Molecular Rearrangementsuse

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Rearrangementsuse only use internal for only Molecular rearrangementsuse SERP course A. Mickiewicz University, Based on Poznań 2016 internal Organic Chemistry Jan Milecki 5th Edition for Paula Yurkanis Bruice Neighboring group participation Some reactions proceed just too easy! 6 only O Cl Reacts with Nu: 10 x faster then Cl Cl Cl Hydrolyses 600x fasteuser then S TsO TsO Reacts with AcOH 1011 faster then internal What is the reason? for Oxygen atom lone pair „pushes away” chloride ion, creating resonance-stabilized cation HO R R O O Cl onlyO O O O Lone pair on the sulfur atom (strong nucleophile)use expels chloride ion giving rise to three-membered cyclic cation Cl O Ph HO R Ph S Ph S S R internal This mechanism is responsible for alkylating Cl Cl S activity (and hencefor toxicity) of mustard gas! Other examples of the lone pair assistance: Me Me O O OAc O O OAc = only OTs OTs OAc AusecOH Retention of configuration in the SN2 substitution indicates the neighboring group assistance! Assisting electrons do not have to come from the lone pair – p orbital assistance TsO AcO AcOH internal + Appropriate for structure O LUMO Ts HOMO only Rearrangements use What happens, when the participating group becomes trapped and remains in the place, which was the aim of electron attack? In this case isomeric product is formed – result of REARRANGEMENT „Simple” substitution: Cl OH NEt2 NaOH, H2O Et N 2 internalEt2N HO Expected product Real product (57% yield) . for Cl NEt2 Me Et2N Et2N HO Me Me OH Cl Good leaving group. Good nucleophile, only bad leaving group Et N 2 Secondary reaction center - slow Me substitution by an external nucleophile. Alkyl group can migrate too use Me Me Me Me Me Me I Me AgNO3, Me I X OH H2O Me Me Me Me Toocrowded for SN2 Primary cation, too unstable for SN1 H = H Me Me H C Me Ag Me Ag Me I I Me + Me Me Me internal Me Me H2O Transition state, rather than intermediate OH Me for Me Me H Me Molecule rearranges to form Me H more stable cation Me onlyMe Secondary Tertiary LUMO empty p orbital HOMO H H use H H Me H H Me H H LUMO Me H migrates =_ H Me H H Me H migrates Me H H HOMO filled Me H H H orbital H internal for Carbocations rearrange easily! How to produce a carbocation? 1. Dissociation of halogenides (promoted by silver ions) RX AgonlyR AgX 2. Protonatiion of alcohols use CH3 CH3 H2 HONO +N + 2H O 3. Nitrosation of amines H3C C C NH2 H3C C CH2 2 2 (aliphatic) CH CH internal3 3 for only Aryl amines – dissociation only (stable salts) use H 4. Protonation of alkenesinternal H for How to predict the direction of rearrangement? Ph H C C CH Ph shift only3 2 Ph Ph C4H9 CH3 shift C CH2 CH3 H3C C CH2 Ph C H C H 4 9 4 9 C H shift H3C C CH2 C4H9 use4 9 Migration of phenyl group – very stable intermediate (benzil and tertiary carbon atoms in the three H3C H membered ring, charge spread over phenyl ring). internalFavors this direction of migration C4H9 H for Wagner-Meerwein rearrangement The rearrangement was first discovered in bicyclic terpenes for example the conversion of isoborneol to camphene only OH H OH2 + use H -H2O The story of the rearrangement reveals that many scientists were puzzled with this and related reactions and its close relationship to the discovery of carbocations as internalintermediates for Rearrangement of camphenilol to santene only use Cl Ring strain release can be a driving HCl force for rearrangement internal Four-membered ring Five-membered for ring Pinacol Rearrangement only use In the conversion that gave its name to this reaction, the acid-catalyzed elimination of water from pinacol gives t-butyl methyl ketone internal for Mechanism of the Pinacol Rearrangement This reaction occurs with a variety of fully substituted 1,2-diols, and can be understood to involve the formation of a carbonium ion intermediate that subsequently undergoes a rearrangement. The first generated intermediate, an α-hydroxycarbonium ion, rearranges through a 1,2-alkyl shift to produce the carbonyl compound. If two onlyof the substituents form a ring, the Pinacol Rearrangement can constitute a ring-expansion or ring-contraction reaction. use internal for CH CH3 3 OH CH3 CH3 H H only O OH O CH3 CH3 trans group migrates use OH OH2 CH3 CH3 CH3 H CH CH CH OH 3 O 3 O 3 H H H O CH3 CH3 internal for OH OH2 H C CH 3 H 3 CH3 CH3 CH CH OH2 3 3 O O H CH3 OH OH CH3 H onlyCH 3 H O Ring contraction use CH3 H OH OH OH OH2 O H -H2O O internal H Ring expansion for Epoxides undergo similar rearrangement (pinacol-type) MgBr H MgBr O 2 O Ph O Ph Ph Ph Ph onlyPh Grignard reagents not always open epoxides in desired way! use OH OH RLi RMgBr O R R O OH O MgBr RMgBr O MgBr internal H R for only use Baeyer-Villiger Oxidation internal for Mechanism of Bayer-Villiger Oxidation BF3 BF O BF3 3 O O R R R R R R only BF3 O O O O O BF O BF3 3 R' R useR' R R R R' O O + R R H O O -H O O H H O O O BF -RCOO O O BF3 3 -BF3 R' R R' + R R O O O O R R R O internal Order of migration:for R= tertiary alkyl >secondary alkyl >aryl >primary alkyl >methyl Benzilic Acid Rearrangement only 1,2-Diketones undergo a rearrangement in theuse presence of strong base to yield α-hydroxycarboxylic acids. The best yields are obtained when the subject diketones do not have enolizable protons. The reaction of a cyclic diketone leads to an interesting ring contraction: Ketoaldehydes do not react in the same manner, where a hydride shift is preferred (see Cannizzarointernal Reaction) for only use Mechanism of Benzilic Acid Rearrangement internal for Cannizzaro Reaction only This redox disproportionation of non-enolizable aldehydesuse to carboxylic acids and alcohols is conducted in concentrated base. α-Keto aldehydes give the product of an intramolecular disproportionation in excellent yields. internal for Mechanism of the Cannizzaro Reaction only use The Cannizzaro Reactioninternal should be kept in mind as a source of potential side products when aldehydes are treated under basic conditions. for Favorskii Rearrangement Alpha-halogeno ketones O O O EtO O onlyOEt O Br EtO Br : OEt use O OEt internal for Hofmann Rearangement (Degradation) R R O R R H2O NH NaOH, X2 C 1 2 N C O 1 R X=Cl, Br R N OH -CO R1 NH R1 H 2 2 O only use internal for Mechanism O X O O O R X H2O R O onlyR X Na R H OH N N N N 1 R1 H R H -H R1 R1 H O use -X O C -X O N R X N R 1 N R R R1 H R1 Intermediate internal Nitrene for Isocyanates are versatile starting materials: only use Isocyanates are also of high interest as monomers for polymerization work and in the derivatisation of biomacromolecules. internal for Beckmann Rearrangement only use An acid-induced rearrangement of oximes to give amides. This reaction is related to the Hofmann and Schmidt Reactions and the Curtius Rearrangement, in that an electropositive nitrogen is formed that initiates internalan alkyl migration. for Mechanism of the Beckmann Rearrangement only use Oximes generally haveinternal a high barrier to inversion, and accordingly this reaction is envisioned to proceed by protonation of the oxime hydroxyl, followed by migration of the alkyl substituent "trans" to nitrogen. The N-O bond is simultaneously cleaved withfor the expulsion of water, so that formation of a free nitrene is avoided. Claisen Rearrangement The aliphatic Claisen Rearrangement is a [3,3]-sigmatropic rearrangement in which an allyl vinyl ether is converted thermally to an unsaturated carbonyl compound. The aromatic Claisen Rearrangement is accompaniedonly by a rearomatization: use The etherification of alcohols or phenols and their subsequent Claisen Rearrangement under thermal conditions makes possible an extension of the carbon chain of the molecule. internal for Mechanism of the Claisen Rearrangement The Claisen Rearrangement may be viewed as the oxa-variant of the Cope Rearrangement only Mechanism of the Cope Rearrangement use internal Mechanism of the Claisen Rearrangement for The aromatic Claisen Rearrangement is followed by a rearomatization: only use When the ortho-position is substituted, rearomatization cannot take place. The allyl group must first undergo a Cope Rearrangement to the para-position before tautomerization is possible. internal for .
Recommended publications
  • Organic Chemistry
    Wisebridge Learning Systems Organic Chemistry Reaction Mechanisms Pocket-Book WLS www.wisebridgelearning.com © 2006 J S Wetzel LEARNING STRATEGIES CONTENTS ● The key to building intuition is to develop the habit ALKANES of asking how each particular mechanism reflects Thermal Cracking - Pyrolysis . 1 general principles. Look for the concepts behind Combustion . 1 the chemistry to make organic chemistry more co- Free Radical Halogenation. 2 herent and rewarding. ALKENES Electrophilic Addition of HX to Alkenes . 3 ● Acid Catalyzed Hydration of Alkenes . 4 Exothermic reactions tend to follow pathways Electrophilic Addition of Halogens to Alkenes . 5 where like charges can separate or where un- Halohydrin Formation . 6 like charges can come together. When reading Free Radical Addition of HX to Alkenes . 7 organic chemistry mechanisms, keep the elec- Catalytic Hydrogenation of Alkenes. 8 tronegativities of the elements and their valence Oxidation of Alkenes to Vicinal Diols. 9 electron configurations always in your mind. Try Oxidative Cleavage of Alkenes . 10 to nterpret electron movement in terms of energy Ozonolysis of Alkenes . 10 Allylic Halogenation . 11 to make the reactions easier to understand and Oxymercuration-Demercuration . 13 remember. Hydroboration of Alkenes . 14 ALKYNES ● For MCAT preparation, pay special attention to Electrophilic Addition of HX to Alkynes . 15 Hydration of Alkynes. 15 reactions where the product hinges on regio- Free Radical Addition of HX to Alkynes . 16 and stereo-selectivity and reactions involving Electrophilic Halogenation of Alkynes. 16 resonant intermediates, which are special favor- Hydroboration of Alkynes . 17 ites of the test-writers. Catalytic Hydrogenation of Alkynes. 17 Reduction of Alkynes with Alkali Metal/Ammonia . 18 Formation and Use of Acetylide Anion Nucleophiles .
    [Show full text]
  • Beckmann Rearrangement of Ketoxime Catalyzed by N-Methyl-Imidazolium Hydrosulfate
    molecules Article Beckmann Rearrangement of Ketoxime Catalyzed by N-methyl-imidazolium Hydrosulfate Hongyu Hu †, Xuting Cai †, Zhuying Xu, Xiaoyang Yan * and Shengxian Zhao * Xingzhi College, Zhejiang Normal University, Jinhua 321004, China; [email protected] (H.H.); [email protected] (X.C.); [email protected] (Z.X.) * Correspondence: [email protected] (X.Y.); [email protected] (S.Z.); Tel./Fax: +86-579-8229-1129 (X.Y. & S.Z.) † These authors contributed equally to this work. Received: 7 June 2018; Accepted: 14 July 2018; Published: 18 July 2018 Abstract: Beckmann rearrangement of ketoxime catalyzed by acidic ionic liquid-N-methyl- imidazolium hydrosulfate was studied. Rearrangement of benzophenone oxime gave the desirable ◦ product with 45% yield at 90 C. When co-catalyst P2O5 was added, the yield could be improved to 91%. The catalyst could be reused three cycles with the same efficiency. Finally, reactions of other ketoximes were also investigated. Keywords: Beckmann rearrangement; ketoxime; acidic ionic liquid; catalysis 1. Introduction Over the past years, amide derivatives have received much attention owing to their broad range of applications in many fields such as the pharmaceutical industry, chemical biology, the agrochemical industry, engineering plastics, and so on [1–6]. Various approaches have been developed for the synthesis of amide compounds including nucleophilic acyl substitution reactions with amines [7], Staudinger ligation [8], Schmidt reaction [9] and Beckmann rearrangement [10]. However, generations of large amounts of undesired by-products and corrosive phenomenon associated with common acid (H2SO4 and SOCl2) based on liquid phase protocols provide a challenging task for chemists to develop alternative methods [11,12].
    [Show full text]
  • Direct Visualization of a Mechanochemically Induced Molecular Rearrangement Karen J
    Angewandte Communications Chemie How to cite: Angew. Chem. Int. Ed. 2020, 59, 13458–13462 Mechanochemical Synthesis International Edition: doi.org/10.1002/anie.201914921 German Edition: doi.org/10.1002/ange.201914921 Direct Visualization of a Mechanochemically Induced Molecular Rearrangement Karen J. Ardila-Fierro, Stipe Lukin, Martin Etter, Krunoslav Uzˇarevic´, Ivan Halasz, Carsten Bolm, and JosØ G. Hernµndez* Abstract: Recent progress in the field of mechanochemistry (thio)acylations[5]). In this context, we became curious as to has expanded the discovery of mechanically induced chemical whether a combination of in situ real-time monitoring by transformations to several areas of science. However, a general synchrotron powder X-ray diffraction (PXRD), Raman fundamental understanding of how mechanochemical reac- spectroscopy, and temperature sensing could be applied for tions by ball milling occur has remained unreached. For this, the investigation of a fundamentally different type of organic we have now implemented in situ monitoring of a mechano- reaction; namely, a molecular rearrangement. As the first chemically induced molecular rearrangement by synchrotron example, we considered the emblematic benzil–benzilic acid X-ray powder diffraction, Raman spectroscopy, and real-time rearrangement in the presence of hydroxide ions (Sche- temperature sensing. The results of this study demonstrate that me 1a). molecular rearrangements can be accomplished in the solid state by ball milling and how in situ monitoring techniques enable the visualization of changes occurring at the exact instant of a molecular migration. The mechanochemical benzil–benzilic acid rearrangement is the focal point of the study. In mechanochemical reactions by ball milling, collisions of accelerated balls inside a milling container maintain a con- stant mixing of the reactants while simultaneously trans- ducing the energy required to induce specific physicochemical changes into the milled system.
    [Show full text]
  • Metal-Free Tandem Beckmann–Electrophilic Aromatic Substitution Cascade Affording Diaryl Imines, Ketones, Amines, and Quinazolines
    Loyola University Chicago Loyola eCommons Chemistry: Faculty Publications and Other Works Faculty Publications 8-2015 Metal-Free Tandem Beckmann–Electrophilic Aromatic Substitution Cascade Affording Diaryl Imines, Ketones, Amines, and Quinazolines Samuel Sarsah Loyola University Chicago, [email protected] Marlon R. Lutz Jr. Loyola University Chicago Kailyn Chichi Bobb Loyola University Chicago Daniel Becker Loyola University Chicago, [email protected] Follow this and additional works at: https://ecommons.luc.edu/chemistry_facpubs Part of the Biochemistry Commons, and the Chemistry Commons Author Manuscript This is a pre-publication author manuscript of the final, published article. Recommended Citation Sarsah, Samuel; Lutz, Marlon R. Jr.; Bobb, Kailyn Chichi; and Becker, Daniel. Metal-Free Tandem Beckmann–Electrophilic Aromatic Substitution Cascade Affording Diaryl Imines, Ketones, Amines, and Quinazolines. Tetrahedron Letters, 56, 40: 5390-5392, 2015. Retrieved from Loyola eCommons, Chemistry: Faculty Publications and Other Works, http://dx.doi.org/10.1016/j.tetlet.2015.07.095 This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Chemistry: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © Elsevier Ltd. 2015 Metal-Free Tandem Beckmann-Electrophilic Tetrahedron Lett 2015 56 5390–5392 Aromatic Substitution Cascade Affording Diaryl Imines, Ketones, Amines and Quinazolines Samuel R.S. Sarsah, Marlon R. Lutz, Jr., Kailyn Chichi Bobb, and Daniel P. Becker* Metal-Free Tandem Beckmann-Electrophilic Aromatic Substitution Cascade Affording Diaryl Imines, Ketones, Amines and Quinazolines Samuel R.S.
    [Show full text]
  • A Facile Solvent-Free Cannizzaro Reaction. an Instructional Model for Introductory Organic Chemistry Laboratory
    In the Laboratory edited by Green Chemistry Mary M. Kirchhoff ACS Education Division Washington, DC 20036 A Facile Solvent-Free Cannizzaro Reaction An Instructional Model for Introductory Organic Chemistry Laboratory Sonthi Phonchaiya and Bhinyo Panijpan Institute for Innovation and Development of Learning Process, Mahidol University, Bangkok 10400, Thailand Shuleewan Rajviroongit* Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; *[email protected] Tony Wright School of Education, University of Queensland, 4072, QLD, Australia Joanne T. Blanchfield School of Molecular and Microbial Sciences, University of Queensland, 4072, QLD, Australia To make students in chemistry laboratory more apprecia- 2-chlorobenzyl alcohol by filtration: the solid 2-chlorobenzyl tive of the environmental aspects of chemistry, it is important alcohol retained by the filter was washed twice with water. After that the laboratory exercise address possible environmental im- acidification of potassium 2-chlorobenzoate and filtration, the pacts, for example, energy used, chemical wastes produced, and precipitated 2-chlorobenzoic acid was also rinsed with water. In the use of organic solvents. A reaction that involves only a small both cases small amounts of products were sacrificed, leading to amount(s) of reactants in an aqueous solvent with no organic slightly reduced yields. The reaction is shown in Scheme I. solvent used in the product purification step would result in a Students achieved yields of 35–85% for each pure product. greener chemistry laboratory. A pedagogical method such as They characterized their partially dried products by comparing guided inquiry will make the laboratory more learner-centered the Rf values on TLC with the authentic samples.
    [Show full text]
  • Practical Organic Pharmaceutical Chemistry 4Th Stage (2Nd Course)
    Al-ISRAA University College Pharmacy Department ------------------------------------------------------------------------------------------------------------------------ Practical Organic Pharmaceutical Chemistry 4th Stage (2nd course) Lab. 1,2 Prepared by: Assist.Lecturer Ali Amjed 2017-2018 1 Al-ISRAA University College Pharmacy Department ------------------------------------------------------------------------------------------------------------------------ Cannizzaro Reaction Synthesis of Benzoic Acid and Benzyl Alcohol Both Alcohols and Organic Acids are Well Known for their Biological Actions which include: Antibacterial, Preservatives for Food and Pharmaceutics, Local Antiseptic, Local Anesthetic and Antipruritic. Benzyl Alcohol: Benzyl Alcohol can be Prepared by Hydrolysis of Benzyl Chloride with Sodium Hydroxide as shown below: Benzyl chloride Benzyl alcohol Properties of Benzyl Alcohol: 1) Colorless Liquid. 2) Moderate Solubility in Water. 3) Completely Miscible with Organic Solvents like Alcohol and Diethyl ether. 4) Boiling Point: 204-205 °C. 5) Have Low Vapor Pressure and Low Toxicity. 2 Al-ISRAA University College Pharmacy Department ------------------------------------------------------------------------------------------------------------------------ In Pharmaceutical , Benzyl Alcohol used at Low Concentration as: 1) Antiseptic (Bacterio Static). 2) Local Anesthetic. 3) Preservative for Food Industry. 4) In 10% Ointments is used as Antipruritic. In High Concentration Could Cause Hypotension and Respiratory Failure. Benzoic
    [Show full text]
  • Rearrangement Reactions
    Rearrangement Reactions A rearrangement reaction is a broad class of organic reactions where the carbon skeleton of a molecule is rearranged to give a structural isomer of the original molecule. 1, 2-Rearrangements A 1, 2-rearrangement is an organic reaction where a substituent moves from one atom to another atom in a chemical compound. In a 1, 2 shift the movement involves two adjacent atoms but moves over larger distances are possible. In general straight-chain alkanes, are converted to branched isomers by heating in the presence of a catalyst. Examples include isomerisation of n-butane to isobutane and pentane to isopentane. Highly branched alkanes have favorable combustion characteristics for internal combustion engines. Further examples are the Wagner-Meerwein rearrangement: and the Beckmann rearrangement, which is relevant to the production of certain nylons: Pericyclic reactions A pericyclic reaction is a type of reaction with multiple carbon-carbon bonds making and breaking wherein the transition state of the molecule has a cyclic geometry and the reaction progresses in a concerted fashion. Examples are hydride shifts [email protected] and the Claisen rearrangement: Olefin metathesis Olefin metathesis is a formal exchange of the alkylidene fragments in two alkenes. It is a catalytic reaction with carbene, or more accurately, transition metal carbene complexintermediates. In this example (ethenolysis, a pair of vinyl compounds form a new symmetrical alkene with expulsion of ethylene. Pinacol rearrangement The pinacol–pinacolone rearrangement is a method for converting a 1,2-diol to a carbonyl compound in organic chemistry. The 1,2-rearrangement takes place under acidic conditions.
    [Show full text]
  • Paper II, Organic Chemistry, Unit IV the Cannizzaro Reaction
    B.Sc. Part-1(Hons.), Paper II, Organic Chemistry, unit IV (Study material prepared by Dr. Ruchi Jain, S.B.S.S.College, Begusarai) The Cannizzaro reaction The Cannizzaro reaction is also known as Cannizzaro disproportionation and it is a redox reaction between aromatic aldehydes, formaldehyde or other aliphatic aldehydes without α-hydrogen. Base is used to afford the corresponding alcohols and carboxylic acids.(pathway A) Final deprotonation of the carboxylic acid drives the reaction forward. Pathway B: As you know, aldehydes are generally at least partly hydrated in water. Hydration is catalysed by base, and we can represent the hydration step in base like this. The hydration product is an anion but, if the base is sufficiently strong (or concentrated) and as long as the aldehyde cannot be enolized, at least some will be present as a dianion. The dianion is very unstable, and one way in which it can become much more stable is by behaving like a tetrahedral intermediate. Which is the best leaving group? Out of a choice of O2–, R–, and H–, it’s H– that (if reluctantly) has to go. Hydride is, of course, too unstable to be released into solution but, if there is a suitable electrophile at hand (another molecule of aldehyde, for example), it is transferred to the electrophilic centre in a mechanism that bears some resemblance to a borohydride reduction. The dianion becomes a much more stable carboxylate monoanion, and a second molecule of aldehyde has been reduced to an alcohol. This is the Cannizzaro reaction: in this case it takes the form of a disproportionation of two molecules of aldehyde to one of carboxylate and one of alcohol.
    [Show full text]
  • Aldol Condensation
    SEM-III, CORE COURSE-7 ORGANIC CHEMISTRY-3 TOPIC: CARBONYL AND RELATED COMPOUNDS SUB-TOPIC: CONDENSATIONS (PPT-7) Dr. Kalyan Kumar Mandal Associate Professor St. Paul’s C. M. College Kolkata CONDENSATION • ALDOL CONDENSATION • CLAISEN-SCHMIDT REACTION • TOLLENS’ CONDENSATION ALDOL CONDENSATION • Carbonyl compounds, aldehydes and ketones, containing an α-hydrogen atom, in presence of dilute alkali, like NaOH, KOH, Ba(OH)2, etc., or dilute acids, like HCl, H2SO4 undergo a type of reaction in which two molecules of the aldehydes or ketones condense to form an unstable syrupy liquid, aldol. • This reaction is a dimerisation of an aldehyde (or ketone) to a β-hydroxyaldehyde (or β-hydroxyketone) by alpha C-H addition of one reactant molecule to the carbonyl group of the second reactant molecule. FACTS • The product is an aldehyde with a hydroxy (ol) group whose trivial name is aldol. The name aldol is given to the whole class of reactions between enolates (or enols) and carbonyl compounds even if the product is not a hydroxyaldehyde. • The Aldol Condensation leads to the formation of carbon-carbon sigma bond between two carbonyl compounds (same or different), one acting as a nucleophilic species and another as an electrophile. • The rate expression for the aldol reaction at low concentrations of - hydroxide ion is, rate = k [CH3CHO][HO ], showing that the formation of the enolate ion is rate-determining. • The base catalysed aldol condensation of acetaldehyde takes place in two steps, the first step being the formation of the carbanion (I), and the second, the combination of this anion with a second molecule of acetaldehyde to form the anion (II) of the aldol.
    [Show full text]
  • Transfer Hydrogenations and Kinetic Resolutions Van Dirk Klomp
    transferhydrogenations and kineticresolutions DirkKlomp transferhydrogenationsandkineticresolutions DirkKlomp Uitnodiging voorhetbijwonenvande openbareverdedigingvan hetproefschriften destellingenop maandag 13maart2006 13.00uur endedaaraan voorafgaandetoelichting voorniet-chemiciom 12.30uur indeSenaatszaalvande TechnischeUniversiteitDelft Mekelweg5teDelft Naafloopvande plechtigheidbentuookvan hartewelkomopdereceptie inhetzelfdegebouw. DirkKlomp Esdoornlaan32 1521EBWormerveer 075-6223403 [email protected] Stellingen behorende bij het proefschrift transfer hydrogenations and kinetic resolutions van Dirk Klomp 1- De door Kao et al. gebruikte structuurbepalende verbinding fructose voor de synthese van de mesoporeuze silica SBA-1 bepaalt niet de structuur van het materiaal. H.-M. Kao, C.-C. Ting, A. S. T. Chiang, C.-C. Teng, C.-H. Chen, Chem. Commun. 2005 ,1058-1060. 2- Het door Kim et al. gesuggereerde mechanisme voor de deactivering van het enzym α-CT in de hydrolyse van β-lactonen, waarbij het lacton opent op de 4-positie, is zeer onwaarschijnlijk. D. H. Kim, J. Park, S. J. Chung, J. D. Park, N.-K. Park, J. H. Han, Bioorg. Med. Chem. 2002 , 10 , 2553-2560. 3- Psychologisch gezien betekent de omschakeling door wetenschappelijke tijdschriften van papieren versies naar elektronische, een verlies aan kennis voor de wetenschapper. 4- Omdat de aarde langzamer gaat draaien is soms de toevoeging van schrikkelsecondes noodzakelijk. Wetenschappers die deze secondes pas willen toevoegen op het moment dat ze zijn opgespaard tot een schrikkeluur, omdat de toevoegingen storingen kunnen veroorzaken in elektronische apparatuur, hebben de menselijke factor uit het oog verloren. 5- In de weekeindes waarin een nieuw boek over Harry Potter uitkomt, is het aantal kinderen dat op de eerstehulpafdeling van het ziekenhuis belandt bijna half zo groot als in andere weekeindes. Gwilym et al. hebben de afname over de lange termijn waarschijnlijk onderschat.
    [Show full text]
  • Stereochemical Evidence for Stabilization of a Nitrogen Cation by Neighboring Chlorine Or Bromine
    Stereochemical evidence for stabilization of a nitrogen cation by neighboring chlorine or bromine Tomohiko Ohwadaa,1, Norihiko Tania, Yuko Sakamakia, Yoji Kabasawaa, Yuko Otania, Masatoshi Kawahatab, and Kentaro Yamaguchib,1 aGraduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; and bFaculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Kagawa 769-2193, Japan Edited by Jerrold Meinwald, Cornell University, Ithaca, NY, and approved January 25, 2013 (received for review January 8, 2013) Neighboring group participation is one of the fundamental inter- with a heteroatom-centered cation is really possible and whether actions in organic reactions and can influence the reaction rate, it influences the course of the reaction. We report an intriguing stereoselectivity, and reaction pathway through transient carbon- rearrangement reaction of oximes under Beckmann rearrange- carbon or carbon-heteroatom bond formation. The latter category ment reaction conditions in which halogen atom participation includes cyclic three- and five-membered bromonium ions, wherein results in syn-regioselectivity, in contrast to the general case of lone-pair electrons of the monovalent bromine atom stabilize a anti-selectivity. trigonal carbocation. Although similar nucleophilic interactions of The Beckmann rearrangement is the acid-catalyzed transfor- monovalent halogen atoms with non–carbon atom-centered cations mation of oximes to amides. This reaction has been well docu- have long been predicted, we know of no experimental evidence mented, extensively reviewed (6–8), and described in many of such an interaction. Here, we demonstrate a nucleophilic inter- undergraduate textbooks of organic chemistry as one of the action of neighboring monovalent halogen to stabilize an imino oldest and most familiar transformations in organic chemistry sp2 nitrogen cation.
    [Show full text]
  • Environmentally Friendly Beckmann Rearrangement of Oximes Catalyzed by Metaboric Acid in Ionic Liquids
    Catalysis Communications 6 (2005) 225–228 www.elsevier.com/locate/catcom Environmentally friendly Beckmann rearrangement of oximes catalyzed by metaboric acid in ionic liquids Shu Guo, Youquan Deng * Center for Green Chemistry and Catalysis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China Received 8 November 2004; accepted 10 January 2005 Available online 3 February 2005 Abstract Beckmann rearrangement of several oximes catalyzed by metaboric acid was studied in room temperature ionic liquids. Espe- cially for conversion of cyclohexanone oxime into e-caprolactam, excellent conversion and selectivity were obtained. Ó 2005 Elsevier B.V. All rights reserved. Keywords: Beckmann rearrangement; Oxime; Metaboric acid; Ionic liquid 1. Introduction as the requirement of high temperature above 250 °C and rapid deactivation of catalyst due to the coke for- Catalytic rearrangement of oximes into the corre- mation [4,5]. sponding lactams has long been an important subject Boric acid has low mammalian toxicity and is widely for catalyst researchers, particularly with respect to used as antiseptic in the hospital. When boric acid is the commercial production of e-caprolactam in which heated above 100 °C, it is dehydrated and converted into concentrated sulfuric acid is employed and a large metaboric acid (Scheme 1). Chandrasekhar and Gopal- amount of ammonium sulfate is produced as a by- aiah [6] investigated solid metaboric acid catalyzed product. Great efforts have been put into the develop- Beckmann rearrangement of ketoximes, but involved ment of the ammonium sulfate free processes. Re- reaction conditions were rigorous (for cyclohexanone cently, the Beckmann rearrangement in supercritical oxime instance, it requires high reaction temperatures water has been reported [1–3], in which, although there near 140 °C and more than 40 h reaction time.
    [Show full text]