Gurmukhi Script, Its Origin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Resource, Valuable Archive on Social and Economic History in Western India
H-Asia Resource, Valuable archive on social and economic history in Western India Discussion published by Sumit Guha on Friday, September 2, 2016 Note on a valuable new resource: Haribhakti Collection Department of History, Faculty of Arts The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-INDIA Foundation: 1949 Eighteenth Century Baroda in Gujarat has not only evidenced the emergence of political potentates in Gaekwads but also the pecuniary mainstays amongst citizens. The foremost were the Haribhaktis’[i]; who are remembered for business success in areas such as money-lending/indigenous banking, coin- changing, traders in private capacity and banking; formation of Gaekwad’s State financial policy- which stimulated rural resources and commercial economy that benefitted in the making of urban Gujarat during the 18th and 19th centuries; and as philanthropists in individual capability. The business acumen and continuous support to Gaekwad fetched honours and titles like Nagar‘ Seth’ and ‘Raj Ratan' ‘Raj Mitra’ ‘Chiranjiva’&c to them by rulers and citizens. Their firm building in Vadodara dates back to last quarter of 19th century; and its location is near Mandvi darwaza in Ghadiali pol popularly known as Haribhakti ni Haveli “…made up of red and yellow wood and …stands as grandeur of 200 years past”. This family as state bankers were Kamvisadars, traders and Nagarseths of Gaekwad`s of Baroda. Their multifunctional role is apparent as we have more than 1000bahis/ account books and around 10,000 loose sheets of correspondence and statements;kundlis, astrological charts, receipts of transactions related to religious donations, grants for educational and health infrastructure, greetings, invitations, admiration and condolence letters etc. -
Schwa Deletion: Investigating Improved Approach for Text-To-IPA System for Shiri Guru Granth Sahib
ISSN (Online) 2278-1021 ISSN (Print) 2319-5940 International Journal of Advanced Research in Computer and Communication Engineering Vol. 4, Issue 4, April 2015 Schwa Deletion: Investigating Improved Approach for Text-to-IPA System for Shiri Guru Granth Sahib Sandeep Kaur1, Dr. Amitoj Singh2 Pursuing M.E, CSE, Chitkara University, India 1 Associate Director, CSE, Chitkara University , India 2 Abstract: Punjabi (Omniglot) is an interesting language for more than one reasons. This is the only living Indo- Europen language which is a fully tonal language. Punjabi language is an abugida writing system, with each consonant having an inherent vowel, SCHWA sound. This sound is modifiable using vowel symbols attached to consonant bearing the vowel. Shri Guru Granth Sahib is a voluminous text of 1430 pages with 511,874 words, 1,720,345 characters, and 28,534 lines and contains hymns of 36 composers written in twenty-two languages in Gurmukhi script (Lal). In addition to text being in form of hymns and coming from so many composers belonging to different languages, what makes the language of Shri Guru Granth Sahib even more different from contemporary Punjabi. The task of developing an accurate Letter-to-Sound system is made difficult due to two further reasons: 1. Punjabi being the only tonal language 2. Historical and Cultural circumstance/period of writings in terms of historical and religious nature of text and use of words from multiple languages and non-native phonemes. The handling of schwa deletion is of great concern for development of accurate/ near perfect system, the presented work intend to report the state-of-the-art in terms of schwa deletion for Indian languages, in general and for Gurmukhi Punjabi, in particular. -
Shahmukhi to Gurmukhi Transliteration System: a Corpus Based Approach
Shahmukhi to Gurmukhi Transliteration System: A Corpus based Approach Tejinder Singh Saini1 and Gurpreet Singh Lehal2 1 Advanced Centre for Technical Development of Punjabi Language, Literature & Culture, Punjabi University, Patiala 147 002, Punjab, India [email protected] http://www.advancedcentrepunjabi.org 2 Department of Computer Science, Punjabi University, Patiala 147 002, Punjab, India [email protected] Abstract. This research paper describes a corpus based transliteration system for Punjabi language. The existence of two scripts for Punjabi language has created a script barrier between the Punjabi literature written in India and in Pakistan. This research project has developed a new system for the first time of its kind for Shahmukhi script of Punjabi language. The proposed system for Shahmukhi to Gurmukhi transliteration has been implemented with various research techniques based on language corpus. The corpus analysis program has been run on both Shahmukhi and Gurmukhi corpora for generating statistical data for different types like character, word and n-gram frequencies. This statistical analysis is used in different phases of transliteration. Potentially, all members of the substantial Punjabi community will benefit vastly from this transliteration system. 1 Introduction One of the great challenges before Information Technology is to overcome language barriers dividing the mankind so that everyone can communicate with everyone else on the planet in real time. South Asia is one of those unique parts of the world where a single language is written in different scripts. This is the case, for example, with Punjabi language spoken by tens of millions of people but written in Indian East Punjab (20 million) in Gurmukhi script (a left to right script based on Devanagari) and in Pakistani West Punjab (80 million), written in Shahmukhi script (a right to left script based on Arabic), and by a growing number of Punjabis (2 million) in the EU and the US in the Roman script. -
This Document Serves As a Summary of the UC Berkeley Script Encoding Initiative's Recent Activities. Proposals Recently Submit
L2/11‐049 TO: Unicode Technical Committee FROM: Deborah Anderson, Project Leader, Script Encoding Initiative, UC Berkeley DATE: 3 February 2011 RE: Liaison Report from UC Berkeley (Script Encoding Initiative) This document serves as a summary of the UC Berkeley Script Encoding Initiative’s recent activities. Proposals recently submitted to the UTC that have involved SEI assistance include: Afaka (Everson) [preliminary] Elbasan (Everson and Elsie) Khojki (Pandey) Khudawadi (Pandey) Linear A (Everson and Younger) [revised] Nabataean (Everson) Woleai (Everson) [preliminary] Webdings/Wingdings Ongoing work continues on the following: Anatolian Hieroglyphs (Everson) Balti (Pandey) Dhives Akuru (Pandey) Gangga Malayu (Pandey) Gondi (Pandey) Hungarian Kpelle (Everson and Riley) Landa (Pandey) Loma (Everson) Mahajani (Pandey) Maithili (Pandey) Manichaean (Everson and Durkin‐Meisterernst) Mende (Everson) Modi (Pandey) Nepali script (Pandey) Old Albanian alphabets Pahawh Hmong (Everson) Pau Cin Hau Alphabet and Pau Cin Hau Logographs (Pandey) Rañjana (Everson) Siyaq (and related symbols) (Pandey) Soyombo (Pandey) Tani Lipi (Pandey) Tolong Siki (Pandey) Warang Citi (Everson) Xawtaa Dorboljin (Mongolian Horizontal Square script) (Pandey) Zou (Pandey) Proposals for unencoded Greek papyrological signs, as well as for various Byzantine Greek and Sumero‐Akkadian characters are being discussed. A proposal for the Palaeohispanic script is also underway. Deborah Anderson is encouraging additional participation from Egyptologists for future work on Ptolemaic signs. She has received funding from the National Endowment for the Humanities and support from Google to cover work through 2011. . -
Contribution to the UN Secretary-General's 2018 Report
COMMISSION ON SCIENCE AND TECHNOLOGY FOR DEVELOPMENT (CSTD) Twenty-second session Geneva, 13 to 17 May 2019 Submissions from entities in the United Nations system and elsewhere on their efforts in 2018 to implement the outcome of the WSIS Submission by Internet Corporation for Assigned Names and Numbers This submission was prepared as an input to the report of the UN Secretary-General on "Progress made in the implementation of and follow-up to the outcomes of the World Summit on the Information Society at the regional and international levels" (to the 22nd session of the CSTD), in response to the request by the Economic and Social Council, in its resolution 2006/46, to the UN Secretary-General to inform the Commission on Science and Technology for Development on the implementation of the outcomes of the WSIS as part of his annual reporting to the Commission. DISCLAIMER: The views presented here are the contributors' and do not necessarily reflect the views and position of the United Nations or the United Nations Conference on Trade and Development. 2018 ANNUAL REPORT TO UNCTAD: ICANN CONTRIBUTION Progress made in the implementation of and follow-up to the outcomes of the World Summit on the Information Society at the regional and international levels Executive Summary ICANN is pleased and honoured be invited to contribute to this annual UNCTAD Report. We value our involvement with, and contribution to, the overall WSIS process and to our relationship with the UN Commission on Science and Technology for Development (CSTD). 2018 has been a busy and important year for ICANN and for the Internet Governance Ecosystem in general; with the ITU Plenipotentiary taking place in Dubai and the IGF in Paris. -
Pronunciation
PRONUNCIATION Guide to the Romanized version of quotations from the Guru Granth Saheb. A. Consonants Gurmukhi letter Roman Word in Roman Word in Gurmukhi Meaning Letter letters using the letters using the relevant letter relevant letter from from the second the first column column S s Sabh sB All H h Het ihq Affection K k Krodh kroD Anger K kh Khayl Kyl Play G g Guru gurU Teacher G gh Ghar Gr House | ng Ngyani / gyani i|AwnI / igAwnI Possessing divine knowledge C c Cor cor Thief C ch Chaata Cwqw Umbrella j j Jahaaj jhwj Ship J jh Jhaaroo JwVU Broom \ ny Sunyi su\I Quiet t t Tap t`p Jump T th Thag Tg Robber f d Dar fr Fear F dh Dholak Folk Drum x n Hun hux Now q t Tan qn Body Q th Thuk Quk Sputum d d Den idn Day D dh Dhan Dn Wealth n n Net inq Everyday p p Peta ipqw Father P f Fal Pl Fruit b b Ben ibn Without B bh Bhagat Bgq Saint m m Man mn Mind X y Yam Xm Messenger of death r r Roti rotI Bread l l Loha lohw Iron v v Vasai vsY Dwell V r Koora kUVw Rubbish (n) in brackets, and (g) in brackets after the consonant 'n' both indicate a nasalised sound - Eg. 'Tu(n)' meaning 'you'; 'saibhan(g)' meaning 'by himself'. All consonants in Punjabi / Gurmukhi are sounded - Eg. 'pai-r' meaning 'foot' where the final 'r' is sounded. 3 Copyright Material: Gurmukh Singh of Raub, Pahang, Malaysia B. -
Punjabi Machine Transliteration Muhammad Ghulam Abbas Malik
Punjabi Machine Transliteration Muhammad Ghulam Abbas Malik To cite this version: Muhammad Ghulam Abbas Malik. Punjabi Machine Transliteration. 21st international Conference on Computational Linguistics (COLING) and the 44th Annual Meeting of the ACL, Jul 2006, Sydney, France. pp.1137-1144. hal-01002160 HAL Id: hal-01002160 https://hal.archives-ouvertes.fr/hal-01002160 Submitted on 15 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Punjabi Machine Transliteration M. G. Abbas Malik Department of Linguistics Denis Diderot, University of Paris 7 Paris, France [email protected] Transliteration refers to phonetic translation Abstract across two languages with different writing sys- tems (Knight & Graehl, 1998), such as Arabic to Machine Transliteration is to transcribe a English (Nasreen & Leah, 2003). Most prior word written in a script with approximate work has been done for Machine Translation phonetic equivalence in another lan- (MT) (Knight & Leah, 97; Paola & Sanjeev, guage. It is useful for machine transla- 2003; Knight & Stall, 1998) from English to tion, cross-lingual information retrieval, other major languages of the world like Arabic, multilingual text and speech processing. Chinese, etc. for cross-lingual information re- Punjabi Machine Transliteration (PMT) trieval (Pirkola et al, 2003), for the development is a special case of machine translitera- of multilingual resources (Yan et al, 2003; Kang tion and is a process of converting a word & Kim, 2000) and for the development of cross- from Shahmukhi (based on Arabic script) lingual applications. -
A Message from Afar: Fact Sheet 3 (PDF)
3 What’s the Message? Here’s your signal The detection of a signal from another world would be a most remarkable moment in human history. However, if we detect such a signal, is it just a beacon from their technology, without any content, or does it contain information or even a message? Does it resemble sound, or is it like interstellar e-mail? Can we ever understand such a message? This appears to be a tremendous challenge, given that we still have many scripts from our own antiquity that remain undeciphered, despite many serious attempts, over hundreds of years. – And we know far more about humanity than about extra-terrestrial intelligence… We are facing all the complexities involved in understanding and glimpsing the intellect of the author, while the world’s expectations demand immediacy of information. So, where do we begin? Structure and language Information stands out from randomness, it is based on structures. The problem goal we face, after we detect a signal, is to first separate out those information-carrying signals from other phenomena, without being able to engage in a dialogue, and then to learn something about the structure of their content in the passing. This means that we need a suitable filter. We need a way of separating out the interesting stuff; we need a language detector. While identifying the location of origin of a candidate signal can rule out human making, its content could involve a vast array of possible structures, some of which may be beyond our knowledge or imagination; however, for identifying intelligence that shares any pattern with our way of processing and transmitting information, the collective knowledge and examples here on Earth are a good starting point. -
Name Hierarchy Methods Enums and Flags
Pango::Gravity(3pm) User Contributed Perl Documentation Pango::Gravity(3pm) NAME Pango::Gravity − represents the orientation of glyphs in a segment of text HIERARCHY Glib::Enum +−−−−Pango::Gravity METHODS gravity = Pango::Gravity::get_for_matrix ($matrix) • $matrix (Pango::Matrix) gravity = Pango::Gravity::get_for_script ($script, $base_gravity, $hint) • $script (Pango::Script) • $base_gravity (Pango::Gravity) • $hint (Pango::GravityHint) boolean = Pango::Gravity::is_vertical ($gravity) • $gravity (Pango::Gravity) double = Pango::Gravity::to_rotation ($gravity) • $gravity (Pango::Gravity) ENUMS AND FLAGS enum Pango::Gravity • ’south’ / ’PANGO_GRAVITY_SOUTH’ • ’east’ / ’PANGO_GRAVITY_EAST’ • ’north’ / ’PANGO_GRAVITY_NORTH’ • ’west’ / ’PANGO_GRAVITY_WEST’ • ’auto’ / ’PANGO_GRAVITY_AUTO’ enum Pango::GravityHint • ’natural’ / ’PANGO_GRAVITY_HINT_NATURAL’ • ’strong’ / ’PANGO_GRAVITY_HINT_STRONG’ • ’line’ / ’PANGO_GRAVITY_HINT_LINE’ enum Pango::Script • ’invalid−code’ / ’PANGO_SCRIPT_INVALID_CODE’ • ’common’ / ’PANGO_SCRIPT_COMMON’ • ’inherited’ / ’PANGO_SCRIPT_INHERITED’ • ’arabic’ / ’PANGO_SCRIPT_ARABIC’ • ’armenian’ / ’PANGO_SCRIPT_ARMENIAN’ • ’bengali’ / ’PANGO_SCRIPT_BENGALI’ • ’bopomofo’ / ’PANGO_SCRIPT_BOPOMOFO’ • ’cherokee’ / ’PANGO_SCRIPT_CHEROKEE’ • ’coptic’ / ’PANGO_SCRIPT_COPTIC’ • ’cyrillic’ / ’PANGO_SCRIPT_CYRILLIC’ • ’deseret’ / ’PANGO_SCRIPT_DESERET’ • ’devanagari’ / ’PANGO_SCRIPT_DEVANAGARI’ • ’ethiopic’ / ’PANGO_SCRIPT_ETHIOPIC’ • ’georgian’ / ’PANGO_SCRIPT_GEORGIAN’ perl v5.28.0 2018-10-29 1 Pango::Gravity(3pm) User Contributed -
On Continent and Script-Wise Divisions-Based Statistical Measures for Stop-Words Lists of International Languages Jatinderkumar R
Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 89 ( 2016 ) 313 – 319 Twelfth International Multi-Conference on Information Processing-2016 (IMCIP-2016) On Continent and Script-Wise Divisions-Based Statistical Measures for Stop-Words Lists of International Languages Jatinderkumar R. Sainia,c,∗ and Rajnish M. Rakholiab,c aNarmada College of Computer Application, Bharuch 392 011, Gujarat, India bS. S. Agrawal Institute of Computer Science, Navsari 396 445, Gujarat, India cR K University, Rajkot, Gujarat, India Abstract The data for the current research work was collected for 42 different International languages encompassing 3 continents viz. Asia, Europe and South America. The data comprised of unigram model representation of lexicons in the stop-words lists. 13 scripting systems comprising Arabic, Armenian, Bengali, Chinese, Cyrillic, Devanagari, Greek, Gurmukhi, Hanja & Hangul, Kana, Kanji, Marathi, Roman (Latin) and Thai were considered. Based on a comprehensive analysis of statistical measures for Stop-words lists, it has been concluded that Asian languages are mostly self-scripted and that the average number of stop-words in Asian languages is more than those in European languages. In addition to various important and other first research results, a very important inference from the current research work is that the average number of stop-words for any given language could be predicted to be 200. © 2016 The Authors. Published by Elsevier B.V. © 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (Peer-reviewhttp://creativecommons.org/licenses/by-nc-nd/4.0/ under responsibility of organizing). committee of the Twelfth International Multi-Conference on Information PeerProcessing-2016-review under (IMCIP-2016).responsibility of organizing committee of the Organizing Committee of IMCIP-2016 Keywords: Function-Words; Language; Natural Language Processing (NLP); Script; Stop-Words. -
Numbering Systems Developed by the Ancient Mesopotamians
Emergent Culture 2011 August http://emergent-culture.com/2011/08/ Home About Contact RSS-Email Alerts Current Events Emergent Featured Global Crisis Know Your Culture Legend of 2012 Synchronicity August, 2011 Legend of 2012 Wednesday, August 31, 2011 11:43 - 4 Comments Cosmic Time Meets Earth Time: The Numbers of Supreme Wholeness and Reconciliation Revealed In the process of writing about the precessional cycle I fell down a rabbit hole of sorts and in the process of finding my way around I made what I think are 4 significant discoveries about cycles of time and the numbers that underlie and unify cosmic and earthly time . Discovery number 1: A painting by Salvador Dali. It turns that clocks are not as bad as we think them to be. The units of time that segment the day into hours, minutes and seconds are in fact reconciled by the units of time that compose the Meso American Calendrical system or MAC for short. It was a surprise to me because one of the world’s foremost authorities in calendrical science the late Dr.Jose Arguelles had vilified the numbers of Western timekeeping as a most grievious error . So much so that he attributed much of the worlds problems to the use of the 12 month calendar and the 24 hour, 60 minute, 60 second day, also known by its handy acronym 12-60 time. I never bought into his argument that the use of those time factors was at fault for our largely miserable human-planetary condition. But I was content to dismiss mechanized time as nothing more than a convenient tool to facilitate the activities of complex societies. -
Root Zone Label Generation Rules — LGR-3 Overview and Summary
Integration Panel: Root Zone Label Generation Rules — LGR-3 Overview and Summary REVISION – July 10, 2019 Table of Contents 1 Overview 5 1.1 Root Zone Label Generation Rules (LGR-3) Files 5 2 Process of Integration 7 2.1 Overview 7 2.2 Proposals Submitted 9 2.3 Review of Proposals 11 2.3.1 General Notes on the Proposal Review 11 2.3.2 Arabic LGR Proposal Review 12 2.3.3 Armenian LGR Proposal Review 12 2.3.4 Cyrillic LGR Proposal Review 12 2.3.5 Devanagari LGR Proposal Review 13 2.3.6 Ethiopic LGR Proposal Review 14 2.3.7 Georgian LGR Proposal Review 14 2.3.8 Gujarati LGR Proposal Review 14 2.3.9 Gurmukhi LGR Proposal Review 15 2.3.10 Hebrew LGR Proposal Review 15 2.3.11 Kannada LGR Proposal Review 16 2.3.12 Khmer LGR Proposal Review 16 2.3.13 Lao LGR Proposal Review 17 2.3.14 Malayalam LGR Proposal Review 17 2.3.15 Oriya LGR Proposal Review 18 2.3.16 Sinhala LGR Proposal Review 19 2.3.17 Tamil LGR Proposal Review 20 2.3.18 Telugu LGR Proposal Review 20 2.3.19 Thai LGR Proposal Review 21 3 Integration and Contents of LGR-3 21 3.1 General Notes 21 3.1.1 Summary 22 3.2 MerGed LGR (Common) 23 3.2.1 Repertoire 23 Integration Panel: Root Zone Label Generation Rules — LGR-3 Overview and Summary 3.2.2 Variants 23 3.2.3 Character Classes 24 3.2.4 Whole-Label Evaluations (WLE) Rules 24 3.3 Arabic Element LGR 25 3.3.1 Repertoire for Arabic 25 3.3.2 Variants for Arabic 25 3.3.3 Whole-Label Evaluation Rules for Arabic 25 3.3.4 Default Whole-Label Evaluation Rules 25 3.4 Devanagari Element LGR 26 3.4.1 Repertoire for Devanagari 26 3.4.2 Variants for