Lack of Adrenoleukodystrophy Protein Enhances Oligodendrocyte Disturbance and Microglia Activation in Mice with Combined Abcd1/Mag Deficiency

Total Page:16

File Type:pdf, Size:1020Kb

Lack of Adrenoleukodystrophy Protein Enhances Oligodendrocyte Disturbance and Microglia Activation in Mice with Combined Abcd1/Mag Deficiency Lack of Adrenoleukodystrophy protein enhances oligodendrocyte disturbance and microglia activation in mice with combined Abcd1/Mag deficiency Dissertation submitted for the academic qualification Doctor of Medical Science at the Medical University of Vienna Dr. Martina Dumser August 2007 1 This work was conducted under the supervision of Ao. Univ. Prof. Dr. Johannes Berger at the Center for Brain Research Medical University of Vienna Department of Neuroimmunology Spitalgasse 4, 1090 Vienna between January 2005 and June 2007 Supervisors: Ao. Univ. Prof. Dr. Johannes Berger Univ. Prof. Dr. Hans Lassmann Univ. Prof. Dr. Klaus-Armin Nave The work was financed by the European Adrenoleukodystrophy Association (ELA)/ The Myelin Project 2 We shall not cease from exploration And the end of all our exploring will be To arrive where we started And know the place for the first time. (T.S. Eliot, nobel price for literature 1948; Four quartets, quartet No. 4: “Little Gidding”) 3 Danksagung DANKSAGUNG Schon während der Schulzeit hat mich die komplexe und geniale Bauweise biologischer Systeme, speziell die des Wesens „Mensch“, fasziniert. Nach Abschluss des Studiums der Humanmedizin bin ich durch Zufall zur Medizinischen Wissenschaft gekommen. Die Zeit, die ich seither hier am Zentrum für Hirnforschung verbracht habe, war eine interessante und lehrreiche, die mich persönlich sehr bereichert und geprägt hat. Dass die vorliegende Arbeit überhaupt möglich wurde und letztendlich auch zu einem Abschluss gebracht werden konnte, verdanke ich einer Reihe von Personen, die hier nun Erwähnung finden sollen: An erster Stelle möchte ich mich bei meinen Eltern und Großeltern für ihre umfassende seelische, emotionale und finanzielle Unterstützung bedanken. Ohne Euren Zuspruch und Euren Ansporn wäre ich nie bis hierher gekommen! Danke! Ein ganz besonderer Dank geht außerdem an die gesamte Mannschaft der Abteilung Neuroimmunologie des Zentrums für Hirnforschung. Speziell bedanken möchte ich mich: Bei Thomas, Florian, Josa, Conny, Iris, Alexandra, Tadeja, Assunta und Christina für ihre Freundschaft, Kollegialität und soziale Kompetenz, sowie für die reibungslose Zusammenarbeit im Laboralltag. Bei Martina, dafür, dass sie mir den Einstieg ins „Laborleben“ so leicht gemacht und mir nicht nur einmal mit Rat sondern vor allem auch mit Tat zur Seite gestanden hat. Bei Marianne, Ulli und Angela dafür, dass sie mir ihr umfassendes Wissen und ihre Erfahrung im Histolabor zur Verfügung gestellt haben. Ohne Euch wäre vieles wesentlich schwerer gewesen! Ich danke Euch für die unzähligen „Lehrgänge“ in Probenaufbereitung, Schneiden und Färben, sowie für Eure Engelsgeduld angesichts der unzähligen Präparate. Bei Ao. Univ. Prof. Dr. Jan Bauer für all die vielen Stunden am Licht-, Konfokal- und Elektronenmikroskop, sowie für seine Hilfestellung beim Erstellen der Publikation. In kompetenten Diskussionen hab ich bei Dir sehr viel über Mikroskopie allgemein, sowie über Neurohistopathologie im speziellen gelernt. Mit Deiner Hilfe sind auch schwierigere Färbungen sehr gut gelungen. Danke, dass Du mir und meinem Projekt so viel Zeit geopfert hast! Bei Gerti für all die unzähligen kleinen und großen Hilfestellungen während der vergangenen Jahre, sowie für ein jederzeit offenes Ohr. Bei Univ. Doz. Dr. Monika Bradl, für ihre „Entwicklungshilfe“ in Sachen APP, Mac-3 und Co.. Last but not least danke ich ganz herzlich meinen Betreuern: Ao. Univ. Prof. Dr. Johannes Berger und Dr. Sonja Forss-Petter für die interessante Themenstellung, die finanzielle Ermöglichung der Arbeit, die Weitergabe ihres Fachwissens, ihre unermüdliche Diskussionsbereitschaft sowie ihre tatkräftige Unterstützung beim Erstellen der zu dieser Arbeit gehörenden Publikation. Univ. Prof. Dr. Hans Lassmann für wiederholte Lehrgänge am Diskussionsmikroskop, unzählige wertvolle Vorschläge und Ideen, die diese Arbeit vorangebracht haben, seine Hilfestellung bei der Ergebnisinterpretation sowie für das Überarbeiten der Publikation. Und Univ. Prof. Dr. Klaus-Armin Nave und seinem Team, für nützliche Tipps bezüglich „mouse behaviour testing“, sowie seine Kooperation im Rahmen eines parallel laufenden Projekts. 4 Index INDEX Page List of abbreviations……………………………………………………………...…… 7 Summary………………………………………………………………………………. 8 Zusammenfassung……………………………………………………………….…….. 9 CHAPTER 1: INTRODUCTION…………………………………………….……… 11 1.1 Peroxisomes…………………………………………………………………… 12 1.1.1 Peroxisome biogenesis disorders (PBD)…………………………………… 13 1.1.2 Single peroxisomal enzyme deficiencies…………………………………… 15 1.2 ABC transporters……………………………………………………………... 17 1.2.1 Peroxisomal ABC transporters……………………………………………... 18 1.3 X-linked adrenoleukodystrophy (X-ALD)…………………………………… 22 1.3.1 Chronic……………………………………………………………………... 22 1.3.2 Clinical phenotypes………………………………………………………… 23 1.3.3 Diagnosis…………………………………………………………………… 27 1.3.4 Pathology and inflammation………………………………………………... 29 1.3.5 Therapeutic strategies………………………………………………………. 34 1.4 Abcd1 knockout mice – the X-ALD mouse model………………………….. 38 1.4.1 Accumulation of VLCFA and β-oxidation…………………………………. 39 1.4.2 Behavioural and neurological phenotype…………………………………... 39 1.4.3 Electrophysiology…………………………………………………………... 40 1.4.4 Peripheral nerve pathology…………………………………………………. 41 1.4.5 Pathology of the central nervous system…………………………………… 41 1.4.6 Adrenal gland pathology………………………………………………….... 42 1.4.7 Testis and ovary pathology…………………………………………………. 42 1.5 Mag knockout mice…………………………………………………………… 43 1.5.1 Myelin………………………………………………………………………. 43 1.5.2 Myelin-associated glycoprotein…………………………………………….. 44 1.5.3 Mag knockout mice………………………………………………………… 46 CHAPTER 2: AIM OF THE THESIS………………………………………………. 52 CHAPTER 3: MATERIALS AND METHODS…………………………………….. 56 3.1 Animals………………………………………………………………………… 57 3.2 Genotyping…………………………………………………………………….. 57 3.2.1 Isolation of DNA from mouse tail biopsies………………………………… 57 3.2.2 Genotyping by PCR……………………………………………………….... 59 3.2.3 Agarose gel electrophoresis……………………………………………….... 60 5 Index Page 3.3 Behavioural analysis…………………………………………………………... 61 3.3.1 Climbing test………………………………………………………………... 61 3.3.2 Hind limb reflex extension………………………………………………….. 62 3.3.3 Tremor………………………………………………………………………. 63 3.3.4 Rotarod test for motor coordination and balance…………………………… 63 3.4 Histopathology………………………………………………………………… 64 3.4.1 Mouse tissue dissection…………………………………………………...... 64 3.4.2 Tissue processing for light microscopy…………………………………….. 65 3.4.3 Standard staining methods………………………………………………...... 66 3.4.4 Immunohistochemistry……………………………………………………... 69 3.4.5 Confocal microscopy………………………………………………….……. 73 3.4.6 Electron microscopy………………………………………………………... 79 3.5 Quantitative evaluation of (immuno-) labelled structures and statistical analysis………………………………………………………………….……… 80 3.5.1 Bielschowsky silver impregnation: torpedoes in cerebellar granular layer.... 80 3.5.2 Mac-3 staining: activation of macrophages/microglia cells………………… 81 3.5.3 APP-staining: axonal bulbs and extra-axonal, diffuse APP accumulation.... 82 CHAPTER 4: RESULTS…………………………………………………………….. 84 4.1 Behavioural analysis………………………………………………………….. 85 4.1.1 Climbing test……………………………………………………………….. 85 4.1.2 Tremor…………………………………………………………………….... 86 4.1.3 Hind limb reflex……………………………………………………………. 88 4.1.4 Motor coordination and balance……………………………………………. 90 4.2 Neuropathological analysis…………………………………………………… 91 4.2.1 Gross histopathological examination of brain, spinal cord and sciatic nerves……………………………………………………………….. 92 4.2.2 Microglia activation in spinal cord and cerebellum………………………… 97 4.2.3 Axon pathology in spinal cord………………………………………………100 4.2.4 Myelin pathology in spinal cord……………………………………………. 103 4.2.5 APP accumulation in compact myelin……………………………………… 109 4.2.6 Light microscopy of semithin sections of spinal cord white matter……....…113 4.2.7 Electron microscopy of spinal cord white matter…………………………... 115 4.2.8 Light microscopy of semithin sections of sciatic nerves…………………. 117 CHAPTER 5: DISCUSSION…………………………………………………………. 118 CHAPTER 6: REFERENCES……………………………………………………….. 125 Curriculum vitae……………………………………………………………………… 139 Outcome of the thesis…………………………………………………………………..140 6 List of Abbreviations LIST OF ABBREVIATIONS ABCD1/Abcd1 ATP-binding cassette transporter subfamily D member 1 gene, human/mouse Abcd1 ko (in figures) Abcd1-knockout mice ABCD2/Abcd2 ATP-binding cassette transporter subfamily D member 2 gene, human/mouse ACTH adrenocorticotropic hormone ALDP/Aldp adrenoleukodystrophy protein, human/mouse ALDR/Aldr adrenoleukodystrophy related protein, human/mouse ALMN adreno-leuko-myeloneuropathy AMN adrenomyeloneuropathy APP amyloid precursor protein BMT bone marrow transplantation cALD cerebral adrenoleukodystrophy CMAP compound muscle action potential CNP 2’,3’-cyclic nucleotide 3’-phosphodiesterase CNS central nervous system Double ko (in figures) Abcd1/Mag-double-knockout mice DHCA, THCA di- and trihydroxycholestanoic acid GFAP glial fibrillary acidic protein LCFA long-chain fatty acids MAG/Mag myelin-associated glycoprotein, human/mouse Mag ko (in figures) Mag-knockout mice MBP myelin basic protein MHC major histocompatibility complex MOG myelin oligodendrocyte glycoprotein PBD Peroxisome biogenesis disorders PLP proteolipid protein PNS peripheral nervous system VLACS very long-chain fatty-acyl CoA synthetase VLCFA very long-chain fatty acids X-ALD X-linked adrenoleukodystrophy 7 Summary SUMMARY X-linked adrenoleukodystrophy (X-ALD) is an inherited, progressive, peroxisomal disorder, which primarily affects the nervous system as well as the
Recommended publications
  • Macrophages Counteract Demyelination in a Mouse Model of Globoid Cell Leukodystrophy
    3610 • The Journal of Neuroscience, March 9, 2011 • 31(10):3610–3624 Neurobiology of Disease Macrophages Counteract Demyelination in a Mouse Model of Globoid Cell Leukodystrophy Yoichi Kondo,1 Jessica M. Adams,1 Marie T. Vanier,2 and Ian D. Duncan1 1Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, and 2Institut de la Sante´et de la Recherche Me´dicale Unit 820 and Lyon 1 University, Lyon, France Whether microglia and macrophages are beneficial or harmful in many neurological disorders, including demyelinating diseases such as multiple sclerosis and the leukodystrophies, is currently under debate. Answering this question is of special interest in globoid cell leukodystrophy (GLD), a genetic fatal demyelinating disease, because its rapidly progressive demyelination in the nervous system is accompanied by a characteristic accumulation of numerous globoid macrophages. Therefore, we cross-bred the twitcher (twi) mouse, a bona fide model of GLD, with the macrophage-deficient osteopetrotic mutant and studied the resultant macrophage-deficient twitcher twi؉op) mouse. The twi؉op mouse had few microglia and macrophages in the white matter and, interestingly, showed a more severe) clinical phenotype compared to the twi mouse. The number of nonmyelinated axons in the spinal cord was significantly higher in twi؉op mice than in twi mice at 45 d old. The difference appeared to be due to impaired remyelination in twi؉op mice rather than accelerated demyelination. Quantitative reverse transcription PCR and immunohistochemical studies revealed that the recruitment of oligodendro- cyte progenitor cells in response to demyelination was compromised in twi؉op mice.
    [Show full text]
  • HOUSE RESOLUTION Session of No
    PRINTER'S NO. 4421 THE GENERAL ASSEMBLY OF PENNSYLVANIA HOUSE RESOLUTION Session of No. 1011 2020 INTRODUCED BY CRUZ, YOUNGBLOOD, BOBACK, SCHLOSSBERG, KINSEY, HOWARD, GALLOWAY, DRISCOLL, BURNS, BROWN, SAYLOR, MILLARD, LONGIETTI, HEFFLEY, MALAGARI, FARRY AND DEASY, SEPTEMBER 25, 2020 INTRODUCED AS NONCONTROVERSIAL RESOLUTION UNDER RULE 35, SEPTEMBER 25, 2020 A RESOLUTION 1 Designating the month of September 2020 as "Leukodystrophy 2 Awareness Month" in Pennsylvania. 3 WHEREAS, Leukodystrophy is a rare and terminal disease 4 presenting itself in multiple manifestations that attack the 5 central nervous system, severely impacting physical abilities, 6 mental capacity and quality of life; and 7 WHEREAS, The group of rare disorders known as 8 leukodystrophies destroys the central nervous system by 9 disrupting the growth and maintenance of myelin, a sheath that 10 insulates nerve cells and destroys white matter in the brain; 11 and 12 WHEREAS, Leukodystrophies are progressive, with symptoms that 13 worsen throughout the life of the patient; and 14 WHEREAS, There are more than 50 identified leukodystrophies, 15 yet nearly half of patients with leukodystrophy remain 16 unclassified; and 1 WHEREAS, As research advances, scientists will continue to 2 discover and classify new variations in this family of diseases; 3 and 4 WHEREAS, Alone, each leukodystrophy may be considered rare, 5 but as a group these diseases affect approximately 1 in 7,000 6 individuals; and 7 WHEREAS, Infants born with leukodystrophy appear normal at 8 birth, yet, symptoms
    [Show full text]
  • Merchiston's Arms
    THE MERCHISTONIAN 2017 CLUB MAGAZINE Highland Experience Michael Bremner shares his journey to tourism triumph Savills. Teamwork is one of our core values. Across every area of property, Savills has the right people, the right advice and the right knowledge and our teams work together to ensure that our clients are “Ready Ay Ready” for whatever ball is passed to them. Evelyn Channing Ben Fox Scotland Farms & Estates Edinburgh Residential Savills Edinburgh Savills Edinburgh 0131 247 3704 0131 247 3736 Jamie Macnab Nick Green (Merchistonian 93-98) Scotland Country Houses Rural, Energy and Projects Savills Savills Edinburgh Perth 0131 247 3711 01738 477 518 savills.co.uk 170x240mm Merchistonian A Dec17.qxp_Layout 1 04/12/2017 18:32 Page 3 Welcome From the Merchistonian Office It is with great pleasure that we present to you the 2017 Merchistonian Club Magazine. We have thoroughly enjoyed working on this year’s edition, and hope that you enjoy reading it as much as we enjoyed putting it together. Having edited all of your stories, one thing is clear: the friendships created at Merchiston are strong and lifelong. Thank you for sending us your news, without which there would be no magazine. Please continue to get in touch with any stories throughout the year. A special ‘thank you’ goes out to our advertisers, who make the Left to Right David Rider, Gill Imrie and Louise Pert publication possible, and to our proof readers, who scrupulously check each page. find your nearest rep and remember to send us photos This year has seen the launch of the Club’s new of your get-togethers.
    [Show full text]
  • Myelin Project
    Myelin Project 11/92 “Shaking Pups ”. Remyelination w/in a 3cm radius from implant site. ( Oligodendrocytes and its’ precursors) 12/96- 2 series of human glial cells are cultured providing a continuous supply of transplantable myelin-forming cells 1/97- Oligodendrocytes & precursors have the greatest capacity for myelination following grafting, although cells of neuronal origin may also be used 1/97- Progesterone promotes re-myelination by activating the genes that control the synthesis of important myelin proteins- but side effects on reproductive functions Amgen - Shaker/ Shiverer rats, newly developed mouse model . Monkey Schwann cells into animal optic gene did not work Other researches used Schwann cells & astrocytes mixture to remyelinate rats 11/98 - Phase I human tria l for transplanting Schwann cells in CNS of 5 MS patients, but must demonstrate that it is not harmful in monkeys first Oecs (olfactory ensheathing cells) from pigs into demyelinated & monkeys significant remyelination 6/11/2000-Michaela Odone dies; Lorenzo 22 yrs old 12/2000- OECs can remyelinate axons of CNS in rat model Yale has second thoughts about the already approved Phase I human trial . It was supposed to start 9/2000, but Yale decides to have an independent researcher give final approval. 7/2001- Phase I finally starts ! Schwann cells (1 million) transplanted into a 53 year old woman suffering from progressive MS. Taken from her own nerve and injected into the right frontal lobe of the brain. (Reminder: Phase I trial is meant to prove safety) 4/2003- Patient #3 has Schwann cells injected . Brain stem cells injected into the blood stream of MS model mice can find their way to the CNS and begin remyelinating the lesions.
    [Show full text]
  • First International Congress of the ELA Research Foundation
    First International Congress of the ELA Research Foundation October 5-7, 2006 Paris, France The 1st International Congress of the ELA Research Foundation & The Myelin Project entitled "The vital function of myelin development and maintenance" took place in Paris from October 5 to 7, 2006. The Scientific Committee in charge of the meeting organization was composed of Prs. Aubourg, Dubois-Dalcq, Boespflug-Tanguy, Lacaze and Baron-Van Evercooren. Over 200 participants (M.D., Ph.D, Postdocs and Ph.D. students) from around the world specialized in leukodystrophies and myelin repair attended the meeting and presented their last results. The congress was divided in four different scientific sessions: Scientific Session I: Myelin development and repair Co-chairs: Robin Franklin, Anne Baron-Van Evercooren Jean-Léon Thomas, Ph.D. (INSERM U711, Paris, France) A role of vascular growth factor on the development, proliferation and migration of mouse myelin-forming cells has been elucidated. Vittorio Gallo, Ph.D. (Center for Neuroscience Research, Washington DC, USA) The kinase cdk2 plays an important role in the control of myelin-forming cells progenitors and Sox 17, a transcription factor, is as a key regulator of myelin-forming cells proliferation and differentiation in mouse. Pascale Durbec, Ph.D. (IBDML, Marseille, France) Transplantation of adult stem cells from mouse into myelin-deficient adult mice showed that grafted cells perform long distance migration along white matter tracts and are able to differentiate into mature myelin-forming cells. Also, exercise in rodents with multiple sclerosis promoted cell proliferation and increased the number of cells recruited into demyelinated structures. Hans S.
    [Show full text]
  • Moser Center for Leukodystrophies Factsheet
    Moser Center for Leukodystrophies at Kennedy Krieger Institute Who We Are For more than 30 years, Kennedy Krieger Institute has been internationally recognized as an authority on the study and care of patients with leukodystrophies, thanks in large part to the visionary thinking and enduring legacy of the late Dr. Hugo W. Moser. Considered one of the world’s foremost leaders in the field, Dr. Moser believed that innovative research and collaboration were the keys to enhancing clinical care, advancing patient outcomes, and improving the lives of individuals with leukodystrophies worldwide. Today, that commitment lives on through the Moser Center for Leukodystrophies, where leading-edge techniques in neuroimaging, genomics, biomedical engineering, and nanotechnology are helping our experts enhance understanding, diagnosis, and treatment of leukodystrophies. The center’s interdisciplinary approach brings together the fields of neurogenetics, genetic counseling, neurorehabilitation, endocrinology, and urology, along with physical, occupational, speech, and aquatic therapy to provide comprehensive care for patients. Alongside our clinicians, our investigators are exploring the most promising research, while collaborating with other leukodystrophy centers across the country and around the world. Who We Serve Examples of leukodystrophies include: Our interdisciplinary team of experts treats patients from infancy to adulthood who have been diagnosed with, or are suspected of • Adrenoleukodystrophy having, a leukodystrophy. • Alexander disease Leukodystrophies are diseases in which a gene defect leads to • Canavan disease abnormalities of either the axon, the myelin, or the cells that • Cerebrotendinous xanthomatosis provide nutrients to the axon. Currently, over 40 different • Krabbe disease (globoid cell leukodystrophy) leukodystrophies have been described. They are progressive • Metachromatic leukodystrophy diseases, meaning that the disease gets worse throughout a • Pelizaeus-Merzbacher disease lifetime.
    [Show full text]
  • Photo Pleine Page
    ELA FOUNDATION – MYELIN PROJECT (Paris Congress – October 2006) A recent survey among EUROPEAN LEUKODYSTROPHY ASSOCIATION (ELA) patients and families showed that 80% of them consider medical research as the main objective, a priority that needed all of our attention and support. To respond to this massive expectation the ASSOCIATION created in early 2005 a foundation, the ELA FOUNDATION, fully dedicated to medical research. Thanks to the financial support of the FRENCH MINISTRY OF RESEARCH and to the continuous financial commitment of the ELA ASSOCIATION, the ELA FOUNDATION has been able to address right away the broad spectrum of myelin affections beyond the mere although numerous leucodystrophy forms. The core challenge of the ELA FOUNDATION is quite clear and demanding at the same time: repair myelin and restore impaired functions, thereby sharing the major concern of its MYELIN PROJECT friends and as a matter of fact of all concerned patients and families. In order to reach this ambitious goal and make progress in the most balanced and effective fashion, the ELA FOUNDATION has formed a Supervisory Board made of patient related members and well known people strongly involved in our cause, all of them distant from the medical field. This Board operates side to side with a Scientific Committee made of international experts. Its specific mission is twofold: provide guidance for research orientations and select projects to be financed. This model, with precisely defined respective responsibilities between its two main acting bodies, has rapidly demonstrated its merits and we are now all quite enthused and looking forward to developing the ELA FOUNDATION into a major international and global institution to successfully help fight and eradicate myelin diseases.
    [Show full text]