A Framework for Semantic Enrichment of Sensor Data

Total Page:16

File Type:pdf, Size:1020Kb

A Framework for Semantic Enrichment of Sensor Data Journal of Computing and Information Technology - CIT 20, 2012, 3, 167–173 167 doi:10.2498/cit.1002093 A Framework for Semantic Enrichment of Sensor Data Alexandra Moraru and Dunja Mladenic´ Artificial Intelligence Laboratory, J. Stefan Institute, Ljubljana, Slovenia The increased interest in sensing the environment in networks, which can improve knowledge ex- which we live has led to the deployment of thousands traction from sensor data streams and facilitate of sensors which can measure and report its status. In order to raise the impact that sensor networks can reasoning capabilities. have, improving the usability and accessibility of the Some of the directions adopted for achieving the measurements they provide is an important step. integration of semantic technologies and Sensor The problem addressed in this paper is that of enrichment Web are related to linked data (i.e. linked sen- of sensor descriptions and measurements in order to [ ][ ][ ]) provide richer data, i.e., data containing more meaning. sor data 2 3 4 , or to semantic annotation and We propose a framework for automatizing the process of composition of web services [5]. More general semantically enriching sensor descriptions and measure- directions that can be identified in building the ments with the purpose of improving the usability and Semantic Sensor Web are: accessibility of sensor data. • Automatically annotate and enrich sensor Keywords: semantic web, linked data, sensor web data, by providing semantic metadata about spatiotemporal and thematic properties. • Publish annotated sensor data using shared 1. Introduction vocabularies and standard schemas, in order to facilitate accessibility and enable sensor discovery. Sensors are materials or devices which change • their (conductive) properties according to a phys- Apply reasoning mechanisms on semanti- ical stimulus. These sensors can be attached cally enriched sensor data for solving prob- to more complex devices, called sensor nodes, lems, such as sensor composition, event de- which can have computing and communication tection and network management. capabilities. More and more sensor nodes are The enrichment of data generally refers to adding embedded into physical objects used in every- information, annotation or additional features day life, ranging from pacemakers, transporta- to the data by means of computation or by tion cargos to electrical appliances. Further- pulling information from external sources (e.g., more, communication links can be established the web, databases, etc.). Semantic enrichment between these objects, organized into wired and of sensor data denotes the process of associating wireless networks called sensor networks or semantic tags to initial sensor descriptions and sensor webs in the case when web accessibil- measurements. These tags represent concepts, ity is provided [1]. properties and relationships from an ontology and are used to describe the metadata associ- Using semantic technologies for enriching sen- ( sor descriptions and measurements in scalable ated to sensor data i.e., measurement capabil- ities, observed phenomena, spatial properties, and heterogeneous sensor networks are intended )[ ] as a solution for better interoperability and eas- etc. 6 . ier maintenance. Through semantic descrip- Making sensor data publicly available enables tions it is possible to provide context for sensor the development of new and useful applications. 168 A Framework for Semantic Enrichment of Sensor Data The methods for publishing sensor data can ing thereby advanced query and reasoning. Re- vary from standardized web services, such as source Description Framework attributes (RDFa) OGC’s Sensor Observation Service (SOS) to format is adopted as an annotation language for application specific methods, as the ones used two demonstrative applications that are using by web platforms, such as Pachube1 or Sensor- also several Sensor Web Enablement standards. pedia2. However, such methods require prior Moreover, rule-based reasoning is applied for knowledge of the infrastructures used, while determining specific weather conditions, such publishing semantically annotated sensor data, as freezing or blizzard. The idea of semantic following the linked data principles, would en- annotation is taken further by Wei and Barnaghi able better accessibility. Moreover, when sup- [9] by using Linked Open Data (LOD) resources ported for integration with existing knowledge, for annotation that brings access to knowledge it would increase also the usability of published already represented and eliminates the risks of data. creating redundant data. Reasoning, in general, is the process of produc- A recent trend for making sensor descriptions ing new beliefs from a collection of believed and measurements available on the Web is to propositions. It is strongly related to the field publish them on LOD cloud. The advantages of logic and in the context of ontologies the and challenges of Linked Sensor Data are dis- logical formalisms are provided by a family of cussed by Keler and Janowicz [4] as a solution representation languages known as Description for better sensor data accessibility without intro- Logic (DL)[7]. Describing sensors data using ducing very high complexity. The paper stresses ontology terms enables reasoning mechanisms out the importance of finding the appropriate that can be used to infer new knowledge for links between different datasets from LOD and further enrichment of data or to solve complex proposes a semiautomatic way for generating problems. them. We propose a framework for semantic enrich- Other research in the direction of publishing ment of sensor descriptions and measurements, sensor data as linked data include [2] and [3]. with the purposes of automatizing the process Patni et al. [2] were the first to publish a large of translating existing sensor descriptions into dataset of sensor descriptions and measurements, semantic descriptions and enabling semantic by first representing it in Observations and Mea- querying over sensor measurements. The pri- surements (O&M) standard and then converting mary focus of this work is on the first general it to Resource Description Framework (RDF) direction that we mentioned above, that of anno- format. The linked sensor data is using a sensor tating and enriching sensor data using semantic ontology schema based on the concepts from technologies. Next, we take into consideration O&M and the external links are made only linked data as a method of publishing annotated for the location attribute, using the Geonames sensor data, while the aspects of applying rea- dataset. Barnaghi and Presser [3] propose a soning mechanism on sensor data are briefly platform for publishing linked sensor data fol- mentioned as possible future directions. lowing the four principles proposed by Berners- Lee [10]. The platform offers an interface for publishing linked senor data without requiring 2. Related Work from its user a related technical background. However, the user is requested to manually en- ter relevant keywords that describe the sensors Sheth et al. [8] propose the Semantic Sensor ( ) for obtaining a list of suggested concepts from Web SSW as a solution for the problem of on-line repositories. “too much data and not enough knowledge” that appeared with the rapid development of sensor In our work we propose methods for automa- networks. In their view, the SSW represents tizing the translation of simple sensor descrip- semantically annotated sensor data with spa- tions into semantic sensor descriptions and for tial, temporal and thematic metadata, facilitat- processing sensor measurements for extracting 1 http://www.pachube.com/ 2 http://www.sensorpedia.com/ A Framework for Semantic Enrichment of Sensor Data 169 more meaningful values for the properties ob- • domain layer, defining the domain concepts served. We adopt a strategy of analysis of sensor related to a specific scenario where the sen- measurements before building the semantic rep- sor networks are used (e.g., floods, land- resentations and we use tools capable of dealing slides, oil spills, etc). with large amounts of sensor data. The description languages are used in repre- senting ontologies. These are named ontology 3. Semantic Enrichment of Sensor Data languages and are included in the larger family of formal languages. Ontology languages en- The requirements for building the SSW refer code the domain knowledge and the rules used to knowledge representation, description lan- for reasoning on that knowledge. guages and semantic reasoners. Two of the most common used languages for A fundamental definition of knowledge repre- knowledge representation are Web Ontology sentation is given by Davis et al. [10] as “a sur- Language (OWL) and RDF. Both languages are rogate, a substitute for the thing itself”, seen as a W3C standardized and different versions are de- model. One of the categories of knowledge rep- fined, presenting varying levels of expressivity. resentation appropriate for the model required RDF is a data model based on subject-predicate- is represented by ontologies. object triples and uses XML for specifying syn- A detailed survey of semantic specification of tax. RDF Schema introduces semantics to a sensor networks is provided in [12],where eleven RDF data model; it describes concepts, such as sensor network ontologies are analyzed. The classes, properties of classes and hierarchies of ontologies developed for modeling sensor net- these. However, RDF and RDF Schema sup-
Recommended publications
  • An Ontological Approach for Querying Distributed Heterogeneous Information Systems Under Critical Operational Environments
    An Ontological Approach for Querying Distributed Heterogeneous Information Systems Under Critical Operational Environments Atif Khan, John Doucette, and Robin Cohen David R. Cheriton School of Computer Science, University of Waterloo {a78khan,j3doucet,rcohen}@uwaterloo.ca Abstract. In this paper, we propose an information exchange frame- work suited for operating in time-critical environments where diverse heterogeneous sources may be involved. We utilize a request-response type of communication in order to eliminate the need for local collection of distributed information. We then introduce an ontological knowledge representation with a semantic reasoner that operates on an aggregated view of the knowledge sources to generate a response and a semantic proof. A prototype of the system is demonstrated in two example emer- gency health care scenarios, where there is low tolerance for inaccuracy and the use of diverse sources is required, not all of which may be known to the individual generating the request. The system is contrasted with conventional machine learning approaches and existing work in seman- tic data mining (used to infer knowledge in order to provide responses), and is shown to oer theoretical and practical advantages over these conventional techniques. 1 Introduction As electronic information systems become mainstream, society's dependence upon them for knowledge acquisition and distribution has increased. Over the years, the sophistication of these systems has evolved, making them capable of not only storing large amounts of information in diverse formats, but also of reasoning about complex decisions. The increase in technological capabilities has revolutionized the syntactic interoperability of modern information systems, allowing for a heterogeneous mix of systems to exchange a wide spectrum of data in many dierent formats.
    [Show full text]
  • Semantic Resource Adaptation Based on Generic Ontology Models
    Semantic Resource Adaptation Based on Generic Ontology Models Bujar Raufi, Florije Ismaili, Jaumin Ajdari, Mexhid Ferati and Xhemal Zenuni Faculty of Contemporary Sciences and Technologies, South East European University, Ilindenska 335, Tetovo, Macedonia Keywords: Semantic Web, Linked Open Data, User Adaptive Software Systems, Adaptive Web-based Systems. Abstract: In recent years, a substantial shift from the web of documents to the paradigm of web of data is witnessed. This is seen from the proliferation of massive semantic repositories such as Linked Open Data. Recommending and adapting resources over these repositories however, still represents a research challenge in the sense of relevant data aggregation, link maintenance, provenance and inference. In this paper, we introduce a model of adaptation based on user activities for performing concept adaptation on large repositories built upon extended generic ontology model for Adaptive Web-Based Systems. The architecture of the model is consisted of user data extraction, user knowledgebase, ontology retrieval and application and a semantic reasoner. All these modules are envisioned to perform specific tasks in order to deliver efficient and relevant resources to the users based on their browsing preferences. Specific challenges in relation to the proposed model are also discussed. 1 INTRODUCTION edge. While PIR is mostly query based, AH is mainly browsing oriented. The expansion of the web in the recent years, espe- An ongoing challenge is the semantic retrieval cially with the proliferation of new paradigms such and adaptation of resources over a huge repositories as semantic web, linked semantic data and the so- such as Linked Open Data (LOD) as well as the fa- cial web phenomena has rendered it a place where cilitation of the collaborative knowledge construction information is not simply posted, searched, browsed by assisting in discovering new things (Bizer, 2009).
    [Show full text]
  • INPUT CONTRIBUTION Group Name:* MAS WG Title:* Semantic Web Best Practices
    Semantic Web best practices INPUT CONTRIBUTION Group Name:* MAS WG Title:* Semantic Web best practices. Semantic Web Guidelines for domain knowledge interoperability to build the Semantic Web of Things Source:* Eurecom, Amelie Gyrard, Christian Bonnet Contact: Amelie Gyrard, [email protected], Christian Bonnet, [email protected] Date:* 2014-04-07 Abstract:* This contribution proposes to describe the semantic web best practices, semantic web tools, and existing domain ontologies for uses cases (smart home and health). Agenda Item:* Tbd Work item(s): MAS Document(s) Study of Existing Abstraction & Semantic Capability Enablement Impacted* Technologies for consideration by oneM2M. Intended purpose of Decision document:* Discussion Information Other <specify> Decision requested or This is an informative paper proposed by the French Eurecom institute as a recommendation:* guideline to MAS contributors on Semantic web best practices, as it was suggested during MAS#9.3 call. Amélie Gyrard is a new member in oneM2M (via ETSI PT1). oneM2M IPR STATEMENT Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by all provisions of IPR policy of the admitting Partner Type 1 and permission that all communications and statements, oral or written, or other information disclosed or presented, and any translation or derivative thereof, may without compensation, and to the extent such participant or attendee may legally and freely grant such copyright rights, be distributed, published, and posted on oneM2M’s web site, in whole or in part, on a non- exclusive basis by oneM2M or oneM2M Partners Type 1 or their licensees or assignees, or as oneM2M SC directs.
    [Show full text]
  • Enabling Scalable Semantic Reasoning for Mobile Services
    IGI PUBLISHING ITJ 5113 701Int’l E. JournalChocolate on Avenue, Semantic Hershey Web & PA Information 17033-1240, Systems, USA 5(2), 91-116, April-June 2009 91 Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.igi-global.com This paper appears in the publication, International Journal on Semantic Web & Information Systems, Volume 5, Issue 2 edited by Amit Sheth © 2009, IGI Global Enabling Scalable Semantic Reasoning for Mobile Services Luke Albert Steller, Monash University, Australia Shonali Krishnaswamy, Monash University, Australia Mohamed Methat Gaber, Monash University, Australia ABSTRACT With the emergence of high-end smart phones/PDAs there is a growing opportunity to enrich mobile/pervasive services with semantic reasoning. This article presents novel strategies for optimising semantic reasoning for re- alising semantic applications and services on mobile devices. We have developed the mTableaux algorithm which optimises the reasoning process to facilitate service selection. We present comparative experimental results which show that mTableaux improves the performance and scalability of semantic reasoning for mobile devices. [Article copies are available for purchase from InfoSci-on-Demand.com] Keywords: Optimised Semantic Reasoning; Pervasive Service Discovery; Scalable Semantic Match- ing INTRODUCTION edge is the resource intensive nature of reason- ing. Currently available semantic reasoners are The semantic web offers new opportunities to suitable for deployment on high-end desktop represent knowledge based on meaning rather or service based infrastructure. However, with than syntax. Semantically described knowledge the emergence of high-end smart phones / can be used to infer new knowledge by reasoners PDAs the mobile environment is increasingly in an automated fashion.
    [Show full text]
  • CTHIOT-1010.Pdf
    Making Sense of Data with Machine Reasoning Samer Salam Principal Engineer, Cisco CHTIOT-1010 Cisco Spark Questions? Use Cisco Spark to communicate with the speaker after the session How 1. Find this session in the Cisco Live Mobile App 2. Click “Join the Discussion” 3. Install Spark or go directly to the space 4. Enter messages/questions in the space Cisco Spark spaces will be cs.co/ciscolivebot#CHTIOT-1010 available until July 3, 2017. © 2017 Cisco and/or its affiliates. All rights reserved. Cisco Public Agenda • Introduction • Climbing the Data Chain: Machine Reasoning Primer • Use-Cases • Conclusion Introduction Introduction Challenges in Network & IT Operations Over 50% of network outages from human factors Orchestration ERRORS Virtualization driving an explosion in data to be managed Controller / NMS / EMS Service activation too slow with humans in the loop Smart “things” connecting to network providing myriad of new data Paradigm shift: manage system at operator desired level of abstraction CLI API GUI Easy Button CHTIOT-1010 © 2017 Cisco and/or its affiliates. All rights reserved. Cisco Public 6 SDN, Meet IoT Network Business APP Applications … Applications Machine Reasoning Machine Learning Device Data Abstraction Base Service Controller APIs Application Communication & Models Functions Layer Services Laptop TP Manager Viewpoint Switch IoT SDN Viewpoint SDN Network Router Things Devices IP Phone Printer Call Manager Firewall Web Server Server Farm WLC Telepresence CHTIOT-1010 © 2017 Cisco and/or its affiliates. All rights reserved. Cisco Public 7 Making Sense of Data Data Chain for Machine Reasoning Getting Machine Answers Intelligence Building the Knowledge Enriching with Context Network Data + Understanding the Data Endpoint Meta-Data + Collecting the Application Data Meta-Data [DIKW Pyramid] CHTIOT-1010 © 2017 Cisco and/or its affiliates.
    [Show full text]
  • Semantic BIM Reasoner for the Verification of IFC Models M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Semantic BIM Reasoner for the verification of IFC Models M. Fahad, Bruno Fies, Nicolas Bus To cite this version: M. Fahad, Bruno Fies, Nicolas Bus. Semantic BIM Reasoner for the verification of IFC Models. 12th European Conference on Product and Process Modelling (ECPPM 2018), Sep 2018, Copenhagen, Denmark. 10.1201/9780429506215. hal-02270827 HAL Id: hal-02270827 https://hal-cstb.archives-ouvertes.fr/hal-02270827 Submitted on 26 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Paper published in: Proceedings of the 12th European conference on product and process modelling (ECPPM 2018), Copenhagen, Denmark, September 12-14, 2018, eWork and eBusiness in Architecture, Engineering and Construction - Jan Karlshoj, Raimar Scherer (Eds) Taylor & Francis Group, [ISBN 9781138584136] Semantic BIM Reasoner for the verification of IFC Models M. Fahad Experis IT, 1240 Route des Dolines, 06560 Valbonne, France N. Bus & B. Fies CSTB - Centre Scientifique et Technique du Bâtiment, 290 Route de Lucioles, 06560 Valbonne, France ABSTRACT: Recent years have witnessed the development of various techniques and tools for the building code-compliance of IFC models.
    [Show full text]
  • Semantic Web & Relative Analysis of Inference Engines
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 2 Issue 10, October - 2013 Semantic Web & Relative Analysis of Inference Engines Ravi L Verma 1, Prof. Arjun Rajput 2 1Information Technology, Technocrats Institute of Technology 2Computer Engineering, Technocrats Institute of Technology, Excellence Bhopal, MP Abstract - Semantic web is an enhancement to the reasoners to make logical conclusion based on the current web that will provide an easier path to find, framework. Use of inference engine in semantic web combine, share & reuse the information. It brings an allows the applications to investigate why a particular idea of having data to be defined & linked in a way that solution has been reached, i.e. semantic applications can can be used for more efficient discovery, integration, provide proof of the derived conclusion. This paper is a automation & reuse across many applications.Today’s study work & survey, which demonstrates a comparison web is purely based on documents that are written in of different type of inference engines in context of HTML, used for coding a body of text with interactive semantic web. It will help to distinguish among different forms. Semantic web provides a common language for inference engines which may be helpful to judge the understanding how data related to the real world various proposed prototype systems with different views objects, allowing a person or machine to start with in on what an inference engine for the semantic web one database and then move through an unending set of should do. databases that are not connected by wires but by being about the same thing.
    [Show full text]
  • Exploring Semantic Hierarchies to Improve Resolution Theorem Proving on Ontologies
    The University of Maine DigitalCommons@UMaine Honors College Spring 2019 Exploring Semantic Hierarchies to Improve Resolution Theorem Proving on Ontologies Stanley Small University of Maine Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors Part of the Computer Sciences Commons Recommended Citation Small, Stanley, "Exploring Semantic Hierarchies to Improve Resolution Theorem Proving on Ontologies" (2019). Honors College. 538. https://digitalcommons.library.umaine.edu/honors/538 This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. EXPLORING SEMANTIC HIERARCHIES TO IMPROVE RESOLUTION THEOREM PROVING ON ONTOLOGIES by Stanley C. Small A Thesis Submitted in Partial Fulfillment of the Requirements for a Degree with Honors (Computer Science) The Honors College University of Maine May 2019 Advisory Committee: Dr. Torsten Hahmann, Assistant Professor1, Advisor Dr. Mark Brewer, Professor of Political Science Dr. Max Egenhofer, Professor1 Dr. Sepideh Ghanavati, Assistant Professor1 Dr. Roy Turner, Associate Professor1 1School of Computing and Information Science ABSTRACT A resolution-theorem-prover (RTP) evaluates the validity (truthfulness) of conjectures against a set of axioms in a knowledge base. When given a conjecture, an RTP attempts to resolve the negated conjecture with axioms from the knowledge base until the prover finds a contradiction. If the RTP finds a contradiction between the axioms and a negated conjecture, the conjecture is proven. The order in which the axioms within the knowledge-base are evaluated significantly impacts the runtime of the program, as the search-space increases exponentially with the number of axioms.
    [Show full text]
  • Improving Data Identification and Tagging for More Effective Decision Making in Agriculture Pascal Neveu, Romain David, Clement Jonquet
    Improving data identification and tagging for more effective decision making in agriculture Pascal Neveu, Romain David, Clement Jonquet To cite this version: Pascal Neveu, Romain David, Clement Jonquet. Improving data identification and tagging for more effective decision making in agriculture. Leisa Armstrong. Improving Data Management and Decision Support Systems in Agriculture, 85, Burleigh Dodds Science Publishing, 2020, Series in Agricultural Science, 978-1-78676-340-2. hal-02164149 HAL Id: hal-02164149 https://hal.archives-ouvertes.fr/hal-02164149 Submitted on 11 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Improving data identification and tagging for more effective decision making in agriculture Pascal Neveu and Romain David, INRA, France and Clement Jonquet, LIRMM, France Abstract Data integration, data analytics and decision support methods can help increase agriculture challenges such as climate change adaptation or food security. In this context, smart data acquisition systems, interoperable information systems and frameworks for data structuring are required. In this chapter we describe methods for data identification and provide some recommendations. We also describe how to enrich data with semantics and a way to tag data with the relevant ontology.
    [Show full text]
  • Data Standards and Guidelines 05/11/2020 Online Event
    Artificial Intelligence and Augmented Intelligence for Automated Investigations for Scientific Discovery The Physical Sciences Data-Science Service (PSDS) Patterns Failed it to Nailed it: Data Standards and Guidelines 05/11/2020 Online Event Dr Samantha Kanza & Dr Nicola Knight University of Southampton 10/12/2020 AI3SD-Event-Series:Report-20 Failed it to Nailed it: Data Standards and Guidelines AI3SD-Event-Series:Report-20 10/12/2020 DOI: 10.5258/SOTON/P0033 Published by University of Southampton Network: Artificial Intelligence and Augmented Intelligence for Automated Invest- igations for Scientific Discovery This Network+ is EPSRC Funded under Grant No: EP/S000356/1 Principal Investigator: Professor Jeremy Frey Co-Investigator: Professor Mahesan Niranjan Network+ Coordinator: Dr Samantha Kanza An EPSRC National Research Facility to facilitate Data Science in the Physical Sciences: The Physical Sciences Data science Service (PSDS) This Facility is EPSRC Funded under Grant No: EP/S020357/1 Principal Investigator: Professor Simon Coles Co-Investigators: Dr Brian Matthews, Dr Juan Bicarregui & Professor Jeremy Frey Contents 1 Event Details1 2 Event Summary and Format1 3 Event Background1 4 Talks 2 4.1 Metadata........................................2 4.1.1 Introduction to Metadata...........................2 4.1.2 Introduction to FAIR.............................2 4.1.3 Data generation, data standards, and metadata capture in drug discovery - Dr Martin-Immanuel Bittner (Arctoris)..................2 4.2 Open Data.......................................8 4.2.1 Introduction to Open Data..........................8 4.2.2 Giving your open data the best chance to realise its potential - Mr Chris Gutteridge (University of Southampton)...................8 4.3 Linked Data....................................... 13 4.3.1 Introduction to Semantic Web Technologies................
    [Show full text]
  • Benchmarking the Applicability of Ontology in Geographic Object-Based Image Analysis
    International Journal of Geo-Information Article Benchmarking the Applicability of Ontology in Geographic Object-Based Image Analysis Sachit Rajbhandari 1,* ID , Jagannath Aryal 1 ID , Jon Osborn 1, Rob Musk 2 and Arko Lucieer 1 ID 1 Discipline of Geography and Spatial Sciences, University of Tasmania, Private Bag 76, Hobart, TAS 7001, Australia; [email protected] (J.A.); [email protected] (J.O.); [email protected] (A.L.) 2 Sustainable Timber Tasmania, 99 Bathurst Street, Hobart, TAS 7000, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-415-692-370 Received: 19 September 2017; Accepted: 22 November 2017; Published: 28 November 2017 Abstract: In Geographic Object-based Image Analysis (GEOBIA), identification of image objects is normally achieved using rule-based classification techniques supported by appropriate domain knowledge. However, GEOBIA currently lacks a systematic method to formalise the domain knowledge required for image object identification. Ontology provides a representation vocabulary for characterising domain-specific classes. This study proposes an ontological framework that conceptualises domain knowledge in order to support the application of rule-based classifications. The proposed ontological framework is tested with a landslide case study. The Web Ontology Language (OWL) is used to construct an ontology in the landslide domain. The segmented image objects with extracted features are incorporated into the ontology as instances. The classification rules are written in Semantic Web Rule Language (SWRL) and executed using a semantic reasoner to assign instances to appropriate landslide classes. Machine learning techniques are used to predict new threshold values for feature attributes in the rules.
    [Show full text]
  • Application of Semantic Web Technologies for (Semi-)Automatic Metadata Generation for Multimedia Data
    Application of Semantic Web Technologies for (Semi-)Automatic Metadata Generation for Multimedia Data Ruben Verborgh Promotor: prof. dr. ir. Rik Van de Walle Begeleiders: dr. Davy Van Deursen en Erik Mannens Masterproef ingediend tot het behalen van de academische graad van Master in de ingenieurswetenschappen: computerwetenschappen Vakgroep Elektronica en informatiesystemen Voorzitter: prof. dr. ir. Jan Van Campenhout Faculteit Ingenieurswetenschappen Academiejaar 2009–2010 Word of Thanks Firstly, I would like to thank Davy Van Deursen for devising the subject of this dissertation and for the highly professional way in which he supervised my work. He allowed me to give my creativity free rein while providing excellent support on crucial decisions. I would like to express my sincere appreciation to Professor Van de Walle for helping me outline my academic career, in which this dissertation is a milestone. Furthermore, I would like to thank Erik Mannens for initiating me into the Semantic Web. My gratitude goes out to Jos De Roo for detailing the use of Semantic Web technologies at Agfa-Gevaert, his helpful e-mails and the excellent Euler software. His colleague Giovanni Mels showed me an operational application of SPARQL services. Thanks to Anna Hristoskova for the insights into OWL-S composition and for lending me her composer program. Joshua Tauberer did a magnificent job with the SemWeb library, which he allowed me to extend. Last but not least, a heartfelt thank you to everyone that encouraged me during five intensive years of study, in particular my parents and Eddy Van Steenkiste. Special thanks to my mother for sustaining a pleasant study environment and to my father, who introduced me to computers as early as in 1993, when most things I write about were still in their infancy.
    [Show full text]