Static Tactile Sensing for a Robotic Electronic Skin Via an Electromechanical Impedance-Based Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tactile Sensing for Robotic Applications
15 Tactile Sensing for Robotic Applications Ravinder S. Dahiya1, 2 and Maurizio Valle1 1University of Genova, 2Italian Institute of Technology, Genova, Italy 1. Introduction Robotic devices – limited to the structured environment of manufacturing plants until few years ago – are slowly making way into human life, which has led to the emergence of interaction and learning issues in robots. Such issues are important for future robot to be able to learn autonomously and to interact safely with the environment i.e. without causing any harm to it or to the objects with which it is interacting. In this context, it becomes important to study the ways and means of robot’s interaction with the environment. Humans interact and explore the environment through five main sense modalities viz. touch, vision, hearing, olfaction and taste. Loss of any of these modalities will result in the incomplete information about the environment. Irrespective of their importance with respect to each other, the study of their individual contribution in collecting information from environment is important for improving the sensing capabilities of any future robotic system. This chapter provides an overview of tactile sensing in robotics. This chapter is an attempt to answer three basic questions: • What is meant by Tactile Sensing? • Why Tactile Sensing is important? • How Tactile Sensing is achieved? The chapter is organized to sequentially provide the answers to above basic questions. Tactile sensing has often been considered as force sensing, which is not wholly true. In order to clarify such misconceptions about tactile sensing, it is defined in section 2. Why tactile section is important for robotics and what parameters are needed to be measured by tactile sensors to successfully perform various tasks, are discussed in section 3. -
Recent Progress in Flexible Tactile Sensor Systems: from Design to Application
Zhu et al. Soft Sci 2021;1:3 Soft Science DOI: 10.20517/ss.2021.02 Review Open Access Recent progress in flexible tactile sensor systems: from design to application Jiefei Zhu1, Changjian Zhou2, Min Zhang1 1School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China. 2School of Microelectronics, South China University of Technology, Guangzhou 510641, China. Correspondence to: Dr. Min Zhang, School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China. E-mail: [email protected] How to cite this article: Zhu J, Zhou C, Zhang M. Recent progress in flexible tactile sensor systems: from design to application. Soft Sci 2021;1:3. https://dx.doi.org/10.20517/ss.2021.02 Received: 23 May 2021 First Decision: 17 Jun 2021 Revised: 30 Jun 2021 Accepted: 9 Jul 2021 First online: 9 Jul 2021 Academic Editor: Zhifeng Ren Copy Editor: Xi-Jun Chen Production Editor: Xi-Jun Chen Abstract With the rapid development of artificial intelligence, human-machine interaction, and healthcare systems, flexible tactile sensors have huge market potentials and research needs, so that both fundamental research and application demonstrations are evolving rapidly to push the potential to reality. In this review, we briefly summarize the recent progress of the flexible tactile sensor system, including the common sensing mechanisms, the important performance evaluation parameters, the device design trend, and the main applications. Moreover, the current device design trend towards flexible tactile sensor systems is discussed, including novel structures for outstanding performance, sensor arrays for large-area information acquisition, multi-mode information acquisition, and integration of tactile sensors with transistors. -
Tactile-Sensing Based on Flexible PVDF Nanofibers Via Electrospinning: a Review
sensors Review Tactile-Sensing Based on Flexible PVDF Nanofibers via Electrospinning: A Review Xiaomei Wang 1, Fazhe Sun 2, Guangchao Yin 1, Yuting Wang 3, Bo Liu 1,* and Mingdong Dong 3,* ID 1 Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China; [email protected] (X.W.); [email protected] (G.Y.) 2 Analysis Testing Center, Shandong University of Technology, Zibo 255100, China; [email protected] 3 Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; [email protected] * Correspondence: [email protected] (B.L.); [email protected] (M.D.) Received: 2 October 2017; Accepted: 4 December 2017; Published: 24 January 2018 Abstract: The flexible tactile sensor has attracted widespread attention because of its great flexibility, high sensitivity, and large workable range. It can be integrated into clothing, electronic skin, or mounted on to human skin. Various nanostructured materials and nanocomposites with high flexibility and electrical performance have been widely utilized as functional materials in flexible tactile sensors. Polymer nanomaterials, representing the most promising materials, especially polyvinylidene fluoride (PVDF), PVDF co-polymer and their nanocomposites with ultra-sensitivity, high deformability, outstanding chemical resistance, high thermal stability and low permittivity, can meet the flexibility requirements for dynamic tactile sensing in wearable electronics. Electrospinning has been recognized as an excellent straightforward and versatile technique for preparing nanofiber materials. This review will present a brief overview of the recent advances in PVDF nanofibers by electrospinning for flexible tactile sensor applications. PVDF, PVDF co-polymers and their nanocomposites have been successfully formed as ultrafine nanofibers, even as randomly oriented PVDF nanofibers by electrospinning. -
Touch and Tactile Perception for Robots
Touch and tactile perception for robots Václav Hlaváč Czech Technical University in Prague (ČVUT) Czech Institute of Informatics, Robotics, and Cybernetics (CIIRC) Prague 6, Jugoslávských partyzánů 1580/3 Czech Republic [email protected] http://people.ciirc.cvut.cz/hlavac/ 1 Human sense of touch Czech Institute of Informatics, Robotics and Cybernetics 2 Related human vocabulary •Tactile •Haptic • Perceptible to the sense • Of or relating to the sense of touch. of touch; tactile. • From Latin tactilis (“that • From Ancient Greek may be touched, ἁπτικός (haptikos, “able tangible”). to come in contact with”), ἅπτω (haptō, “I touch”). • From French tactile. •Haptics •Touch • (in medicine) The study of • Make physical contact the sense of touch. with. • (in computing) The study • From e.g. French of user interfaces that use toucher. the sense of touch. Source: Wiktionary Czech Institute of Informatics, Robotics and Cybernetics 3 A greater picture, a somatosensory system Czech Institute of Informatics, Robotics and Cybernetics 4 Somatosensory system • The touch impression uses several modalities. • Somatosensory system comprising the receptors and processing centers to perceive touch, temperature, proprioception (body position from stimuli inside the body), and nociception (pain). • Cutaneous sensations obtains inputs from the receptors embedded in the skin (examples: temperature, pressure, pain). • Kinesthetic sensations gets inputs from the receptors within muscles, tendons and joints (examples: body position, movement, weight, equilibrium). Czech Institute of Informatics, Robotics and Cybernetics 5 Towards robot tactile sensors •Receptors in humans cover the skin and epithelia, skeletal muscles, bones and joints, internal organs, and the cardiovascular system. •Tactile sensors in robotics ≈ cutaneous sensory receptors in humans. -
Research Article Electronic Skin from High-Throughput Fabrication of Intrinsically Stretchable Lead Zirconate Titanate Elastomer
AAAS Research Volume 2020, Article ID 1085417, 11 pages https://doi.org/10.34133/2020/1085417 Research Article Electronic Skin from High-Throughput Fabrication of Intrinsically Stretchable Lead Zirconate Titanate Elastomer Yiming Liu ,1 Huanxi Zheng,2 Ling Zhao,1 Shiyuan Liu,2 Kuanming Yao ,1 Dengfeng Li ,1 Chunki Yiu,1 Shenghan Gao,3 Raudel Avila,4 Pakpong Chirarattananon ,1 Lingqian Chang,5 Zuankai Wang ,2 Xian Huang,3 Zhaoqian Xie ,6 Zhengbao Yang ,2 and Xinge Yu 1 1Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China 2Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China 3Department of Biomedical Engineering, Tianjin University, Tianjin 300000, China 4Department of Mechanical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA 5School of Biology Science and Medical Engineering, Beihang University, Beijing 100191, China 6State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China Correspondence should be addressed to Lingqian Chang; [email protected], Zuankai Wang; [email protected], Xian Huang; [email protected], Zhaoqian Xie; [email protected], Zhengbao Yang; [email protected], and Xinge Yu; [email protected] Received 15 June 2020; Accepted 7 September 2020; Published 17 October 2020 Copyright © 2020 Yiming Liu et al. Exclusive Licensee Science and Technology Review Publishing House. Distributed under a Creative Commons Attribution License (CC BY 4.0). Electronic skin made of thin, soft, stretchable devices that can mimic the human skin and reconstruct the tactile sensation and perception offers great opportunities for prosthesis sensing, robotics controlling, and human-machine interfaces. -
The Art of Tactile Sensing: a State of Art Survey
International Journal of Sciences: Basic and Applied Research (IJSBAR) ISSN 2307-4531 (Print & Online) http://gssrr.org/index.php?journal=JournalOfBasicAndApplied --------------------------------------------------------------------------------------------------------------------------- The Art of Tactile Sensing: A State of Art Survey Royson Donate D’Souzaa*, Adithya Joshyb, Arjun Minic , Nikhitha .M. Panickerd aAssistant Professor, Manipal University, Dubai 345050, UAE b,c,d Student, Manipal University, Dubai 345050, UAE aEmail: [email protected] bEmail: [email protected] cEmail: [email protected] dEmail: [email protected] Abstract This paper describes about tactile sensors, its transduction methods, state-of-art and various application areas of these sensors. Here we are taking in consideration the sense of touch. This provides the robots with tactile perception. In most of the robotic application the sense of touch is very helpful. The ability of robots to touch and feel the object, grasping an object by controlled pressure, mainly to categorize the surface textures. Tactile sensors can measure the force been applied on an area of touch. The data which is interpreted from the sensor is accumulated by the array of coordinated group of touch sensors. The sense of touch in human is distributed in four kinds by tactile receptors: Meissner corpuscles, the Merkel cells, the Rufina endings, and the Pacinian corpuscles. There has many innovations done to mimic the behaviour of human touch. The contact forces are measured by the sensor and this data is used to determine the manipulation of the robot. Keywords: Tactile sensors; robotic sensors; tactile sensor applications. ------------------------------------------------------------------------ * Corresponding author. 252 International Journal of Sciences: Basic and Applied Research (IJSBAR) (2016) Volume 26, No 3, pp 252-266 1.