Spontaneous Immobility of the Japanese Lacertid Lizard, Takydromus Tachydromoides

Total Page:16

File Type:pdf, Size:1020Kb

Spontaneous Immobility of the Japanese Lacertid Lizard, Takydromus Tachydromoides Japanese Journal of Herpetology 14 (1): 1-5., Jun. 1991 (C)1991 by The HerpetologicalSociety of Japan Spontaneous Immobility of the Japanese Lacertid Lizard, Takydromus tachydromoides AKIRA MORI Abstract: Frequencies of movement, as an index of propensity for immobility, of Takydromus tachydromoides were measured in the encounters with a potential predator Elaphe quadrivirgata (Session A) or a sympatric non-predator Eumeces latiscutatus (Session B), or in the absence of other animals (Session C). Frequency of movement in Session A was significantly lower than in Sessions B and C. In Session B, T. tachydromoides moved significantly less frequently during the first 10min than dur- ing the latter 10min. The lizards previously exposed to E. quadrivirgata reduced their movements in the subsequent Session B with significantly high frequency when com- pared with animals without such experience. It is suggested that immobility of T. tachydromoides is an adaptive antipredator behavior to avoid detection by a visually orienting predator. Key words: Immobility; Takydromus tachydromoides; Antipredator behavior; Elaphe quadrivirgata; Lacertidae Lizards employ a variety of morphological mobility of iguanids and gekkonids in which the and behavioral antipredator mechanisms. animal was held so that movement was impossi- Greene (1988) summarized reptilian antipredator ble and restrained until tonic immobility resulted mechanisms and listed 60 phenotypic categories, (e. g., Gallup, 1973; Hennig, 1979; Herzog, including concealing coloration, immobility, 1984), few quantitative studies have locomotor escape, and tail display. It is certain demonstrated immobility of lizards voluntarily that almost all lizard species possess more than exhibited in the presence of a predator. one defensive tactic and several lizards respond Takydromus tachydromoides, a slender, fast- with different antipredator behavior according moving lacertid lizard possessing a long to the environmental and/or situational contexts autotomous tail (Fukada and Ishihara, 1967), which they confront (e. g., Hennig, 1979; Thoen has a brownish body coloration which makes et al., 1986; Greene, 1988). this animal very inconspicuous in grassy areas "S pontaneous immobility" (or freezing) can where it usually lives. In staged predatory en- be distinguished from "tonic immobility" (or counters, this lizard exhibits several antipredator animal hypnosis), a behavioral response to behaviors according to situational contexts restraint in which the animal appears to be (Mori, 1990). As in other animals, the initial unresponsive to stimulation (after Herzog, 1984; response of T. tachydromoides seems to be im- Greene, 1988), yet different definitions of these mobility to avoid detection by a predator. In two wordings are seen in some papers (e. g., this paper, I demonstrate that the spontaneous Brodie et al., 1974). Immobility, often coupled immobility of T. tachydromoides is elicited by with cryptic coloration, is considered to be the in- the presence of a predator. As a result, this itial antipredator response that increases the pro- behavior is interpreted as one of the antipredator bability that the prey will escape detection by tactics of this lizard. visually orienting predators (e. g., Heatwole, 1968; Brodie et al., 1974, Gregory, 1979). On MATERIALSAND METHODS the other hand, tonic immobility is usually the The subjects were 19 adult Takydromus tachy- final behavioral stage which is elicited after exter- dromoides (7 males and 12 females; snout-vent nal restraint (see Arduino and Gould, 1984). length, 46-61mm) collected from Osaka (N=2) Although there are several studies on tonic im- and Kyoto (N=10) Prefectures, and Kuchinoshima (N=4) and Takeshima (N=3) Accepted 6 Mar. 1991 Islands in Kagoshima Prefecture, Japan. 2 Jpn.J.Herpetol.14(1).1991 Lizards from the latter three groups included the maintained between 27.0-30.5°C during the ex- same individuals used in another experiment periment. (Mori, 1990). There were no obvious All trials were recorded with a video tape behavioral differences observed between the four monitor (National NV-8480, VHS type) and a groups. All lizards were housed individually in color video camera (National VZ-C70). Pro- clear plastic cages (315×170×235mm) with a pensity for immobility was evaluated by quanti- water bowl and a shelter, and were maintained fying the frequencies of movement by videotape under a natural photoperiod for two to four analyses. The bottom of the arena was divided months before the experiments. The room into eight equal sections, and the number of temperature varied between 17 and 31℃. They times the lizard changed sections was counted (i. were fed mealworms two or three times per e., amount of movement). The frequency of week. Water was available ad libitum. movement (FM) was calculated for each session The testing arena (650×400×250mm) was as (amount of movement) / (observed dura- made of white polypropylene corrugated board tion). In all B and C sessions, duration of obser- except for a transparent plastic ceiling, and con- vation was 20min. It is likely that the actual tained a cardboard floor marked with 2cm snake attack affected the behavior of T. tachy- grids. The arena was divided into two chambers dromoides, especially in the frequency of move- (large: 510×400×250mm, and small: ment. Thus, in Session A, observation was ter- 140×400×250mm) by a plastic insert which minated when the snake first attacked or pursued could be removed from the arena by sliding it the lizard. Escape movements of T. tachydro- out through a slit at the front wall. After each moides after the attack of the snake were not in- trial, the arena was washed with water and the cluded in the amount of movement. Conse- cardboard floor was replaced. quently, the observation period varied from 0.33 Trials consisted of three sessions. T. tachy- to 20min (x=8.3min) in Session A. dromoides was introduced into the large Statistical significance was tested by Mann- chamber and a Japanese striped snake, Elaphe Whitney's U-tests or Wilcoxon signed-ranks quadrivirgata (a well known natural predator of tests (between two samples) and Friedman two- T. tachydromoides: Mori and Moriguchi, 1988: way ANOVA (among three samples) followed Session A), or Eumeces latiscutatus (a sympatric by multiple comparisons (Siegel and Castellan, scincid lizard but not a possible predator of T. 1988). tachydromoides: Session B, control for the presence of a non-predator animal) was introduc- RESULTS ed into the small chamber. In Session C, only Two T. tachydromoides never moved for T. tachydromoides was introduced into the 20min in Session A in which the snake also arena in the absence of other animals (control remained motionless. Other 11 lizards remain- for experimental milieu). Each T. tachydro- ed motionless until the snake closely approach- moides was tested in all the three sessions in non- ed, and then, the lizards escaped by running, fixed order. Each session was initiated by the which was followed by the attack of the snake. removal of the insert from the arena and lasted On the other hand, only one individual remained for 20min at most (see below). A ten-minute in- immobile throughout in both Sessions B and C. terval was allowed between sessions. A total of The type of session affected FM of T. tachy- 11 E. quadrivirgata were used for Session A (one dromoides significantly (X2r=19.6, dF=2, to three trials per individual). Temperature was p<0.001). The FM was significantly lower in TABLE 1. Amount of movement (AM), duration of observation (OD) and frequency of movement (FM=AM/OD) of Takydromus tachydromoides in encounters with Elaphe quadrivirgata (Session A) or Eumeces latiscutatus (Session B) and in the absence of other animals (Session C). The FM is also calculated for the first and latter 10min separately, for Sessions B and C. MORI-LIZARD IMMOBILITY 3 Session A (x=0.59) than in Sessions B and C TABLE2. Frequency of movement (FM) of Taky- (x=2.14 and 2.72, respectively; p<0.05; Table dromus tachydromoides in the encounters with 1). There was no significant difference in FM Eumeces latiscutatus for the first and the latter between Sessions B and C (p>0.05). 10 min of the observation period. T. tachydro- Because duration of observation in Sessions B moides was exposed to a snake (Session A) prior and C (20min) was much longer than in Session to Session B (A-B) or not (B-A). A (x=8.3min), it is possible that the higher FM in the former two sessions may reflect the effect of acclimation of T. tachydromoides to the arena rather than the reducing effect of the presence of a predator in Session A. Therefore, Sessions B and C were partitioned into 2 10-min blocks, and a Wilcoxon signed ranks test was conducted in Sessions B and C separately. The analyzed using the data from 12 trials where Ses- FM for the first 10min in Session B (x=1.61) sion B was conducted prior to Session A. As for was significantly lower than that for the latter Sessions B and C only the first 10min data were 10min (x=2.68; z=-3.00, p<0.01). There used. The FM was significantly affected by the was no significant difference in FM between the type of sessions (x2r=18.2, dF=2, p<0.001). first and latter 10min in Session C (z=-0.57, The FM in Session A (x=0.26) was significantly p>0.05). lower than in Sessions B and C (x=2.17 and Comparison of FM among the three sessions 3.60, respectively; p<0.05; Table 3). There was was made again, but this time only the first no significant difference in FM between Sessions 10 min data were used as for Sessions B and C B and C (p>0.05). As for the latter 10min, because the time effect was significant in Session there was no significant difference in FM bet- B (see above).
Recommended publications
  • HERPETOLOGICAL BULLETIN Number 106 – Winter 2008
    The HERPETOLOGICAL BULLETIN Number 106 – Winter 2008 PUBLISHED BY THE BRITISH HERPETOLOGICAL SOCIETY THE HERPETOLOGICAL BULLETIN Contents RESEA R CH AR TICLES Use of transponders in the post-release monitoring of translocated spiny-tailed lizards (Uromastyx aegyptia microlepis) in Abu Dhabi Emirate, United Arab Emirates Pritpal S. Soorae, Judith Howlett and Jamie Samour .......................... 1 Gastrointestinal helminths of three species of Dicrodon (Squamata: Teiidae) from Peru Stephen R. Goldberg and Charles R. Bursey ..................................... 4 Notes on the Natural History of the eublepharid Gecko Hemitheconyx caudicinctus in northwestern Ghana Stephen Spawls ........................................................ 7 Significant range extension for the Central American Colubrid snake Ninia pavimentata (Bocourt 1883) Josiah H. Townsend, J. Micheal Butler, Larry David Wilson, Lorraine P. Ketzler, John Slapcinsky and Nathaniel M. Stewart ..................................... 15 Predation on Italian Newt larva, Lissotriton italicus (Amphibia, Caudata, Salamandridae), by Agabus bipustulatus (Insecta, Coleoptera, Dytiscidae) Luigi Corsetti and Gianluca Nardi........................................ 18 Behaviour, Time Management, and Foraging Modes of a West Indian Racer, Alsophis sibonius Lauren A. White, Peter J. Muelleman, Robert W. Henderson and Robert Powell . 20 Communal egg-laying and nest-sites of the Goo-Eater, Sibynomorphus mikanii (Colubridae, Dipsadinae) in southeastern Brazil Henrique B. P. Braz, Francisco L. Franco
    [Show full text]
  • A New Species of the Genus Takydromus (Squamata, Lacertidae) from Southwestern Guangdong, China
    A peer-reviewed open-access journal ZooKeys 871: 119–139 (2019) A new species of Takydromus 119 doi: 10.3897/zookeys.871.35947 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of the genus Takydromus (Squamata, Lacertidae) from southwestern Guangdong, China Jian Wang1, Zhi-Tong Lyu1, Chen-Yu Yang1, Yu-Long Li1, Ying-Yong Wang1 1 State Key Laboratory of Biocontrol / The Museum of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China Corresponding author: Ying-Yong Wang ([email protected]) Academic editor: Thomas Ziegler | Received 6 May 2019 | Accepted 31 July2019 | Published 12 August 2019 http://zoobank.org/9C5AE6F4-737C-4E94-A719-AB58CC7002F3 Citation: Wang J, Lyu Z-T, Yang C-Y, Li Y-L, Wang Y-Y (2019) A new species of the genus Takydromus (Squamata, Lacertidae) from southwestern Guangdong, China. ZooKeys 871: 119–139. https://doi.org/10.3897/zookeys.871.35947 Abstract A new species, Takydromus yunkaiensis J. Wang, Lyu, & Y.Y. Wang, sp. nov. is described based on a series of specimens collected from the Yunkaishan Nature Reserve located in the southern Yunkai Mountains, western Guangdong Province, China. The new species is a sister taxon toT. intermedius with a genetic divergence of 8.0–8.5% in the mitochondrial cytochrome b gene, and differs from all known congeners by a combination of the following morphological characters: (1) body size moderate, SVL 37.8–56.0 mm in males, 42.6–60.8 mm in females; (2) dorsal ground color brown; ventral surface
    [Show full text]
  • Nansei Islands Biological Diversity Evaluation Project Report 1 Chapter 1
    Introduction WWF Japan’s involvement with the Nansei Islands can be traced back to a request in 1982 by Prince Phillip, Duke of Edinburgh. The “World Conservation Strategy”, which was drafted at the time through a collaborative effort by the WWF’s network, the International Union for Conservation of Nature (IUCN), and the United Nations Environment Programme (UNEP), posed the notion that the problems affecting environments were problems that had global implications. Furthermore, the findings presented offered information on precious environments extant throughout the globe and where they were distributed, thereby providing an impetus for people to think about issues relevant to humankind’s harmonious existence with the rest of nature. One of the precious natural environments for Japan given in the “World Conservation Strategy” was the Nansei Islands. The Duke of Edinburgh, who was the President of the WWF at the time (now President Emeritus), naturally sought to promote acts of conservation by those who could see them through most effectively, i.e. pertinent conservation parties in the area, a mandate which naturally fell on the shoulders of WWF Japan with regard to nature conservation activities concerning the Nansei Islands. This marked the beginning of the Nansei Islands initiative of WWF Japan, and ever since, WWF Japan has not only consistently performed globally-relevant environmental studies of particular areas within the Nansei Islands during the 1980’s and 1990’s, but has put pressure on the national and local governments to use the findings of those studies in public policy. Unfortunately, like many other places throughout the world, the deterioration of the natural environments in the Nansei Islands has yet to stop.
    [Show full text]
  • Preliminary Analysis of Correlated Evolution of Morphology and Ecological Diversification in Lacertid Lizards
    Butll. Soc. Cat. Herp., 19 (2011) Preliminary analysis of correlated evolution of morphology and ecological diversification in lacertid lizards Fèlix Amat Orriols Àrea d'Herpetologia, Museu de Granollers-Ciències Naturals. Francesc Macià 51. 08402 Granollers. Catalonia. Spain. [email protected] Resum S'ha investigat la diversitat morfològica en 129 espècies de lacèrtids i la seva relació amb l'ecologia, per mitjà de mètodes comparatius, utilitzant set variables morfomètriques. La mida corporal és la variable més important, determinant un gradient entre espècies de petita i gran mida independentment evolucionades al llarg de la filogènia dels lacèrtids. Aquesta variable està forta i positivament correlacionada amb les altres, emmascarant els patrons de diversitat morfològica. Anàlisis multivariants en les variables ajustades a la mida corporal mostren una covariació negativa entre les mides relatives de la cua i les extremitats. Remarcablement, les espècies arborícoles i semiarborícoles (Takydromus i el clade africà equatorial) han aparegut dues vegades independentment durant l'evolució dels lacèrtids i es caracteritzen per cues extremadament llargues i extremitats anteriors relativament llargues en comparació a les posteriors. El llangardaix arborícola i planador Holaspis, amb la seva cua curta, constitueix l’única excepció. Un altre cas de convergència ha estat trobat en algunes espècies que es mouen dins de vegetació densa o herba (Tropidosaura, Lacerta agilis, Takydromus amurensis o Zootoca) que presenten cues llargues i extremitats curtes. Al contrari, les especies que viuen en deserts, estepes o matollars amb escassa vegetació aïllada dins grans espais oberts han desenvolupat extremitats posteriors llargues i anteriors curtes per tal d'assolir elevades velocitats i maniobrabilitat. Aquest és el cas especialment de Acanthodactylus i Eremias Abstract Morphologic diversity was studied in 129 species of lacertid lizards and their relationship with ecology by means of comparative analysis on seven linear morphometric measurements.
    [Show full text]
  • Mauremys Reevesii (Gray 1831) – Reeves’ Turtle, Chinese Three-Keeled Pond Turtle
    Conservation Biology of Freshwater Turtles and Tortoises: A Compilation ProjectGeoemydidae of the IUCN/SSC — Tortoise Mauremys and Freshwater reevesii Turtle Specialist Group 050.1 A.G.J. Rhodin, P.C.H. Pritchard, P.P. van Dijk, R.A. Saumure, K.A. Buhlmann, J.B. Iverson, and R.A. Mittermeier, Eds. Chelonian Research Monographs (ISSN 1088-7105) No. 5, doi:10.3854/crm.5.050.reevesii.v1.2011 © 2011 by Chelonian Research Foundation • Published 31 December 2011 Mauremys reevesii (Gray 1831) – Reeves’ Turtle, Chinese Three-Keeled Pond Turtle JEFFREY E. LOVICH 1, YUICHIROU YASUKAWA 2, AND HIDETOSHI OTA 3,4 1United States Geological Survey, Southwest Biological Science Center, 2255 North Gemini Drive, MS-9394, Flagstaff, Arizona 86001 USA [[email protected]]; 2District Office Okinawa, Takada Reptiles and Wildlife Research Institute, 1-15-3 Teruya, Okinawa City, Okinawa 904-0011 Japan [[email protected]]; 3Tropical Biosphere Research Center, University of the Ryukyus, Nishihara-cho, Okinawa 903-0213 Japan; 4Present Address: Institute of Natural and Environmental Sciences and Museum of Nature and Human Activities, University of Hyogo,Yayoi-gaoka 6, Sanda, Hyogo 669-1546, Japan [[email protected]] SUMMARY . – Mauremys reevesii, Reeves’ Turtle (or Chinese Three-keeled Pond Turtle) (Family Geoemydidae), is a moderate-sized aquatic species (carapace length to 300 mm) widely distributed in East Asia throughout central and eastern continental China, exclusive of the most southern, western, and northern regions, and including Taiwan, southern Japan, and part of the Korean peninsula. However, the native distribution has been extended by human-aided translocations. The turtle lives in freshwater habitats in lowland areas with still or slowly moving water.
    [Show full text]
  • Reptile Rap Newsletter of the South Asian Reptile Network ISSN 2230-7079 No.15 | January 2013 Date of Publication: 22 January 2013 1
    Reptile Rap Newsletter of the South Asian Reptile Network No.15 | January 2013 ISSN 2230-7079 Date of publication: 22 January 2013 1. Crocodile, 1. 2. Crocodile, Caiman, 3. Gharial, 4.Common Chameleon, 5. Chameleon, 9. Chameleon, Flap-necked 8. Chameleon Flying 7. Gecko, Dragon, Ptychozoon Chamaeleo sp. Fischer’s 10 dilepsis, 6. &11. Jackson’s Frill-necked 21. Stump-tailed Skink, 20. Gila Monster, Lizard, Green Iguana, 19. European Iguana, 18. Rhinoceros Antillean Basilisk, Iguana, 17. Lesser 16. Green 15. Common Lizard, 14. Horned Devil, Thorny 13. 12. Uromastyx, Lizard, 34. Eastern Tortoise, 33. 32. Rattlesnake Indian Star cerastes, 22. 31. Boa,Cerastes 23. Python, 25. 24. 30. viper, Ahaetulla Grass Rhinoceros nasuta Snake, 29. 26. 27. Asp, Indian Naja Snake, 28. Cobra, haje, Grater African 46. Ceratophrys, Bombina,45. 44. Toad, 43. Bullfrog, 42. Frog, Common 41. Turtle, Sea Loggerhead 40. Trionychidae, 39. mata Mata 38. Turtle, Snake-necked Argentine 37. Emydidae, 36. Tortoise, Galapagos 35. Turtle, Box 48. Marbled Newt Newt, Crested 47. Great Salamander, Fire Reptiles, illustration by Adolphe Millot. Source: Nouveau Larousse Illustré, edited by Claude Augé, published in Paris by Librarie Larousse 1897-1904, this illustration from vol. 7 p. 263 7 p. vol. from 1897-1904, this illustration Larousse Librarie by published in Paris Augé, Claude by edited Illustré, Larousse Nouveau Source: Millot. Adolphe by illustration Reptiles, www.zoosprint.org/Newsletters/ReptileRap.htm OPEN ACCESS | FREE DOWNLOAD REPTILE RAP #15, January 2013 Contents A new record of the Cochin Forest Cane Turtle Vijayachelys silvatica (Henderson, 1912) from Shendurney Wildlife Sanctuary, Kerala, India Arun Kanagavel, 3–6pp New Record of Elliot’s Shieldtail (Gray, 1858) in Seshachalam Biosphere Reserve, Eastern Ghats, Andhra Pradesh, India M.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Vertebrate Embryonic Cleavage Pattern Determination
    Chapter 4 Vertebrate Embryonic Cleavage Pattern Determination Andrew Hasley, Shawn Chavez, Michael Danilchik, Martin Wühr, and Francisco Pelegri Abstract The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate develop- ment. This chapter describes the early cleavage stages for species representing ray- finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these pat- terns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orien- tation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early devel- opment, as well as cytoskeletal specializations specific to early blastomeres A. Hasley • F. Pelegri (*) Laboratory of Genetics, University of Wisconsin—Madison, Genetics/Biotech Addition, Room 2424, 425-G Henry Mall, Madison, WI 53706, USA e-mail: [email protected] S. Chavez Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Physiology & Pharmacology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Obstetrics & Gynecology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA M.
    [Show full text]
  • A Study on the Movements of Small Sized Grass Lizard, Takydromus
    한국환경생태학회 학술대회논문집 20(1) : 135~138. 2010 Pro. Kor. Soc. Env. Eco. Con. 20(1) : 135~138. 2010 A Study on the Movements of Small Sized Grass Lizard, Takydromus wolteri, in Saebyeol-reum, Jeju-do, Korea Min-Ho Chang1,2․Byoung-Soo Kim1,2,3․Hidethosi Ota4․Hong-Shik Oh5 1Department of LifeScience, Cheju National University, 2Educational Science Research Institute, Jeju National University, 3Shinsung Girl's High School 4Institute of Natural and Environmental Sciences, University of Hyogo, Japan 5Department of ScienceEducation, Cheju National University Introduction Takydromus wolteri, is a small lizard that occurs in China, Russia and Korea (Zhao and Adler, 1993). Increasing numbers of people require more land and This study was aimed to determine a movement of increase the demand for natural products, therefore many the white-striped grass lizard. Implications of our results habitat of amphibian and reptiles are shrinking or for the management of this tiny lizard is briefly discussed disappearing at an accelerating pace (Pough et al., 2004). Conservation study is increasing in the world of Materials and Methods today because of decrease of amphibian and reptiles. Conservation options for species cannot be determined The study was conducted around the Saebyeol- when the ecological information, such as movements, oreum (33º 21' 49'' N, 126º 21' 27'' E) on Jeju Island habitats use and home range, by wild populations are between April 2007 and November 2009 (Figure 1). unknown. However, we intensively know about ecological information for some species of amphibians and reptiles that are important factor of conservation and management. Patterns of movement in amphibian and reptile population also have major conservation implications.
    [Show full text]
  • Snakes: Their Habits, Life Histories, and Influence on Mankind. 2Nd Ed
    snakes: Their Habits, Life Histories, and Influence on Mankind. in the hope that it would swim to shore not far from my vantage 2nd ed. Univ. California Press, Berkeley, California. 1533 pp.) point. Instead, it dropped into the water, dove, and from the result- reported a field mouse and Sceloporus jarrovii jarrovii as prey ant bubble trail from disturbed vegetation swam ca 10 m into the items of Crotalus pricei pricei. Armstrong and Murphy (1979. The pond, then turned towards the adjacent bank where I saw it emerge. Natural History of Mexican Rattlesnakes. Univ. Kansas Mus. Nat. I subsequently lost track of it in vegetation. Hist. Special Publ. 5:1-88) found a juvenile Sceloporus poinsettii Fitch (pers. comm.) indicated that never in 50+ years of observ- in an adult C. p. pricei. Little published data exist on the natural ing this species in the area had he seen one utilize an aquatic habi- history of the endemic Mexican subspecies C. p. miquihuanus and tat in this fashion. Of the many specimens I have observed in the no prey items have been recorded for this subspecies. Armstrong area since 1970, none has been in an aquatic habitat. However, and Murphy (op. cit.) stated that lizards of the genus Sceloporus Fitch (Copeia 1963:649-658) noted that on the University of Kan- appear to be the main prey of C. p. miquihuanus. sas Fitch Natural History Reservation the species is "present in all On 29 May 2001 we collected an adult male C. p. miquihuanus habitats," and also presented tentative evidence that some indi- near Santa Rita, Municipio Arteaga, Coahuila, Mexico, in thick viduals include frogs in their diet.
    [Show full text]
  • Tail Autotomy, Tail Size, and Locomotor Performance in Lizards*
    669 Tail Autotomy, Tail Size, and Locomotor Performance in Lizards* Eric J. McElroy1,† Introduction Philip J. Bergmann2 Autotomy is a widespread phenomenon in which an animal 1Department of Biology, College of Charleston, Charleston, voluntarily sheds an appendage, as defined by Fredericq (1892) South Carolina 29401; 2Department of Biology, Clark and reviewed by Maginnis (2006). Perhaps the most conspic- University, Worcester, Massachusetts 01610 uous form of autotomy involves the loss of the tail, as exhibited by many species of lizards and salamanders (Wake and Dresner Accepted 3/2/2013; Electronically Published 11/5/2013 1967; Arnold 1984, 1988). Tail autotomy is most often asso- ciated with attempted predation, with the animal sacrificing its tail to a predator in order to escape. The most obvious benefit to this behavior is that the animal survives the predation at- ABSTRACT tempt (Daniels et al. 1986), with the potential for future re- The effect of tail autotomy on locomotor performance has been productive output. studied in a number of lizard species. Most of these studies Whereas the benefits of tail autotomy are simple and obvious, (65%) show that tail autotomy has a negative effect on sprint the costs associated with this behavior are more diverse and speed, some studies (26%) show no effect of autotomy on sprint obscure (recently reviewed in Clause and Capaldi 2006; Bate- speed, and a few (9%) show a positive effect of autotomy on man and Fleming 2009). Several decades of research have sprint speed. A variety of hypotheses have been proposed to shown that autotomy can result in the loss of fat reserves (Dial explain the variation across these studies, but none has been and Fitzpatrick 1981; Wilson and Booth 1998); reduced time tested.
    [Show full text]
  • Zootaxa, Systematics of the Palaearctic and Oriental Lizard Tribe
    ZOOTAXA 1430 Systematics of the Palaearctic and Oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera E. NICHOLAS ARNOLD, OSCAR ARRIBAS & SALVADOR CARRANZA Magnolia Press Auckland, New Zealand Systematics of the Palaearctic and Oriental lizard tribe Lacertini E. NICHOLAS ARNOLD, OSCAR ARRIBAS & SALVADOR CARRANZA (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera (Zootaxa 1430) 86 pp.; 30 cm. 22 Mar. 2007 ISBN 978-1-86977-097-6 (paperback) ISBN 978-1-86977-098-3 (Online edition) FIRST PUBLISHED IN 2007 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2007 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) Zootaxa 1430: 1–86 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Systematics of the Palaearctic and Oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera E. NICHOLAS ARNOLD1, OSCAR ARRIBAS2 & SALVADOR CARRANZA3* 1.—Department of Zoology, The Natural History Museum, London. Cromwell Road, SW7 5BD, London, UK ([email protected]) 2.—Avda. Francisco Cambó 23, E-08003 Barcelona, Spain ([email protected]).
    [Show full text]