Genomic Features of Exceptional Response in Vemurafenib

Total Page:16

File Type:pdf, Size:1020Kb

Genomic Features of Exceptional Response in Vemurafenib Published OnlineFirst March 1, 2019; DOI: 10.1158/1078-0432.CCR-18-0720 Clinical Trials: Immunotherapy Clinical Cancer Research Genomic Features of Exceptional Response in Vemurafenib Æ Cobimetinib–treated Patients with BRAFV600-mutated Metastatic Melanoma Yibing Yan1, Matthew J.Wongchenko1, Caroline Robert2, James Larkin3, Paolo A. Ascierto4, Brigitte Dreno 5, Michele Maio6, Claus Garbe7, Paul B. Chapman8, Jeffrey A. Sosman9, Zhen Shi1, Hartmut Koeppen1, Jessie J. Hsu1, Ilsung Chang1, Ivor Caro1, Isabelle Rooney1, Grant A. McArthur10, and Antoni Ribas11 Abstract Purpose: Previous investigations identified transcriptional Results: Whole-exome sequencing showed that MITF and signatures associated with innate resistance to anti– TP53 alterations were more frequent in tumors from patients programmed cell death protein 1 therapy in melanoma. This with rapid progression, while NF1 alterations were more analysis aimed to increase understanding of the role of base- frequent in tumors from patients with complete response. line genetic features in the variability of response to BRAF However, the low frequency of alterations in any one gene and MEK inhibitor therapy for BRAFV600-mutated metastatic precluded their characterization as drivers of response/ melanoma. resistance. Analysis of RNA profiles showed that expression Patients and Methods: This exploratory analysis compared of immune response–related genes was enriched in tumors genomic features, using whole-exome and RNA sequencing, of from patients with complete response, while expression of baseline tumors from patients who had complete response keratinization-related genes was enriched in tumors from versus rapid progression (disease progression at first postbase- patients who experienced rapid progression. line assessment) on treatment with cobimetinib combined Conclusions: These findings suggest that enriched immune with vemurafenib or vemurafenib alone. Associations of gene infiltration might be a shared feature favoring response to both expression with progression-free survival or overall survival targeted and immune therapies, while features of innate were assessed by Cox proportional hazards modeling. resistance to targeted and immune therapies were distinct. Introduction with response to either targeted therapies or immunotherapies to allow consideration of treatment that will optimize benefits The introduction of small-molecule inhibitors of BRAF and for the individual patient. An investigation of genomic features MEK and mAbs targeting programmed cell death protein 1 in responders compared with nonresponders identified (PD-1) and CTL–associated antigen 4 have remarkably improv- transcriptional signatures associated with innate resistance to ed treatment outcomes for patients with metastatic melano- anti–PD-1 therapy (16, 17), although no common feature was ma (1–15). With the emergence of distinct classes of therapies, identified to predict the response. While previous investigation there is a need to better understand baseline features associated of the mechanisms of acquired resistance to inhibitors of the MAPK pathway identified MAPK reactivation by various genetic 1Genentech, Inc., South San Francisco, California. 2Institut Gustave Roussy, and epigenetic alterations developed during treatment (18, 19), Villejuif, France. 3The Royal Marsden NHS Foundation Trust, The Royal Marsden baseline features predicting response to MAPK-targeted thera- Hospital, London, United Kingdom. 4Istituto Nazionale Tumori Fondazione pies have not been examined. 5 6 Pascale, Napoli, Italy. Nantes University, CHU Nantes, France. Center for Combined MEK and BRAF inhibition with cobimetinib Immuno-Oncology, University Hospital of Siena, Istituto Toscano Tumori, Siena, and vemurafenib has been shown to improve response rates, Italy. 7Universitatsklinikum€ Tubingen,€ Tubingen,€ Germany. 8Memorial Sloan Kettering Cancer Center, New York, New York. 9Robert H. Lurie Comprehensive progression-free survival (PFS; refs. 4, 5), and overall survival (OS; Cancer Center of Northwestern University, Chicago, Illinois. 10Peter MacCallum ref. 6) compared with BRAF inhibitor monotherapy. Responses Cancer Centre, Melbourne, Australia and University of Melbourne, Parkville, to BRAF and MEK inhibitors vary between patients; while some Australia. 11Jonsson Comprehensive Cancer Center at the University of Califor- patients achieve complete response (CR), a proportion of patients nia, Los Angeles, David Geffen UCLA School of Medicine, Los Angeles, California. demonstrate rapid disease progression suggestive of some degree Note: Supplementary data for this article are available at Clinical Cancer of innate resistance. A better understanding of the mechanisms Research Online (http://clincancerres.aacrjournals.org/). underlying the variability of patient responses to these BRAF and Corresponding Author: Antoni Ribas, Jonsson Comprehensive Cancer Center at MEK inhibitors is required to target therapy more effectively. the University of California, Los Angeles, 10833 LeConte Avenue, Los Angeles, The objective of this retrospective, exploratory analysis was to CA 90095. Phone: 310-206-3928; Fax: 310-825-2493; E-mail: compare genomic features of pretreatment tumors from complete [email protected] responders with those from rapid progressors on treatment with doi: 10.1158/1078-0432.CCR-18-0720 cobimetinib combined with vemurafenib or vemurafenib alone V600 Ó2019 American Association for Cancer Research. in patients with BRAF -mutated metastatic melanoma. www.aacrjournals.org OF1 Downloaded from clincancerres.aacrjournals.org on September 29, 2021. © 2019 American Association for Cancer Research. Published OnlineFirst March 1, 2019; DOI: 10.1158/1078-0432.CCR-18-0720 Yan et al. assessment] according to Response Evaluation Criteria in Solid Translational Relevance Tumors, version 1.1, on treatment with cobimetinib combined Our exploratory analysis of baseline BRAFV600-mutated mel- with vemurafenib or vemurafenib alone. anoma samples from the BRAF inhibitor in melanoma (BRIM) Each of the trials was conducted in accordance with the studies aimed to identify genetic characteristics of patients with a Declaration of Helsinki and the principles of Good Clinical complete response or no response to combined BRAF and MEK and Laboratory Practice and with the approval of appropriate inhibition with vemurafenib and cobimetinib. No individual ethics committees. All participants in each study provided written mutation was identified as a population-wide driver of excep- informed consent. tional response, but certain gene expression signatures were found to distinguish the 2 extremes of response. Melanomas Whole-exome sequencing from patients with complete response possessed higher preex- Baseline formalin-fixed, paraffin-embedded (FFPE) tumor isting tumor immunity features, while those from patients with samples from patients with complete response and patients with rapid progression had a keratin signature similar to one previ- rapid progression were analyzed by whole-exome sequencing fi ously associated with poor prognosis. These ndings suggest that (WES). Patient samples where BRAF mutations were not detected fi enriched immune in ltration of melanomas may be a shared were excluded from the analysis. feature of favorable response to both targeted and immune DNA exomes were captured using the Agilent SureSelect 51 Mb therapies, while features of innate resistance to immune and Kit (SQ756; Agilent Technologies, Inc.) and sequenced to a target fi targeted therapies were distinct. We anticipate these ndings depth of 100 Â. Reads were aligned to human reference genome could assist in optimization of treatment selection for patients GRCh38 using genomic short-read nucleotide alignment pro- BRAFV600 with -mutated metastatic melanoma. gram (20). Variants were called using LoFreq (21). For variant filtering, sequencing data pooled from normal tissue samples from 106 patients in the BRIM-2, BRIM-3, BRIM-7, and coBRIM studies and data from the Exome Aggregation Consortium (ExAC) Patients and Methods database (22) were used as reference data in the variant calling algorithm. Copy-number alterations were identified using Analysis population CODEX (23). Variants and copy-number alterations were anno- BRAFV600 Data from patients with -mutated metastatic mel- tated using the Ensembl Variant Effect Predictor tool (24). anoma treated with cobimetinib combined with vemurafenib or vemurafenib in the BRIM-2, BRIM-3, BRIM-7, and coBRIM RNA sequencing studies were included in the analysis. Detailed methods A subset of baseline tumor samples from patients with CR have previously been reported for each study. BRIM-2 and patients with PD were evaluated by RNA sequencing (ClinicalTrials.gov ID, NCT00949702) was a multicenter, (RNA-Seq) to identify transcriptional signatures. mRNA librar- single-arm phase II study in which patients were treated with ies were prepared using TruSeq RNA Access (Illumina). Paired- vemurafenib 960 mg twice daily (1). BRIM-3 (ClinicalTrials. end 2 Â 100 base reads were generated on a HiSeq system gov ID, NCT01006980) was a multicenter, randomized, open- (Illumina). Reads were aligned to human reference genome label phase III study in which patients were randomly assigned GRCh38 using a genomic short-read nucleotide alignment to receive vemurafenib 960 mg twice daily or dacarbazine program, and reads that overlapped gene exonic regions were 1,000 mg/m2 every 3 weeks (2, 3). BRIM-7 (ClinicalTrials.gov counted (20). Differentially expressed
Recommended publications
  • Oncofocus® Precision Oncology
    Medical Laboratory Accredited to ISO15189:2012 Oncofocus® Precision Oncology ONCOFOCUS® TEST REPORT Oncologica UK Ltd Suite 15-16, The Science Village Chesterford Research Park Cambridge, CB10 1XL, UK Tel: +44(0)1223 785327 Email: [email protected] Lead Clinical Scientist: - Pre-Reg Clinical Scientist: - Date: 1 of 30 ONC19 - Surname - Requester - Forename - Contact details - DOB - Date requested - Gender - Histology # - Tumour % - Primary site Breast Tumour % - Tumour subtype - (macrodissected) Tissue Type - Comment: The DNA and RNA extracted from this sample were of optimal quality. The Oncofocus assay on which the sample was run met all assay specific quality metrics. Oncofocus currently targets 505 genes covering oncogenes, fusion genes, genes susceptible to copy number variation and tumour suppressors. Actionable genetic variants detected by Oncofocus are currently linked to 687 anti-cancer targeted therapies/therapy combinations. The following actionable variants were detected: Within the 'Current Clinical Trials Information' section of this report, starting on page 8, the NCT numbers are hyperlinks to the clinicaltrials.gov webpages which should be accessed to gain further trial specific information Sample Cancer Type: Breast Cancer Clinically Significant Biomarkers Indicated Contraindicated Relevant Therapies Relevant Therapies Genomic Alteration Alt allele freq (In this cancer type) (In other cancer type) Clinical Trials ERBB2 p.(G727A) c.2180G>C 39% Clinical trials and/or off-label ado-trastuzumab emtansine 19 BRAF p.(V600E) c.1799T>A 5% Clinical trials and/or off-label dabrafenib 13 vemurafenib PIK3CA p.(G1049R) c.3145G>C 58% Clinical trials and/or off-label Clinical trials and/or off-label 15 Sources included in relevant therapies: EMA1, FDA2, ESMO, NCCN Hotspot variants with >10% alternate allele reads are classified as ‘detected’ with an assay sensitivity and positive predictive value(PPV) of 99%.
    [Show full text]
  • Product Monograph Including Patient Medication Information
    PRODUCT MONOGRAPH INCLUDING PATIENT MEDICATION INFORMATION Pr ® COTELLIC cobimetinib tablets 20 mg cobimetinib (as cobimetinib fumarate) Protein Kinase Inhibitor Date of Revision: Hoffmann-La Roche Limited January 5, 2018 7070 Mississauga Road Mississauga, Ontario, Canada L5N 5M8 www.rochecanada.com Submission Control No: 209926 COTELLIC®, ZELBORAF® are registered trade-marks of F. Hoffmann-La Roche AG, used under license ©Copyright 2016-2017, Hoffmann-La Roche Limited Page 1 of 38 Table of Contents PART I: HEALTH PROFESSIONAL INFORMATION .........................................................3 SUMMARY PRODUCT INFORMATION ........................................................................3 INDICATIONS AND CLINICAL USE ..............................................................................3 CONTRAINDICATIONS ...................................................................................................3 WARNINGS AND PRECAUTIONS ..................................................................................4 ADVERSE REACTIONS ..................................................................................................11 DRUG INTERACTIONS ..................................................................................................15 DOSAGE AND ADMINISTRATION ..............................................................................17 OVERDOSAGE ................................................................................................................20 ACTION AND CLINICAL PHARMACOLOGY ............................................................20
    [Show full text]
  • Quantification of Cobimetinib, Cabozantinib, Dabrafenib, Niraparib
    University of Groningen Quantification of cobimetinib, cabozantinib, dabrafenib, niraparib, olaparib, vemurafenib, regorafenib and its metabolite regorafenib M2 in human plasma by UPLC-MS/MS Krens, Stefanie D; van der Meulen, Eric; Jansman, Frank G A; Burger, David M; van Erp, Nielka P Published in: Biomedical chromatography DOI: 10.1002/bmc.4758 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2020 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Krens, S. D., van der Meulen, E., Jansman, F. G. A., Burger, D. M., & van Erp, N. P. (2020). Quantification of cobimetinib, cabozantinib, dabrafenib, niraparib, olaparib, vemurafenib, regorafenib and its metabolite regorafenib M2 in human plasma by UPLC-MS/MS. Biomedical chromatography, 34(3), [4758]. https://doi.org/10.1002/bmc.4758 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • New Oncology Reimbursements in Belgium
    33 New oncology reimbursements in Belgium P. Specenier, MD, PhD OVERVIEW OF BELGIAN REIMBURSEMENT NEWS (BELG J MED ONCOL 2018;12(1):33-34) TEMOZOLOMIDE® (TEMODAR/TEMODAL) was 7.4 months (95% confidence interval [CI] 5.6-9.1) with Some companies have transferred temozolomide from chap- cabozantinib versus 3.8 months (95% CI 3.7-5.4) with ever- ter IV to chapter I. These can now be prescribed without re- olimus with a hazard ratio (HR) of 0.58 (95% CI 0.45-0.74; strictions. In the near future, other temozolomide brands are p<0.0001). Similar data were observed in the intent-to-treat also expected to be transferred. population. A planned interim analysis of overall survival (OS) was conducted at the time of the PFS analysis and did LOMUSTINE (CCNU) not reach the interim boundary for statistical significance The reimbursement criteria for lomustine have been modi- (HR=0.68 [0.51, 0.90], p=0.006). However, in a subsequent fied and are entirely concordant with the recently modified unplanned interim analysis of OS, a statistically significant criteria for procarbazine, except for the indication Hodgkin’s improvement was demonstrated (median 21.4 months ver- disease, which only applies for procarbazine. sus 16.5 months; HR=0.66; 95% CI 0.53-0.83; p=0.0003). The overall response rate (ORR) was 17% (95% CI 13-22) for CABOMETYX® (CABOZANTINIB) cabozantinib and 3% (95% CI 2-6) for everolimus (p<0.0001). Cabometyx® (cabozantinib) can be reimbursed for patients with advanced renal cell carcinoma (RCC) after at least one COTELLIC® (COBIMETINIB) prior anti-VEGF directed agent.
    [Show full text]
  • Combined BRAF and MEK Inhibition with Vemurafenib and Cobimetinib for Patients with Advanced Melanoma
    Review Melanoma Combined BRAF and MEK Inhibition with Vemurafenib and Cobimetinib for Patients with Advanced Melanoma Antonio M Grimaldi, Ester Simeone, Lucia Festino, Vito Vanella and Paolo A Ascierto Melanoma, Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione “G. Pascale”, Napoli, Italy cquired resistance is the most common cause of BRAF inhibitor monotherapy treatment failure, with the majority of patients experiencing disease progression with a median progression-free survival of 6-8 months. As such, there has been considerable A focus on combined therapy with dual BRAF and MEK inhibition as a means to improve outcomes compared with monotherapy. In the COMBI-d and COMBI-v trials, combined dabrafenib and trametinib was associated with significant improvements in outcomes compared with dabrafenib or vemurafenib monotherapy, in patients with BRAF-mutant metastatic melanoma. The combination of vemurafenib and cobimetinib has also been investigated. In the phase III CoBRIM study in patients with unresectable stage III-IV BRAF-mutant melanoma, treatment with vemurafenib and cobimetinib resulted in significantly longer progression-free survival and overall survival (OS) compared with vemurafenib alone. One-year OS was 74.5% in the vemurafenib and cobimetinib group and 63.8% in the vemurafenib group, while 2-year OS rates were 48.3% and 38.0%, respectively. The combination was also well tolerated, with a lower incidence of cutaneous squamous-cell carcinoma and keratoacanthoma compared with monotherapy. Dual inhibition of both MEK and BRAF appears to provide a more potent and durable anti-tumour effect than BRAF monotherapy, helping to prevent acquired resistance as well as decreasing adverse events related to BRAF inhibitor-induced activation of the MAPK-pathway.
    [Show full text]
  • Dangerous Liaisons: Flirtations Between Oncogenic BRAF and GRP78 in Drug-Resistant Melanomas
    Dangerous liaisons: flirtations between oncogenic BRAF and GRP78 in drug-resistant melanomas Shirish Shenolikar J Clin Invest. 2014;124(3):973-976. https://doi.org/10.1172/JCI74609. Commentary BRAF mutations in aggressive melanomas result in kinase activation. BRAF inhibitors reduce BRAFV600E tumors, but rapid resistance follows. In this issue of the JCI, Ma and colleagues report that vemurafenib activates ER stress and autophagy in BRAFV600E melanoma cells, through sequestration of the ER chaperone GRP78 by the mutant BRAF and subsequent PERK activation. In preclinical studies, treating vemurafenib-resistant melanoma with a combination of vemurafenib and an autophagy inhibitor reduced tumor load. Further work is needed to establish clinical relevance of this resistance mechanism and demonstrate efficacy of autophagy and kinase inhibitor combinations in melanoma treatment. Find the latest version: https://jci.me/74609/pdf commentaries F2-2012–279017) and NEUROKINE net- from the brain maintains CNS immune tolerance. 17. Benner EJ, et al. Protective astrogenesis from the J Clin Invest. 2014;124(3):1228–1241. SVZ niche after injury is controlled by Notch mod- work (EU Framework 7 ITN project). 8. Sawamoto K, et al. New neurons follow the flow ulator Thbs4. Nature. 2013;497(7449):369–373. of cerebrospinal fluid in the adult brain. Science. 18. Sabelstrom H, et al. Resident neural stem cells Address correspondence to: Gianvito Mar- 2006;311(5761):629–632. restrict tissue damage and neuronal loss after spinal tino, Neuroimmunology Unit, Institute 9. Butti E, et al. Subventricular zone neural progeni- cord injury in mice. Science. 2013;342(6158):637–640. tors protect striatal neurons from glutamatergic 19.
    [Show full text]
  • Preferential Response of Basal-Like Head and Neck Squamous Cell Carcinoma Cell Lines to EGFR-Targeted Therapy Depending on EREG-Driven Oncogenic Addiction
    Article Preferential Response of Basal-Like Head and Neck Squamous Cell Carcinoma Cell Lines to EGFR-Targeted Therapy Depending on EREG-Driven Oncogenic Addiction Sylvie Job 1, Aurélien de Reyniès 1, Betty Heller 2, Amélie Weiss 2, Eric Guérin 3,4, Christine Macabre 4,5, Sonia Ledrappier 4,5, Cyril Bour 4,5, Christine Wasylyk 2, Nelly Etienne-Selloum 5,6, Laurent Brino 2, Christian Gaiddon 4, Bohdan Wasylyk 2,† and Alain C. Jung 4,5,†,* 1 Programme Cartes d’Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, 75013 Paris, France; [email protected] (S.J.); [email protected] (A.d.R.) 2 Institut de Génétique et de Biologie Moléculaire et Cellulaire IGBMC, UMR 7104 CNRS-UdS, U.1258 INSERM, 1 rue Laurent Fries, BP 10142, 67404 Illkirch cedex, France.; [email protected] (B.H.); [email protected] (A.W.); [email protected] (C.W.); [email protected] (L.B.); [email protected] (B.W.) 3 Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, 67098 Strasbourg, France; [email protected] 4 Université de Strasbourg, Inserm, UMR_S1113, 67200 Strasbourg, France; [email protected] (C.M.); [email protected] (S.L.); [email protected] (C.B.); [email protected] (C.G.) 5 Centre de Lutte Contre le Cancer Paul Strauss, 67000 Strasbourg, France; [email protected] 6 UMR 7021 CNRS/Unistra, Laboratoire de Bioimagerie et Pathologies (LBP), Faculté de Pharmacie, 67401 Illkirch, France * Correspondence: [email protected]; Tel.: +33-0388275367 † These authors contributed equally to this work.
    [Show full text]
  • Darkening and Eruptive Nevi During Treatment with Erlotinib
    CASE LETTER Darkening and Eruptive Nevi During Treatment With Erlotinib Stephen Hemperly, DO; Tanya Ermolovich, DO; Nektarios I. Lountzis, MD; Hina A. Sheikh, MD; Stephen M. Purcell, DO A 70-year-old man with NSCLCA presented with PRACTICE POINTS eruptive nevi and darkening of existing nevi 3 months after • Cutaneous side effects of erlotinib include acneform starting monotherapy with erlotinib. Physical examina- eruption, xerosis, paronychia, and pruritus. tion demonstrated the simultaneous appearance of scat- • Clinicians should monitor patients for darkening tered acneform papules and pustules; diffuse xerosis; and and/or eruptive nevi as well as melanoma during numerous dark copybrown to black nevi on the trunk, arms, treatment with erlotinib. and legs. Compared to prior clinical photographs taken in our office, darkening of existing medium brown nevi was noted, and new nevi developed in areas where no prior nevi had been visible (Figure 1). To the Editor: notThe patient’s medical history included 3 invasive mel- Erlotinib is a small-molecule selective tyrosine kinase anomas, all of which were diagnosed at least 7 years prior inhibitor that functions by blocking the intracellular por- to the initiation of erlotinib and were treated by surgical tion of the epidermal growth factor receptor (EGFR)Do1,2; excision alone. Prior treatment of NSCLCA consisted of a EGFR normally is expressed in the basal layer of the left lower lobectomy followed by docetaxel, carboplatin, epidermis, sweat glands, and hair follicles, and is over- pegfilgrastim, dexamethasone, and pemetrexed. A thor- expressed in some cancers.1,3 Normal activation of ough review of all of the patient’s medications revealed EGFR leads to signal transduction through the mitogen- no associations with changes in nevi.
    [Show full text]
  • FOI Reference: FOI 414 - 2021
    FOI Reference: FOI 414 - 2021 Title: Researching the Incidence and Treatment of Melanoma and Breast Cancer Date: February 2021 FOI Category: Pharmacy FOI Request: 1. How many patients are currently (in the past 3 months) undergoing treatment for melanoma, and how many of these are BRAF+? 2. In the past 3 months, how many melanoma patients (any stage) were treated with the following: • Cobimetinib • Dabrafenib • Dabrafenib AND Trametinib • Encorafenib AND Binimetinib • Ipilimumab • Ipilimumab AND Nivolumab • Nivolumab • Pembrolizumab • Trametinib • Vemurafenib • Vemurafenib AND Cobimetinib • Other active systemic anti-cancer therapy • Palliative care only 3. If possible, could you please provide the patients treated in the past 3 months with the following therapies for metastatic melanoma ONLY: • Ipilimumab • Ipilimumab AND Nivolumab • Nivolumab • Pembrolizumab • Any other therapies 4. In the past 3 months how many patients were treated with the following for breast cancer? • Abemaciclib + Anastrozole/Exemestane/Letrozole • Abemaciclib + Fulvestrant • Alpelisib + Fulvestrant • Atezolizumab • Bevacizumab [Type text] • Eribulin • Everolimus + Exemestane • Fulvestrant as a single agent • Gemcitabine + Paclitaxel • Lapatinib • Neratinib • Olaparib • Palbociclib + Anastrozole/Exemestane/Letrozole • Palbociclib + Fulvestrant • Pertuzumab + Trastuzumab + Docetaxel • Ribociclib + Anastrozole/Exemestane/Letrozole • Ribociclib + Fulvestrant • Talazoparib • Transtuzumab + Paclitaxel • Transtuzumab as a single agent • Trastuzumab emtansine • Any other
    [Show full text]
  • Cotellic, INN-Cobimetinib
    ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Cotellic 20 mg film-coated tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each film-coated tablet contains cobimetinib hemifumarate equivalent to 20 mg cobimetinib. Excipient with known effect Each film-coated tablet contains 36 mg lactose monohydrate. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Film-coated tablet. White, round film-coated tablets of approximately 6.6 mm diameter, with “COB” debossed on one side. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Cotellic is indicated for use in combination with vemurafenib for the treatment of adult patients with unresectable or metastatic melanoma with a BRAF V600 mutation (see sections 4.4 and 5.1). 4.2 Posology and method of administration Treatment with Cotellic in combination with vemurafenib should only be initiated and supervised by a qualified physician experienced in the use of anticancer medicinal products. Before starting this treatment, patients must have BRAF V600 mutation-positive melanoma tumour status confirmed by a validated test (see sections 4.4 and 5.1). Posology The recommended dose of Cotellic is 60 mg (3 tablets of 20 mg) once daily. Cotellic is taken on a 28 day cycle. Each dose consists of three 20 mg tablets (60 mg) and should be taken once daily for 21 consecutive days (Days 1 to 21-treatment period); followed by a 7-day break (Days 22 to 28-treatment break). Each subsequent Cotellic treatment cycle should start after the 7-day treatment break has elapsed. For information on the posology of vemurafenib, please refer to its SmPC.
    [Show full text]
  • Cobimetinib/Vemurafenib Combination Therapy for Melanoma: a Nursing Tool from the Melanoma Nursing Initiative (MNI)
    Cobimetinib/Vemurafenib Combination Therapy for Melanoma: A Nursing Tool From The Melanoma Nursing Initiative (MNI) Cobimetinib (Cotellic®)/vemurafenib (Zelboraf®) combination therapy is indicated for the treatment of patients with unresectable or metastatic melanoma with BRAF V600E or V600K mutations. Cobimetinib is a MEK1 and MEK2 inhibitor, and vemurafenib is an inhibitor of some mutated forms of BRAF kinase, including BRAF V600E. About half of patients with melanoma have a mutated form of the BRAF protein in their tumors. Combination MEK/ BRAF inhibitor therapy is associated with superior tumor response and improved patient survival compared with single-agent BRAF inhibitor therapy. Using the combination also decreases the high rates of secondary cutaneous malignancies associated with single-agent BRAF inhibitory therapy. This document is part of an overall nursing toolkit intended to assist nurses in optimizing care of melanoma patients receiving newer anti-melanoma therapies. © 2017 The Melanoma Nursing Initiative. All rights reserved www.themelanomanurse.org Inspired By Patients . Empowered By Knowledge . Impacting Melanoma DRUG-DOSING/ADMINISTRATION • For advanced melanoma, both cobimetinib and vemurafenib are orally administered drugs. Cobimetinib is administered as 60 mg (three 20-mg tablets) once daily for 3 weeks, followed by a 1-week break, and vemurafenib as 960 mg (four 240-mg tablets) twice daily, for a total daily dosage of 1920 mg, each according to the regimens outlined below. The cobimetinib dose can be taken at the same time as one of the vemurafenib doses. The schedule repeats until disease progression or unacceptable toxicity occurs. • If the patient misses a dose of cobimetinib or vemurafenib, adjust as follows: » Cobimetinib: If ≤4 hours from scheduled dosing time, take the dose.
    [Show full text]
  • New Century Health Policy Changes April 2021
    Policy # Drug(s) Type of Change Brief Description of Policy Change new Pepaxto (melphalan flufenamide) n/a n/a new Fotivda (tivozanib) n/a n/a new Cosela (trilaciclib) n/a n/a Add inclusion criteria: NSCLC UM ONC_1089 Libtayo (cemiplimab‐rwlc) Negative change 2.Libtayo (cemiplimab) may be used as montherapy in members with locally advanced, recurrent/metastatic NSCLC, with PD‐L1 ≥ 50%, negative for actionable molecular markers (ALK, EGFR, or ROS‐1) Add inclusion criteria: a.As a part of primary/de�ni�ve/cura�ve‐intent concurrent chemo radia�on (Erbitux + Radia�on) as a single agent for members with a UM ONC_1133 Erbitux (Cetuximab) Positive change contraindication and/or intolerance to cisplatin use OR B.Head and Neck Cancers ‐ For recurrent/metasta�c disease as a single agent, or in combination with chemotherapy. Add inclusion criteria: UM ONC_1133 Erbitux (Cetuximab) Negative change NOTE: Erbitux (cetuximab) + Braftovi (encorafenib) is NCH preferred L1 pathway for second‐line or subsequent therapy in the metastatic setting, for BRAFV600E positive colorectal cancer.. Add inclusion criteria: B.HER‐2 Posi�ve Breast Cancer i.Note #1: For adjuvant (post‐opera�ve) use in members who did not receive neoadjuvant therapy/received neoadjuvant therapy and did not have any residual disease in the breast and/or axillary lymph nodes, Perjeta (pertuzumab) use is restricted to node positive stage II and III disease only. ii.Note #2: Perjeta (pertuzumab) use in the neoadjuvant (pre‐opera�ve) se�ng requires radiographic (e.g., breast MRI, CT) and/or pathologic confirmation of ipsilateral (same side) axillary nodal involvement.
    [Show full text]