The E I Abdus Salam International 0) Centre for Theoretical Physics

Total Page:16

File Type:pdf, Size:1020Kb

The E I Abdus Salam International 0) Centre for Theoretical Physics the E I abdus salam .nited navon edumdonal Sent XA0404084 a n'd'cult-l international ."Pn-jon 0) centre international ato.ic energy agency for theoretical physics SCALAR POTENTIAL AND DYONIC STRINGS IN 6D GAUGED SUPERGRAVITI r S. Randjbar-Daemi and E. Sezgin Available at: http: //www. ictp. trieste. it/-pub- of f IC/2004/6 MIFP-03-25 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS SCALAR POTENTIAL AND DI.rONIC STRINGS IN 6D GAUGED SUPERI-TRAVITY S. Randjbar-Daemi The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy and E. Sezgin George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A&M University, College Station, TX 77843-4242, USA. Abstract .In this paper we first give a simple parametrization of the scalar coset manifold of the only known anomaly free chiraJ gauged supergravity in six dimensions in the absence of linear multiplets, namely gauged minimal supergravity coupled to a tensor multiplet, E6 x E7 X U(1)R Yang-Mills multiplets and suitable number of hypermultiplets. We then construct the potential for the scalars and show that it has a unique minimum at the origin. We also construct a new BPS dyonic string solution in which U(1)R X U(1) gauge fields, in addition to the metric, dilaton and the 2-form potential, assume nontrivial configurations in any U(1)R gauged 6D minimaJ supergravity coupled to a tensor multiplet with gauge symmetry G Q U(1). The solution Preserves 14 of the 6D supersymmetries and can be tivially embedded in the anomaly free model, in which case the U(1) activated in our solution resides in E7. MIRAMARE - TRIESTE February 2004 1 Introduction The most symmetric ground state solutions in all of the higher dimensional supergravity theories, as the low energy limit of the superstring theories or the M theory, are the flat 10 dimensional manifolds Rd x f lat torus) and the pp waves. Such backgrounds have 32 real supersymmetries and are not a suitable starting point for building realistic phenomenology. The Calabi Yau compactifications have less supersymmetries but also a lesser degree of uniqueness. There exist many of them with a lot of moduli with unknown potentials. In the gauged minimal supergravity theories in D = 6 this is not the case. In fact in these theories the 6-dimensional flat spaces do not solve the supergravity equations. The most symmetric solution is R4 X S2 [1] which has been shown recently to be the unique maximally symmetric solution of such models 2]. This result has been obtained essentially in the minimal version of such models for which the gauge group is simply U(1), i.e. the D = 6 supersymmetric Einstein Maxwell theory, known as the Salam-Sezgin model in the literature [1]. The model by itself is anomalous but it can be embedded into an anomaly-free model 3] with suitable Yang-Mills and hypermatter sector couplings 4, 5]. The uniqueness of the supersymmetric R4 X S2 solution should be contrasted with the plethora of solutions of Calabi Yau type or the ones with exceptional holonomy groups such as G in higher dimensional low energy string theories. For this reason we consider this property as very interesting and believe that such models deserve further study. This is the aim of the present note. This paper contains two results. First, after giving the multiplet structure of general gauged N = 1 supergravity models in D = 6 we shall concentrate on the hypermatter sector. This sector contains the scalars and fermions which can be in anomaly free representation of the Yang-Mills gauge groups and therefore axe of primary importance in any phenomenological application of such models. So fax we know of only one anomaly free gauged minimal supergravity in D = 6 3] in the absence of linear multiplets 1. For this reason we shall construct in detail the scalar manifold and the potential for the scalars in this particular model. However, our simple parametrization of the quaternionic scalar manifold and the construction of the scalar potential should be applicable in other cases too. The first result of this construction is the observation that the scalar potential admits a unique minimum at the origin. There are no moduli. As we shall see this trivially implies the uniqueness of the R 4 X S2 solution in the anomaly free full fledged model. The second main point of the paper is the construction of new dyonic string solutions. These 'The linear multiplet is a hypermultipIet in which one of the four scalars is dualized to a 4-form potential. In this case, an additional Green-Schwarz counterterm is possible for anomaly cancellation 6], and this may lead to new anomaly free models. 2 :solutions have a rather nontrivial structure and leave 14 of the D = 6 supersymmetries unbro- ken. The search for such solutions is motivated by the general philosophy that they can help us -to study string and field theories from a non-perturbative, semiclassical point of view. 'The choice of the model to be considered here is dictated by anomaly cancellation. It belongs to -a general class of (1,O) supergravity models constructed some time ago 4, 5]. It is based on a six- ,dimensional (1, 0) supergravity theory coupled to a tensor, Yang-Mills and hyper multiplets 3]. At present this is the only known gauged (1, 0) anomaly free supergravity in D = 6 in the -absence of linear multiplets. Its string or M-theory origin is still not quite well understood, although some progress has been made in connecting a subset of the model to M-theory in 11- -dimensions 7], and Horava-Witten type construction in 7-dimensions [8]. Note, however, that in the latter case the R-symmetry group is not gauged i the resulting D = 6 supergravity. Recently, our model has attracted interest in connection with a possibility of obtaining a small cosmological constant in D = 4 9]. These ideas make use of an extension of the old magnetic monopole solution [10] to a situation in which 3-branes are distributed over a transverse S2 [11, 12]. In order for the mechanism to work it is required that the supersymmetry breaking on the brane does not propagate to the bulk. This is the weak point of the scheme for a finite volume 2-manifold, as has been argued in a very general context in 13]. We hope that some other variations of the idea will make a dent on this very important unsolved problem. All the supersymmetric solutions of our model known so far, whether compactifying solutions with a direct product geometry or more involved stringy solutions, use only the UMR gauge fields as part of their ansatz. It seems quite difficult to excite the gauge fields in the non-Abelian E6 x E7 component of the gauge group in search of a supersynnnetric solution. In this paper we report on one such solution in which the gauge field in a U(1) subgroup of E7, in addition to that of the U(1)R factor in the gauge group, is also nonzero. The configuration is quite involved and does not have a 4-dimensional Poincar6 invariance. It has a natural dyonic stringy interpretation similar to the one in [14]. In fact it reduees to the solution in [141 upon setting the E7 gauge field to zero. 'Thus, in our dyonic string solution, in addition to the teELsor fields and the gauge field of U(1)R, a U(1) gauge field embedded in E7 as well as the dilaton field are also active. The only fields which do not participate in the solution are the E6 gauge fields and the hyperscalaxs. The composition of the paper is as follows: In section 2 we give a detailed description of the model with explicit form for the potential in the hyperscalars. In this section we also give the field equations and the supersymmetry transformation rules. In section 3 we show that the -absolute minimum of the scalar potential is at 0 = 0. This fact excludes a solution of the form M4 x K2 with a nonzero vev for any of the gauge fields in E6 x E7 and with any unbroken susy. [n section 3 we discuss the ansatz for the dyonic string with a nonzero vev for the gauge fields 3 in U(1)R x E7 as well as the tensor fields. In section 4 we verify that our ansatz satisfies the field equations and leaves 14 of the original supersymmetries, i.e. one complex susy in 1 + 1 dimensions, unbroken. In the limit of a vanishing E7 field it reduces to the solution found earlier in 14] where only U(1)R field was activated. In this section we also show that our solution has a horizon at = while at r = oo it approaches a cone over a squashed S3 X Minkowski2- The dilaton diverges in both limits. Section contains our conclusions. We give the anomaly polynomial in an Appendix correcting the misprints of 3]. 2 The Model 2.1 Field Content and the Scalar Manifold The six-dimensional gauged supergravity model we shall study involves the following N (1, 0) supermultiplets 2 graviton er oA B- M MN tensor(dilaton) W XA BMN hypermatter V)' YangMills Am AA+ where coordinate basis and tangent space indices are denoted by M, N,... and r, s,..., respec- tively. The antisymmetric tensor potentials, B4N1 give rise to selfdual and anti-selfdual 3-form field strengths.
Recommended publications
  • Nonextremal Black Holes, Subtracted Geometry and Holography
    Nonextremal Black Holes, Subtracted Geometry and Holography Mirjam Cvetič Einstein’s theory of gravity predicts Black Holes Due to it’s high mass density the space-time curved so much that objects traveling toward it reach a point of no return à Horizon (& eventually reaches space-time singularity) Black holes `behave’ as thermodynamic objects w/ Bekenstein-Hawking entropy: S=¼ Ahorizon Ahorizon= area of the black hole horizon (w/ ħ=c=GN=1) Horizon-point of no return Space-time singularity Key Issue in Black Hole Physics: How to relate Bekenstein-Hawking - thermodynamic entropy: Sthermo=¼ Ahor (Ahor= area of the black hole horizon; c=ħ=1;GN=1) to Statistical entropy: Sstat = log Ni ? Where do black hole microscopic degrees Ni come from? Horizon Space-time singularity Black Holes in String Theory The role of D-branes D(irichlet)-branes Polchinski’96 boundaries of open strings with charges at their ends closed strings I. Implications for particle physics (charged excitations)-no time II. Implications for Black Holes Dual D-brane interpretation: extended massive gravitational objects D-branes in four-dimensions: part of their world-volume on compactified space & part in internal compactified space Cartoon of (toroidal) compactification; D-branes as gravitational objects Thermodynamic BH Entropy & wrap cycles in internal space: Statistical field theory interpretation intersecting D-branes in compact dimensions & charged black holes in four dim. space-time (w/ each D-brane sourcing charge Q ) i D-branes as a boundary of strings: microscopic degrees Ni are string excitations on intersecting D-branes w/ S = log Ni Strominger & Vafa ’96 the same! Prototype: four-charge black hole w/ S= π√Q1Q2P3P4 M.C.
    [Show full text]
  • Supergravity and Its Legacy Prelude and the Play
    Supergravity and its Legacy Prelude and the Play Sergio FERRARA (CERN – LNF INFN) Celebrating Supegravity at 40 CERN, June 24 2016 S. Ferrara - CERN, 2016 1 Supergravity as carved on the Iconic Wall at the «Simons Center for Geometry and Physics», Stony Brook S. Ferrara - CERN, 2016 2 Prelude S. Ferrara - CERN, 2016 3 In the early 1970s I was a staff member at the Frascati National Laboratories of CNEN (then the National Nuclear Energy Agency), and with my colleagues Aurelio Grillo and Giorgio Parisi we were investigating, under the leadership of Raoul Gatto (later Professor at the University of Geneva) the consequences of the application of “Conformal Invariance” to Quantum Field Theory (QFT), stimulated by the ongoing Experiments at SLAC where an unexpected Bjorken Scaling was observed in inclusive electron- proton Cross sections, which was suggesting a larger space-time symmetry in processes dominated by short distance physics. In parallel with Alexander Polyakov, at the time in the Soviet Union, we formulated in those days Conformal invariant Operator Product Expansions (OPE) and proposed the “Conformal Bootstrap” as a non-perturbative approach to QFT. S. Ferrara - CERN, 2016 4 Conformal Invariance, OPEs and Conformal Bootstrap has become again a fashionable subject in recent times, because of the introduction of efficient new methods to solve the “Bootstrap Equations” (Riccardo Rattazzi, Slava Rychkov, Erik Tonni, Alessandro Vichi), and mostly because of their role in the AdS/CFT correspondence. The latter, pioneered by Juan Maldacena, Edward Witten, Steve Gubser, Igor Klebanov and Polyakov, can be regarded, to some extent, as one of the great legacies of higher dimensional Supergravity.
    [Show full text]
  • S-Duality, the 4D Superconformal Index and 2D Topological QFT
    Review of superconformal index = 2 : A generalized quivers = 2: A generalized quivers = 4 index = 1 N 1 N 2 N N S-duality, the 4d Superconformal Index and 2d Topological QFT Leonardo Rastelli with A. Gadde, E. Pomoni, S. Razamat and W. Yan arXiv:0910.2225,arXiv:1003.4244, and in progress Yang Institute for Theoretical Physics, Stony Brook Rutgers, November 9 2010 Review of superconformal index = 2 : A generalized quivers = 2: A generalized quivers = 4 index = 1 N 1 N 2 N N A new paradigm for 4d =2 susy gauge theories N (Gaiotto, . ) Compactification of the (2, 0) 6d theory on a 2d surface Σ, with punctures. = =2 superconformal⇒ theories in four dimensions. N Review of superconformal index = 2 : A generalized quivers = 2: A generalized quivers = 4 index = 1 N 1 N 2 N N A new paradigm for 4d =2 susy gauge theories N (Gaiotto, . ) Compactification of the (2, 0) 6d theory on a 2d surface Σ, with punctures. = =2 superconformal⇒ theories in four dimensions. N Space of complex structures Σ = parameter space of the 4d • theory. Moore-Seiberg groupoid of Σ = (generalized) 4d S-duality • Vast generalization of “ =4 S-duality as modular group of T 2”. N Review of superconformal index = 2 : A generalized quivers = 2: A generalized quivers = 4 index = 1 N 1 N 2 N N A new paradigm for 4d =2 susy gauge theories N (Gaiotto, . ) Compactification of the (2, 0) 6d theory on a 2d surface Σ, with punctures. = =2 superconformal⇒ theories in four dimensions. N Space of complex structures Σ = parameter space of the 4d • theory.
    [Show full text]
  • N = 2 Dualities and 2D TQFT Space of Complex Structures Σ = Parameter Space of the 4D Theory
    Short review of superconformal index 2d TQFT and orthogonal polynomials Results and Applications = 2 Dualities and 2d TQFT N Abhijit Gadde with L. Rastelli, S. Razamat and W. Yan arXiv:0910.2225 arXiv:1003.4244 arXiv:1104.3850 arXiv:1110:3740 ... California Institute of Technology Indian Israeli String Meeting 2012 Abhijit Gadde N = 2 Dualities and 2d TQFT Space of complex structures Σ = parameter space of the 4d theory. Mapping class group of Σ = (generalized) 4d S-duality Punctures: SU(2) ! SU(N) = Flavor symmetry: Commutant We will focus on "maximal" puncture: with SU(N) flavor symmetry Sphere with 3 punctures = Theories without parameters Free hypermultiplets Strongly coupled fixed points Vast generalization of “N = 4 S-duality as modular group of T 2”. 6=4+2: beautiful and unexpected 4d/2d connections. For ex., Correlators of Liouville/Toda on Σ compute the 4d partition functions (on S4) Short review of superconformal index 2d TQFT and orthogonal polynomials Results and Applications A new paradigm for 4d = 2 SCFTs [Gaiotto, . ] N Compactify of the 6d (2; 0) AN−1 theory on a 2d surface Σ, with punctures. =)N = 2 superconformal theories in four dimensions. Abhijit Gadde N = 2 Dualities and 2d TQFT We will focus on "maximal" puncture: with SU(N) flavor symmetry Sphere with 3 punctures = Theories without parameters Free hypermultiplets Strongly coupled fixed points Vast generalization of “N = 4 S-duality as modular group of T 2”. 6=4+2: beautiful and unexpected 4d/2d connections. For ex., Correlators of Liouville/Toda on Σ compute the 4d partition functions (on S4) Short review of superconformal index 2d TQFT and orthogonal polynomials Results and Applications A new paradigm for 4d = 2 SCFTs [Gaiotto, .
    [Show full text]
  • Classification of Holomorphic Framed Vertex Operator Algebras of Central Charge 24
    Classification of holomorphic framed vertex operator algebras of central charge 24 Ching Hung Lam, Hiroki Shimakura American Journal of Mathematics, Volume 137, Number 1, February 2015, pp. 111-137 (Article) Published by Johns Hopkins University Press DOI: https://doi.org/10.1353/ajm.2015.0001 For additional information about this article https://muse.jhu.edu/article/570114/summary Access provided by Tsinghua University Library (22 Nov 2018 10:39 GMT) CLASSIFICATION OF HOLOMORPHIC FRAMED VERTEX OPERATOR ALGEBRAS OF CENTRAL CHARGE 24 By CHING HUNG LAM and HIROKI SHIMAKURA Abstract. This article is a continuation of our work on the classification of holomorphic framed vertex operator algebras of central charge 24. We show that a holomorphic framed VOA of central charge 24 is uniquely determined by the Lie algebra structure of its weight one subspace. As a consequence, we completely classify all holomorphic framed vertex operator algebras of central charge 24 and show that there exist exactly 56 such vertex operator algebras, up to isomorphism. 1. Introduction. The classification of holomorphic vertex operator alge- bras (VOAs) of central charge 24 is one of the fundamental problems in vertex operator algebras and mathematical physics. In 1993 Schellekens [Sc93] obtained a partial classification by determining possible Lie algebra structures for the weight one subspaces of holomorphic VOAs of central charge 24. There are 71 cases in his list but only 39 of the 71 cases were known explicitly at that time. It is also an open question if the Lie algebra structure of the weight one subspace will determine the VOA structure uniquely when the central charge is 24.
    [Show full text]
  • Supersymmetric Sigma Models with Torsion
    R/95/15 May, 1995 Elliptic monop oles and (4,0)-sup ersymmetric sigma mo dels with torsion G. Papadopoulos D.A.M.T.P University of Cambridge Silver Street Cambridge CB3 9EW ABSTRACT We explicitly construct the metric and torsion couplings of two-dimensional processed by the SLAC/DESY Libraries on 21 May 1995. 〉 (4,0)-sup ersymmetric sigma mo dels with target space a four-manifold that are invariant under a U (1) symmetry generated by a tri-holomorphic Killing vector eld PostScript that leaves in addition the torsion invariant. We show that the metric couplings arise from magnetic monop oles on the three-sphere which is the space of orbits of the group action generated by the tri-holomorphic Killing vector eld on the sigma mo del target manifold. We also examine the global structure of a sub class of these metrics that are in addition SO(3)-invariant and nd that the only non-singular one, for mo dels with non-zero torsion, is that of SU (2) U (1) WZW mo del. HEP-TH-9505119 1. Intro duction It has b een known for sometime that there is an interplaybetween the num- b er of sup ersymmetries which leave the action of a sigma mo del invariant and the geometry of its target space. More recently, sigma mo dels with symmetries gener- ated by Killing vector elds are a fertile area for investigation of the prop erties of T-duality. The couplings of two-dimensional sigma mo dels are the metric g and a lo cally de ned two-form b on the sigma mo del manifold M.
    [Show full text]
  • Supersymmetric Nonlinear Sigma Models
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server OU-HET 348 TIT/HET-448 hep-th/0006025 June 2000 Supersymmetric Nonlinear Sigma Models a b Kiyoshi Higashijima ∗ and Muneto Nitta † aDepartment of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan bDepartment of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan Abstract Supersymmetric nonlinear sigma models are formulated as gauge theo- ries. Auxiliary chiral superfields are introduced to impose supersymmetric constraints of F-type. Target manifolds defined by F-type constraints are al- ways non-compact. In order to obtain nonlinear sigma models on compact manifolds, we have to introduce gauge symmetry to eliminate the degrees of freedom in non-compact directions. All supersymmetric nonlinear sigma models defined on the hermitian symmetric spaces are successfully formulated as gauge theories. 1Talk given at the International Symposium on \Quantum Chromodynamics and Color Con- finement" (Confinement 2000) , 7-10 March 2000, RCNP, Osaka, Japan. ∗e-mail: [email protected]. †e-mail: [email protected] 1 Introduction Two dimensional (2D) nonlinear sigma models and four dimensional non-abelian gauge theories have several similarities. Both of them enjoy the property of the asymptotic freedom. They are both massless in the perturbation theory, whereas they acquire the mass gap or the string tension in the non-perturbative treatment. Although it is difficult to solve QCD in analytical way, 2D nonlinear sigma models can be solved by the large N expansion and helps us to understand various non- perturbative phenomena in four dimensional gauge theories.
    [Show full text]
  • S-Duality-And-M5-Mit
    N . More on = 2 S-dualities and M5-branes .. Yuji Tachikawa based on works in collaboration with L. F. Alday, B. Wecht, F. Benini, S. Benvenuti, D. Gaiotto November 2009 Yuji Tachikawa (IAS) November 2009 1 / 47 Contents 1. Introduction 2. S-dualities 3. A few words on TN 4. 4d CFT vs 2d CFT Yuji Tachikawa (IAS) November 2009 2 / 47 Montonen-Olive duality • N = 4 SU(N) SYM at coupling τ = θ=(2π) + (4πi)=g2 equivalent to the same theory coupling τ 0 = −1/τ • One way to ‘understand’ it: start from 6d N = (2; 0) theory, i.e. the theory on N M5-branes, put on a torus −1/τ τ 0 1 0 1 • Low energy physics depends only on the complex structure S-duality! Yuji Tachikawa (IAS) November 2009 3 / 47 S-dualities in N = 2 theories • You can wrap N M5-branes on a more general Riemann surface, possibly with punctures, to get N = 2 superconformal field theories • Different limits of the shape of the Riemann surface gives different weakly-coupled descriptions, giving S-dualities among them • Anticipated by [Witten,9703166], but not well-appreciated until [Gaiotto,0904.2715] Yuji Tachikawa (IAS) November 2009 4 / 47 Contents 1. Introduction 2. S-dualities 3. A few words on TN 4. 4d CFT vs 2d CFT Yuji Tachikawa (IAS) November 2009 5 / 47 Contents 1. Introduction 2. S-dualities 3. A few words on TN 4. 4d CFT vs 2d CFT Yuji Tachikawa (IAS) November 2009 6 / 47 S-duality in N = 2 . SU(2) with Nf = 4 .
    [Show full text]
  • Supersymmetry and Stationary Solutions in Dilaton-Axion Gravity" (1994)
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Physics Department Faculty Publication Series Physics 1994 Supersymmetry and stationary solutions in dilaton- axion gravity R Kallosh David Kastor University of Massachusetts - Amherst, [email protected] T Ortín T Torma Follow this and additional works at: https://scholarworks.umass.edu/physics_faculty_pubs Part of the Physical Sciences and Mathematics Commons Recommended Citation Kallosh, R; Kastor, David; Ortín, T; and Torma, T, "Supersymmetry and stationary solutions in dilaton-axion gravity" (1994). Physics Review D. 1219. Retrieved from https://scholarworks.umass.edu/physics_faculty_pubs/1219 This Article is brought to you for free and open access by the Physics at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Physics Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. SU-ITP-94-12 UMHEP-407 QMW-PH-94-12 hep-th/9406059 SUPERSYMMETRY AND STATIONARY SOLUTIONS IN DILATON-AXION GRAVITY Renata Kallosha1, David Kastorb2, Tom´as Ort´ınc3 and Tibor Tormab4 aPhysics Department, Stanford University, Stanford CA 94305, USA bDepartment of Physics and Astronomy, University of Massachusetts, Amherst MA 01003 cDepartment of Physics, Queen Mary and Westfield College, Mile End Road, London E1 4NS, U.K. ABSTRACT New stationary solutions of 4-dimensional dilaton-axion gravity are presented, which correspond to the charged Taub-NUT and Israel-Wilson-Perj´es (IWP) solu- tions of Einstein-Maxwell theory. The charged axion-dilaton Taub-NUT solutions are shown to have a number of interesting properties: i) manifest SL(2, R) sym- arXiv:hep-th/9406059v1 10 Jun 1994 metry, ii) an infinite throat in an extremal limit, iii) the throat limit coincides with an exact CFT construction.
    [Show full text]
  • Exceptional Field Theory and Supergravity Arnaud Baguet
    Exceptional Field Theory and Supergravity Arnaud Baguet To cite this version: Arnaud Baguet. Exceptional Field Theory and Supergravity. High Energy Physics - Experiment [hep-ex]. Université de Lyon, 2017. English. NNT : 2017LYSEN022. tel-01563063 HAL Id: tel-01563063 https://tel.archives-ouvertes.fr/tel-01563063 Submitted on 17 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Numéro National de Thèse : 2017LYSEN022 Thèse de Doctorat de l’Université de Lyon opérée par l’École Normale Supérieure de Lyon École Doctorale 52 École Doctorale de Physique et d’Astrophysique de Lyon Soutenue publiquement le 30/06/2017, par : Arnaud Baguet Exceptional Field Theory and Supergravity - Théorie des Champs Exceptionnels et Supergravité Devant le jury composé de : Martin Cederwall Chalmers University of Technology Rapporteur François Delduc École Normale Supérieure de Lyon Examinateur Axel Kleinschmidt Max Planck Institute Postdam Rapporteur Michela Petrini Université Pierre et Marie Curie Examinatrice Henning Samtleben École Normale Supérieure de Lyon Directeur Contents 1 Introduction 9 1.1 String theory, dualities and supergravity . 11 1.2 The bosonic string . 13 1.3 Compactification and T-duality . 18 1.4 Double Field Theory . 21 1.5 Exceptional Field Theory .
    [Show full text]
  • A Supersymmetry Primer
    hep-ph/9709356 version 7, January 2016 A Supersymmetry Primer Stephen P. Martin Department of Physics, Northern Illinois University, DeKalb IL 60115 I provide a pedagogical introduction to supersymmetry. The level of discussion is aimed at readers who are familiar with the Standard Model and quantum field theory, but who have had little or no prior exposure to supersymmetry. Topics covered include: motiva- tions for supersymmetry, the construction of supersymmetric Lagrangians, superspace and superfields, soft supersymmetry-breaking interactions, the Minimal Supersymmetric Standard Model (MSSM), R-parity and its consequences, the origins of supersymmetry breaking, the mass spectrum of the MSSM, decays of supersymmetric particles, experi- mental signals for supersymmetry, and some extensions of the minimal framework. Contents 1 Introduction 3 2 Interlude: Notations and Conventions 13 3 Supersymmetric Lagrangians 17 3.1 The simplest supersymmetric model: a free chiral supermultiplet ............. 18 3.2 Interactions of chiral supermultiplets . ................ 22 3.3 Lagrangians for gauge supermultiplets . .............. 25 3.4 Supersymmetric gauge interactions . ............. 26 3.5 Summary: How to build a supersymmetricmodel . ............ 28 4 Superspace and superfields 30 4.1 Supercoordinates, general superfields, and superspace differentiation and integration . 31 4.2 Supersymmetry transformations the superspace way . ................ 33 4.3 Chiral covariant derivatives . ............ 35 4.4 Chiralsuperfields................................ ........ 37 arXiv:hep-ph/9709356v7 27 Jan 2016 4.5 Vectorsuperfields................................ ........ 38 4.6 How to make a Lagrangian in superspace . .......... 40 4.7 Superspace Lagrangians for chiral supermultiplets . ................... 41 4.8 Superspace Lagrangians for Abelian gauge theory . ................ 43 4.9 Superspace Lagrangians for general gauge theories . ................. 46 4.10 Non-renormalizable supersymmetric Lagrangians . .................. 49 4.11 R symmetries........................................
    [Show full text]
  • Construction and Classification of Holomorphic Vertex Operator Algebras
    Construction and classification of holomorphic vertex operator algebras Jethro van Ekeren1, Sven Möller2, Nils R. Scheithauer2 1Universidade Federal Fluminense, Niterói, RJ, Brazil 2Technische Universität Darmstadt, Darmstadt, Germany We develop an orbifold theory for finite, cyclic groups acting on holomorphic vertex operator algebras. Then we show that Schellekens’ classification of V1-structures of meromorphic confor- mal field theories of central charge 24 is a theorem on vertex operator algebras. Finally we use these results to construct some new holomorphic vertex operator algebras of central charge 24 as lattice orbifolds. 1 Introduction Vertex algebras give a mathematically rigorous description of 2-dimensional quantum field the- ories. They were introduced into mathematics by R. E. Borcherds [B1]. The most prominent example is the moonshine module V \ constructed by Frenkel, Lepowsky and Meurman [FLM]. This vertex algebra is Z-graded and carries an action of the largest sporadic simple group, the monster. Borcherds showed that the corresponding twisted traces are hauptmoduls for genus 0 groups [B2]. The moonshine module was the first example of an orbifold in the theory of vertex algebras. The (−1)-involution of the Leech lattice Λ lifts to an involution g of the associated lattice vertex g algebra VΛ. The fixed points VΛ of VΛ under g form a simple subalgebra of VΛ. Let VΛ(g) be the unique irreducible g-twisted module of VΛ and VΛ(g)Z the subspace of vectors with integral g g L0-weight. Then the vertex algebra structure on VΛ can be extended to VΛ ⊕ VΛ(g)Z. This sum \ g is the moonshine module V .
    [Show full text]