Notes on Differential Topology

Total Page:16

File Type:pdf, Size:1020Kb

Notes on Differential Topology Notes on Differential Topology George Torres Last updated January 4, 2019 Contents 1 Smooth manifolds and Topological manifolds 2 1.1 Smooth Structures . .2 1.2 Product Manifolds . .3 2 Calculus on smooth manifolds 3 2.1 Derivatives . .3 2.1.1 Tangent spaces . .3 2.1.2 Defining df ............................................4 3 The Inverse Function Theorem 5 4 Immersions and Submersions 6 4.1 Immersions . .6 4.2 Submersions . .7 5 Regular Values and Implicit Manifolds 8 5.1 Transversality . .8 5.2 Stability . .9 6 Sard's Theorem 10 6.1 Proof of Sard's Theorem . 10 7 Whitney's Embedding Theorem 12 7.1 Partitions of Unity . 13 7.2 Proof of Whitney . 14 8 Manifolds with Boundary 15 8.1 Facts about Manifolds with Boundary . 15 8.2 Transversality . 16 8.3 Sard's Theorem for Manifolds with boundary . 17 8.4 Classification of 1 dimensional Manifolds . 17 9 Transversality (Revisited) 18 9.1 Transversality and Stability . 19 9.2 Extensions . 20 10 Intersection Theory (Mod 2) 20 1 CONTENTS CONTENTS 11 Intersection Theory 22 11.1 Orientation of Manifolds . 22 11.2 Oriented Intersection Theory . 24 11.3 More General Perspective . 24 12 Lefschetz Fixed Point Theory 26 12.1 Two dimensional maps and the Euler Characteristic . 27 12.2 Non-Lefshetz fixed points . 27 13 Vector Fields and Poincar´e-Hopf 28 13.1 The Euler Characteristic and Triangulations . 29 14 Integration Theory 29 14.1 Differential forms . 29 14.2 Integrating Differential Forms . 31 14.3 Familiar examples . 32 14.4 The Exterior Derivative . 33 14.5 Stokes's Theorem . 34 ||||||||||{ Note to the reader: These are lecture from Harvard's 2014 Differential Topology course Math 132 taught by Dan Gardiner and closely follow Guillemin and Pollack's Differential Topology. 2 1 SMOOTH MANIFOLDS AND TOPOLOGICAL MANIFOLDS 1 Smooth manifolds and Topological manifolds Definition: A topological manifold X is a locally Euclidean space that is Hausdorff and second countable. B To discuss calculus on topological manifolds, they must be equipped with a smooth structure. To define this, we must define the concept of smoothness and smooth manifold. Definition: A smooth map between Euclidean spaces must first be defined on open sets, then on arbitrary sets: • A smooth map between open subsets of Euclidean spaces U ⊂ Rn and V ⊂ Rm is a function f : U ! V that is C1, or infinitely differentiable. • A smooth map from an arbitrary subset A ⊂ Rn is a function f : A ! Rn that extends locally to a smooth function on open sets. Namely, around every a 2 A there is an open set U ⊂ Rn and a smooth map m F : U ! R such that: F = f U\A Definition: Let X ⊂ Rn and Y ⊂ Rm. A function is a diffeomorphism (or smooth equivalence) if f is smooth, bijective and f −1 is smooth. The sets X and Y are said to be diffeomorphic if such a function exists between them. Definition: A smooth k manifold is a subset X ⊂ Rn such that for every point p 2 X, there is an open1 subset V ⊂ X containing p together with a diffeomorphism φ : U ! V , where U ⊂ Rk is some open subset. The maps φ : U ! V are called parameterizations, and the maps φ−1 : V ! U are called coordinate systems. Together, the collection of all such triples f(U; V; φ)g is called an atlas of charts. Example (S1): The 1 sphere S1 = f(x; y) j x2 + y2 = 1g ⊂ R2 is a smooth 1 manifold. To show this, we cover it with four open sets: the top half, the bottom half, the left half and the right half. Each one can be shown to be diffeomorphic to (−1; 1) ⊂ R. For example, let U1 be the top half and define: p 2 φ1 :(−1; 1) ! U1 : x 7! x; 1 − x This is smooth because it is a composition of continuous and C1 functions. The inverse is simply the projection (x; y) 7! x, which is also smooth (as the projection map on all of R2 is smooth). Thus φ is a diffeomorphism. The same process for all other halves of the circle covers all points in S1, so it is a 1 manifold. Definition: A smooth structure on a topological k-manifold X is a smooth k-manifold Y ⊂ Rn together with a homeomorphism X ! Y . 1.1 Smooth Structures Several questions arise when discussing smooth structures: Q: Does every topological manifold admit a smooth structure? A: No. For example, there are 4 manifolds with no smooth structure. These aren't immediately intuitive. Q: If a topological manifold admits a smooth structure, is it unique (up to diffeomorphism)? A: No. For example, the 7 sphere has 28 smooth structures, which form a group under connect sums. 1Open in the subspace topology 3 1.2 Product Manifolds 2 CALCULUS ON SMOOTH MANIFOLDS 1.2 Product Manifolds Proposition: Let X ⊂ Rn and Y ⊂ Rm be smooth manifolds. Then X × Y ⊂ Rn+m is also a smooth manifold. Proof: Let (x; y) 2 X × Y . Since X is a manifold, there is a local parameterization φ : U ! X around X. There is similarly a local parameterization around Y , say : V ! Y . If we take the map φ × : U × V ! X × Y given by: φ × (u; v) = (φ(u); (v)) It is easy to check that this is a parameterization for X × Y around (x; y). 2 Calculus on smooth manifolds The primary use of smooth manifolds is calculus, and the fundamental component of calculus is the derivative as a linear approximation. Namely, if f : Rn ! Rm is a C1 function, then the derivative of f at ~c 2 Rn, denoted by dfc is a linear map satisfying: f(~x) = f(~c) + dfc(~x − ~c) + err(~x) where err(~x) is an error term sufficiently small near ~c. 2.1 Derivatives The goal of this section is to define df, the best linear approximation to a smooth map f : X ! Y between smooth manifolds (possibly of different dimension). This definition will come out of the chain rule between X; Y and their tangent spaces. 2.1.1 Tangent spaces Definition: The tangent space of X at a point x, denoted Tx(X), is the image of dφ~0, where φ is a local paramaterization φ : U ! X with φ(~0) = x. N k B Note that Tx(X) ⊂ R is a k subspace. It is useful to think of it as a copy of R centered at x on the manifold. 1 2 1 Example: Take S ⊂ R . What is T(0;1)(S )? p Take the parameterization φ :(−1; 1) ! S1 that sends x 7! (x; 1 − x2). Then: 1 dφ = p−x 1−x2 At ~0, dφ = (1; 0), so the tangent space is the subspace spanned by (1; 0). 4 2.1 Derivatives 2 CALCULUS ON SMOOTH MANIFOLDS B We now will show that Tx(M) is well defined: Proposition: The tangent space Tx(M) doesn't depend on the choice of parameterization. Proof: Suppose we have distinct parameterizations of X: φ : U ! X φ(0) = x : V ! X (0) = x Since U and V have a nontrivial intersection and they are open, we may shrink them to assume U = V . Now define h = −1 ◦ φ. This is a map U ! U. Since φ and are diffeomorphisms, so is h. The chain rule now says: dφ0 = d 0 ◦ dh0 This implies that the image of dφ0 is restricted to that of d 0, or Im(dφ0) ⊂ Im(d 0). The same argument 0 −1 can be made for h = φ ◦ φ, so Im(d 0) ⊂ Im(dφ0), and we have equality 2.1.2 Defining df Now we return to attempting to define the derivative of a smooth map f : X ! Y between manifolds. Intuitively, the derivative at a point x should be a map between the tangent spaces Tx(X) ! Tx(Y ). We can parameterize around x and f(x) in X and Y respectively using: φ : U ! X φ(0) = x : V ! Y (0) = f(x) If we define h = −1 ◦ f ◦ φ, we require the following diagram to commute, so long as U is chosen small enough: f X Y φ U h V Similarly, we require the derivatives to commute. The derivatives of φ and also map between tangent spaces k ` T0(U) 2 R and T0(V ) 2 R : dfx Tx(X) Tf(x)(Y ) dφ0 d 0 dh0 T0(U) T0(V ) Since dφ0 is an isomorphism (because φ is), dfx is uniquely determined because require the derivatives to −1 commute. Thus dfx = d 0 ◦ dh0 ◦ (dφ0) . 5 3 THE INVERSE FUNCTION THEOREM B The derivative also satisfies the chain rule; that is, given: f g X Y Z we have d(f ◦ g)x = dfx ◦ dg(f(x). The proof of this is straightforward. ||||||| Example: Let S1 ⊂ C be the set fz 2 C j jzj = 1g. We can define F : S1 ! S1 by sending z 7! z2. What is df at i? We can associate S1 with the unit circle in R2 via a + bi ∼ (a; b); in which case the map F is: (x; y) 7! (x2 − y2; 2xy) Now we seek df(0;1). To do this, we need local parameterizations around (0; 1) and F (0; 1) = (−1; 0). One possibility is: p φ :(−1; 1) ! S1 x 7! (x; 1 − x2) p :(−1; 1) ! S1 x 7! (− 1 − x2; x) Now we need h = −1 ◦ f ◦ φ. We note that −1 is the projection onto the y axis, so: p h(x) = 2x 1 − x2 We can easily compute dh0 to be 2.
Recommended publications
  • Introduction to Gauge Theory Arxiv:1910.10436V1 [Math.DG] 23
    Introduction to Gauge Theory Andriy Haydys 23rd October 2019 This is lecture notes for a course given at the PCMI Summer School “Quantum Field The- ory and Manifold Invariants” (July 1 – July 5, 2019). I describe basics of gauge-theoretic approach to construction of invariants of manifolds. The main example considered here is the Seiberg–Witten gauge theory. However, I tried to present the material in a form, which is suitable for other gauge-theoretic invariants too. Contents 1 Introduction2 2 Bundles and connections4 2.1 Vector bundles . .4 2.1.1 Basic notions . .4 2.1.2 Operations on vector bundles . .5 2.1.3 Sections . .6 2.1.4 Covariant derivatives . .6 2.1.5 The curvature . .8 2.1.6 The gauge group . 10 2.2 Principal bundles . 11 2.2.1 The frame bundle and the structure group . 11 2.2.2 The associated vector bundle . 14 2.2.3 Connections on principal bundles . 16 2.2.4 The curvature of a connection on a principal bundle . 19 arXiv:1910.10436v1 [math.DG] 23 Oct 2019 2.2.5 The gauge group . 21 2.3 The Levi–Civita connection . 22 2.4 Classification of U(1) and SU(2) bundles . 23 2.4.1 Complex line bundles . 24 2.4.2 Quaternionic line bundles . 25 3 The Chern–Weil theory 26 3.1 The Chern–Weil theory . 26 3.1.1 The Chern classes . 28 3.2 The Chern–Simons functional . 30 3.3 The modui space of flat connections . 32 3.3.1 Parallel transport and holonomy .
    [Show full text]
  • DIFFERENTIAL GEOMETRY Contents 1. Introduction 2 2. Differentiation 3
    DIFFERENTIAL GEOMETRY FINNUR LARUSSON´ Lecture notes for an honours course at the University of Adelaide Contents 1. Introduction 2 2. Differentiation 3 2.1. Review of the basics 3 2.2. The inverse function theorem 4 3. Smooth manifolds 7 3.1. Charts and atlases 7 3.2. Submanifolds and embeddings 8 3.3. Partitions of unity and Whitney’s embedding theorem 10 4. Tangent spaces 11 4.1. Germs, derivations, and equivalence classes of paths 11 4.2. The derivative of a smooth map 14 5. Differential forms and integration on manifolds 16 5.1. Introduction 16 5.2. A little multilinear algebra 17 5.3. Differential forms and the exterior derivative 18 5.4. Integration of differential forms on oriented manifolds 20 6. Stokes’ theorem 22 6.1. Manifolds with boundary 22 6.2. Statement and proof of Stokes’ theorem 24 6.3. Topological applications of Stokes’ theorem 26 7. Cohomology 28 7.1. De Rham cohomology 28 7.2. Cohomology calculations 30 7.3. Cechˇ cohomology and de Rham’s theorem 34 8. Exercises 36 9. References 42 Last change: 26 September 2008. These notes were originally written in 2007. They have been classroom-tested twice. Address: School of Mathematical Sciences, University of Adelaide, Adelaide SA 5005, Australia. E-mail address: [email protected] Copyright c Finnur L´arusson 2007. 1 1. Introduction The goal of this course is to acquire familiarity with the concept of a smooth manifold. Roughly speaking, a smooth manifold is a space on which we can do calculus. Manifolds arise in various areas of mathematics; they have a rich and deep theory with many applications, for example in physics.
    [Show full text]
  • Hirschdx.Pdf
    130 5. Degrees, Intersection Numbers, and the Euler Characteristic. 2. Intersection Numbers and the Euler Characteristic M c: Jr+1 Exercises 8. Let be a compad lHlimensionaJ submanifold without boundary. Two points x, y E R"+' - M are separated by M if and only if lkl(x,Y}.MI * O. lSee 1. A complex polynomial of degree n defines a map of the Riemann sphere to itself Exercise 7.) of degree n. What is the degree of the map defined by a rational function p(z)!q(z)? 9. The Hopfinvariant ofa map f:5' ~ 5' is defined to be the linking number Hlf) ~ 2. (a) Let M, N, P be compact connected oriented n·manifolds without boundaries Lk(g-l(a),g-l(b)) (see Exercise 7) where 9 is a c~ map homotopic 10 f and a, b are and M .!, N 1. P continuous maps. Then deg(fg) ~ (deg g)(deg f). The same holds distinct regular values of g. The linking number is computed in mod 2 if M, N, P are not oriented. (b) The degree of a homeomorphism or homotopy equivalence is ± 1. f(c) * a, b. *3. Let IDl. be the category whose objects are compact connected n-manifolds and whose (a) H(f) is a well-defined homotopy invariant off which vanishes iff is nuD homo- topic. morphisms are homotopy classes (f] of maps f:M ~ N. For an object M let 7t"(M) (b) If g:5' ~ 5' has degree p then H(fg) ~ pH(f). be the set of homotopy classes M ~ 5".
    [Show full text]
  • Lecture 10: Tubular Neighborhood Theorem
    LECTURE 10: TUBULAR NEIGHBORHOOD THEOREM 1. Generalized Inverse Function Theorem We will start with Theorem 1.1 (Generalized Inverse Function Theorem, compact version). Let f : M ! N be a smooth map that is one-to-one on a compact submanifold X of M. Moreover, suppose dfx : TxM ! Tf(x)N is a linear diffeomorphism for each x 2 X. Then f maps a neighborhood U of X in M diffeomorphically onto a neighborhood V of f(X) in N. Note that if we take X = fxg, i.e. a one-point set, then is the inverse function theorem we discussed in Lecture 2 and Lecture 6. According to that theorem, one can easily construct neighborhoods U of X and V of f(X) so that f is a local diffeomor- phism from U to V . To get a global diffeomorphism from a local diffeomorphism, we will need the following useful lemma: Lemma 1.2. Suppose f : M ! N is a local diffeomorphism near every x 2 M. If f is invertible, then f is a global diffeomorphism. Proof. We need to show f −1 is smooth. Fix any y = f(x). The smoothness of f −1 at y depends only on the behaviour of f −1 near y. Since f is a diffeomorphism from a −1 neighborhood of x onto a neighborhood of y, f is smooth at y. Proof of Generalized IFT, compact version. According to Lemma 1.2, it is enough to prove that f is one-to-one in a neighborhood of X. We may embed M into RK , and consider the \"-neighborhood" of X in M: X" = fx 2 M j d(x; X) < "g; where d(·; ·) is the Euclidean distance.
    [Show full text]
  • Math 600 Day 6: Abstract Smooth Manifolds
    Math 600 Day 6: Abstract Smooth Manifolds Ryan Blair University of Pennsylvania Tuesday September 28, 2010 Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 1 / 21 Outline 1 Transition to abstract smooth manifolds Partitions of unity on differentiable manifolds. Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 2 / 21 A Word About Last Time Theorem (Sard’s Theorem) The set of critical values of a smooth map always has measure zero in the receiving space. Theorem Let A ⊂ Rn be open and let f : A → Rp be a smooth function whose derivative f ′(x) has maximal rank p whenever f (x) = 0. Then f −1(0) is a (n − p)-dimensional manifold in Rn. Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 3 / 21 Transition to abstract smooth manifolds Transition to abstract smooth manifolds Up to this point, we have viewed smooth manifolds as subsets of Euclidean spaces, and in that setting have defined: 1 coordinate systems 2 manifolds-with-boundary 3 tangent spaces 4 differentiable maps and stated the Chain Rule and Inverse Function Theorem. Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 4 / 21 Transition to abstract smooth manifolds Now we want to define differentiable (= smooth) manifolds in an abstract setting, without assuming they are subsets of some Euclidean space. Many differentiable manifolds come to our attention this way. Here are just a few examples: 1 tangent and cotangent bundles over smooth manifolds 2 Grassmann manifolds 3 manifolds built by ”surgery” from other manifolds Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 5 / 21 Transition to abstract smooth manifolds Our starting point is the definition of a topological manifold of dimension n as a topological space Mn in which each point has an open neighborhood homeomorphic to Rn (locally Euclidean property), and which, in addition, is Hausdorff and second countable.
    [Show full text]
  • New Ideas in Algebraic Topology (K-Theory and Its Applications)
    NEW IDEAS IN ALGEBRAIC TOPOLOGY (K-THEORY AND ITS APPLICATIONS) S.P. NOVIKOV Contents Introduction 1 Chapter I. CLASSICAL CONCEPTS AND RESULTS 2 § 1. The concept of a fibre bundle 2 § 2. A general description of fibre bundles 4 § 3. Operations on fibre bundles 5 Chapter II. CHARACTERISTIC CLASSES AND COBORDISMS 5 § 4. The cohomological invariants of a fibre bundle. The characteristic classes of Stiefel–Whitney, Pontryagin and Chern 5 § 5. The characteristic numbers of Pontryagin, Chern and Stiefel. Cobordisms 7 § 6. The Hirzebruch genera. Theorems of Riemann–Roch type 8 § 7. Bott periodicity 9 § 8. Thom complexes 10 § 9. Notes on the invariance of the classes 10 Chapter III. GENERALIZED COHOMOLOGIES. THE K-FUNCTOR AND THE THEORY OF BORDISMS. MICROBUNDLES. 11 § 10. Generalized cohomologies. Examples. 11 Chapter IV. SOME APPLICATIONS OF THE K- AND J-FUNCTORS AND BORDISM THEORIES 16 § 11. Strict application of K-theory 16 § 12. Simultaneous applications of the K- and J-functors. Cohomology operation in K-theory 17 § 13. Bordism theory 19 APPENDIX 21 The Hirzebruch formula and coverings 21 Some pointers to the literature 22 References 22 Introduction In recent years there has been a widespread development in topology of the so-called generalized homology theories. Of these perhaps the most striking are K-theory and the bordism and cobordism theories. The term homology theory is used here, because these objects, often very different in their geometric meaning, Russian Math. Surveys. Volume 20, Number 3, May–June 1965. Translated by I.R. Porteous. 1 2 S.P. NOVIKOV share many of the properties of ordinary homology and cohomology, the analogy being extremely useful in solving concrete problems.
    [Show full text]
  • On the Homology of Configuration Spaces
    TopologyVol. 28, No. I. pp. I II-123, 1989 Lmo-9383 89 53 al+ 00 Pm&d I” Great Bntam fy 1989 Pcrgamon Press plc ON THE HOMOLOGY OF CONFIGURATION SPACES C.-F. B~DIGHEIMER,~ F. COHEN$ and L. TAYLOR: (Receiued 27 July 1987) 1. INTRODUCTION 1.1 BY THE k-th configuration space of a manifold M we understand the space C”(M) of subsets of M with catdinality k. If c’(M) denotes the space of k-tuples of distinct points in M, i.e. Ck(M) = {(z,, . , zk)eMklzi # zj for i #j>, then C’(M) is the orbit space of C’(M) under the permutation action of the symmetric group Ik, c’(M) -+ c’(M)/E, = Ck(M). Configuration spaces appear in various contexts such as algebraic geometry, knot theory, differential topology or homotopy theory. Although intensively studied their homology is unknown except for special cases, see for example [ 1, 2, 7, 8, 9, 12, 13, 14, 18, 261 where different terminology and notation is used. In this article we study the Betti numbers of Ck(M) for homology with coefficients in a field IF. For IF = IF, the rank of H,(C’(M); IF,) is determined by the IF,-Betti numbers of M. the dimension of M, and k. Similar results were obtained by Ldffler-Milgram [ 171 for closed manifolds. For [F = ff, or a field of characteristic zero the corresponding result holds in the case of odd-dimensional manifolds; it is no longer true for even-dimensional manifolds, not even for surfaces, see [S], [6], or 5.5 here.
    [Show full text]
  • Floer Homology, Gauge Theory, and Low-Dimensional Topology
    Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given.
    [Show full text]
  • Tangent Spaces
    CHAPTER 4 Tangent spaces So far, the fact that we dealt with general manifolds M and not just embedded submanifolds of Euclidean spaces did not pose any serious problem: we could make sense of everything right away, by moving (via charts) to opens inside Euclidean spaces. However, when trying to make sense of "tangent vectors", the situation is quite different. Indeed, already intuitively, when trying to draw a "tangent space" to a manifold M, we are tempted to look at M as part of a bigger (Euclidean) space and draw planes that are "tangent" (in the intuitive sense) to M. The fact that the tangent spaces of M are intrinsic to M and not to the way it sits inside a bigger ambient space is remarkable and may seem counterintuitive at first. And it shows that the notion of tangent vector is indeed of a geometric, intrinsic nature. Given our preconception (due to our intuition), the actual general definition may look a bit abstract. For that reason, we describe several different (but equivalent) approaches to tangent m spaces. Each one of them starts with one intuitive perception of tangent vectors on R , and then proceeds by concentrating on the main properties (to be taken as axioms) of the intuitive perception. However, before proceeding, it is useful to clearly state what we expect: • tangent spaces: for M-manifold, p 2 M, have a vector space TpM. And, of course, m~ for embedded submanifolds M ⊂ R , these tangent spaces should be (canonically) isomorphic to the previously defined tangent spaces TpM. • differentials: for smooths map F : M ! N (between manifolds), p 2 M, have an induced linear map (dF )p : TpM ! TF (p)N; m called the differential of F at p.
    [Show full text]
  • Differential Topology from the Point of View of Simple Homotopy Theory
    PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S. BARRY MAZUR Differential topology from the point of view of simple homotopy theory Publications mathématiques de l’I.H.É.S., tome 15 (1963), p. 5-93 <http://www.numdam.org/item?id=PMIHES_1963__15__5_0> © Publications mathématiques de l’I.H.É.S., 1963, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CHAPTER 1 INTRODUCTION It is striking (but not uncharacteristic) that the « first » question asked about higher dimensional geometry is yet unsolved: Is every simply connected 3-manifold homeomorphic with S3 ? (Its original wording is slightly more general than this, and is false: H. Poincare, Analysis Situs (1895).) The difficulty of this problem (in fact of most three-dimensional problems) led mathematicians to veer away from higher dimensional geometric homeomorphism-classificational questions. Except for Whitney's foundational theory of differentiable manifolds and imbed- dings (1936) and Morse's theory of Calculus of Variations in the Large (1934) and, in particular, his analysis of the homology structure of a differentiable manifold by studying critical points of 0°° functions defined on the manifold, there were no classificational results about high dimensional manifolds until the era of Thorn's Cobordisme Theory (1954), the beginning of" modern 9? differential topology.
    [Show full text]
  • Topics in Low Dimensional Computational Topology
    THÈSE DE DOCTORAT présentée et soutenue publiquement le 7 juillet 2014 en vue de l’obtention du grade de Docteur de l’École normale supérieure Spécialité : Informatique par ARNAUD DE MESMAY Topics in Low-Dimensional Computational Topology Membres du jury : M. Frédéric CHAZAL (INRIA Saclay – Île de France ) rapporteur M. Éric COLIN DE VERDIÈRE (ENS Paris et CNRS) directeur de thèse M. Jeff ERICKSON (University of Illinois at Urbana-Champaign) rapporteur M. Cyril GAVOILLE (Université de Bordeaux) examinateur M. Pierre PANSU (Université Paris-Sud) examinateur M. Jorge RAMÍREZ-ALFONSÍN (Université Montpellier 2) examinateur Mme Monique TEILLAUD (INRIA Sophia-Antipolis – Méditerranée) examinatrice Autre rapporteur : M. Eric SEDGWICK (DePaul University) Unité mixte de recherche 8548 : Département d’Informatique de l’École normale supérieure École doctorale 386 : Sciences mathématiques de Paris Centre Numéro identifiant de la thèse : 70791 À Monsieur Lagarde, qui m’a donné l’envie d’apprendre. Résumé La topologie, c’est-à-dire l’étude qualitative des formes et des espaces, constitue un domaine classique des mathématiques depuis plus d’un siècle, mais il n’est apparu que récemment que pour de nombreuses applications, il est important de pouvoir calculer in- formatiquement les propriétés topologiques d’un objet. Ce point de vue est la base de la topologie algorithmique, un domaine très actif à l’interface des mathématiques et de l’in- formatique auquel ce travail se rattache. Les trois contributions de cette thèse concernent le développement et l’étude d’algorithmes topologiques pour calculer des décompositions et des déformations d’objets de basse dimension, comme des graphes, des surfaces ou des 3-variétés.
    [Show full text]
  • MAT 531: Topology&Geometry, II Spring 2011
    MAT 531: Topology&Geometry, II Spring 2011 Solutions to Problem Set 1 Problem 1: Chapter 1, #2 (10pts) Let F be the (standard) differentiable structure on R generated by the one-element collection of ′ charts F0 = {(R, id)}. Let F be the differentiable structure on R generated by the one-element collection of charts ′ 3 F0 ={(R,f)}, where f : R−→R, f(t)= t . Show that F 6=F ′, but the smooth manifolds (R, F) and (R, F ′) are diffeomorphic. ′ ′ (a) We begin by showing that F 6=F . Since id∈F0 ⊂F, it is sufficient to show that id6∈F , i.e. the overlap map id ◦ f −1 : f(R∩R)=R −→ id(R∩R)=R ′ from f ∈F0 to id is not smooth, in the usual (i.e. calculus) sense: id ◦ f −1 R R f id R ∩ R Since f(t)=t3, f −1(s)=s1/3, and id ◦ f −1 : R −→ R, id ◦ f −1(s)= s1/3. This is not a smooth map. (b) Let h : R −→ R be given by h(t)= t1/3. It is immediate that h is a homeomorphism. We will show that the map h:(R, F) −→ (R, F ′) is a diffeomorphism, i.e. the maps h:(R, F) −→ (R, F ′) and h−1 :(R, F ′) −→ (R, F) are smooth. To show that h is smooth, we need to show that it induces smooth maps between the ′ charts in F0 and F0. In this case, there is only one chart in each. So we need to show that the map f ◦ h ◦ id−1 : id h−1(R)∩R =R −→ R is smooth: −1 f ◦ h ◦ id R R id f h (R, F) (R, F ′) Since f ◦ h ◦ id−1(t)= f h(t) = f(t1/3)= t1/3 3 = t, − this map is indeed smooth, and so is h.
    [Show full text]