoire de Mécanique et d’Acoustique, 31 chemin Joseph Aiguier, 13402 Marseille, France ABSTRACT An experimental study of the interaction between two airfoils, corresponding to a T-tail aircraft configuration, is implemented in a wind tunnel for a range of medium Reynolds numbers.
    [Show full text]
  • NUMERICAL INVESTIGATIONS of a TORNADO VORTEX USING VORTICITY CONFINEMENT HOLLY C. HASSENZAHL a Thesis Submitted in Partial
    NUMERICAL INVESTIGATIONS OF A TORNADO VORTEX USING VORTICITY CONFINEMENT by HOLLY C. HASSENZAHL A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Atmospheric and Oceanic Sciences) at the UNIVERSITY OF WISCONSIN MADISON 2007 i ABSTRACT The numerical simulation of a realistically strong tornado vortex and its associated condensation funnel has proven to be very difficult to resolve in atmospheric modeling. Many have attributed this failure to insufficient resolution of the models being used. Others have conjectured that the problem lies in the fact that strong gradients are eroded by numerical diffusion, thus prohibiting the formation of strong vortices. This latter hypothesis led engineers Steinhoff and Underhill (1994) to conceive the Vorticity Confinement (VC) technique, in an effort to restore the vorticity gradients lost to diffusion. In this study, the University of Wisconsin Non-Hydrostatic Modeling System (UW-NMS) is used to investigate the aforementioned hypotheses on a three-dimensional extension of the Wicker and Wilhelmson (1995) tornado vortex. These idealized simulations are carried out with two-way interactive nested grids at horizontal resolutions of 24 m and 12 m. Simulations without the VC technique do produce tornado vortices at both resolutions, however they are too weak to form condensation funnels extending to the surface. Comparisons with simulations employing the VC technique show that a realistically strong tornado vortex is resolved at the 24 m resolution, producing a beautiful condensation funnel that descends to the ground. However, when extended to a resolution of 12 m, the VC technique fails to converge to the real solution.
    [Show full text]