Four Languages and Lots of Macros: Analyzing Autotools Build Systems

Total Page:16

File Type:pdf, Size:1020Kb

Four Languages and Lots of Macros: Analyzing Autotools Build Systems Four Languages and Lots of Macros: Analyzing Autotools Build Systems Jafar M. Al-Kofahi Suresh Kothari Christian Kästner Electrical and Computer Engineering Electrical and Computer Engineering School of Computer Science Department Department Carnegie Mellon University Iowa State University Iowa State University Abstract maintenance burden [22, 39], making build systems more de- Build systems are crucial for software system development. fect prone, and would make migration more challenging [40]. However, there is a lack of tool support to help with their Comprehension is a challenge as build tools tend to use do- high maintenance overhead. GNU Autotools are widely used main specific, powerful, and complex languages. in the open-source community, but users face various chal- Generator-based build tools can be particularly challeng- lenges from its hard to comprehend nature and staging of ing to understand as they have multiple stages involved in multiple code -generation steps, often leading to low quality the build process, where each stage generates build artifacts and error-prone build code. In this paper, we present a plat- to be executed in a later stage during the build. For exam- form, AutoHaven, to provide a foundation for developers ple, in GNU Autotools the M4 preprocessor creates a shell to create analysis tools to help them understand, maintain, script that subsequently generates a Makefile from a tem- and migrate their GNU Autotools build systems. Internally it plate, which is eventually executed by make. Such staged uses approximate parsing and symbolic analysis of the build build process adds to the system’s complexity. Such systems logic. We illustrate the use of the platform with two tools: are not easy to analyze, neither for humans nor machines. ACSense helps developers to better understand their build In this work, we target GNU Autotools [7] as an instance of systems and ACSniff detects build smells to improve build particularly difficult generator-based build tools that requires code quality. Our evaluation shows that AutoHaven can sup- an analysis of multiple languages and their interactions. In port most GNU Autotools build systems and can detect build contrast to prior tools for maintaining and understanding smells in the wild. build systems that focused mostly on specific tasks [19– 21, 31, 41], we aim to build a generic analysis infrastructure CCS Concepts • Software and its engineering → Soft- that can be used for various maintenance tasks. We demon- ware maintenance tools; strate our infrastructure by providing two tools for build comprehension and build-smell detection. Keywords build-system, GNU Autotool, Autoconf, build Both build comprehension and build-smell detection ad- maintenance dress real issues for users of Autotools. We noticed that ACM Reference format: Autotools users frequently complain about maintaining and Jafar M. Al-Kofahi, Suresh Kothari, and Christian Kästner. 2017. making changes to their Autoconf scripts. Developers face Four Languages and Lots of Macros:. In Proceedings of 16th ACM challenges in understanding their build system, specifically SIGPLAN International Conference on Generative Programming: Con- their configuration script and how it fits into the bigpic- cepts and Experiences, Vancouver, Canada, October 23–24, 2017 (GPCE’17), ture. A trial-and-error approach to build system maintenance 11 pages. leads to overly complicated and hard to maintain configu- https://doi.org/10.1145/3136040.3136051 ration scripts. In line with prior work [39], we identified that developers neglect to properly maintain their build sys- tem, causing various issues within their build system adding 1 Introduction to their maintenance overhead, such as inconsistencies be- Build systems are a crucial part of software development. tween user documentation and how is the build system im- Prior work has shown that build systems are complex [18, plemented. We also identified the existence of build smells, 28, 39], come with high maintenance overhead [29, 30], and which are issues related to the quality of the build system that are defect prone as they keep evolving with the software adds to its technical debt and complexity but does not break system [34]. Those studies emphasize the importance of build the build, such as the existence of unused variables, depen- systems and call for better tool support to help developers dencies. These build smells exists within specific parts of the understand, maintain, and migrate their build systems. build script but can also span multiple languages, including For the developers to properly maintain or migrate their configuration scripts, build logic, and the target code. build systems, they first need to have a solid understand- We approach the analysis of generator-based build sys- ing of their build system mechanics and how it builds the tems written with Autotools by attempting to parse and software. A lack of understanding would lead to increased GPCE’17, October 23–24, 2017, Vancouver, Canada Jafar M. Al-Kofahi, Suresh Kothari, and Christian Kästner recognize common patterns in un-preprocessed build code 2.1 GNU Autotools (i.e., without running the generators). We subsequently sym- To understand our solution, we first need to introduce how bolically execute the configuration logic to identify options, GNU Autotools and their build systems work. Figure 1 shows their interactions, and their build actions on the remainder of the structure of such build systems. For a given system, the the build process. A build action is any action executed (i.e., developers provide Makefile.am Automake files, to describe check for dependency, generate artifacts) to accomplish the how to build the system at a high level; they also provide a build process. For build-smell detection, we further extract configure.ac Autoconf file to describes the system’s external the targets of build actions in templates for the build logic dependencies and the build-system configurations. These and in the target C code itself and define analyses for build declared configurations can alter the build process to include smells that compare the various extracted information. We or exclude system features, at the file level within the build package our analysis infrastructure providing a structural script, or at a more granular level in the source code. representation of the build system created by parsing and GNU Automake processes the Makefile.am files to iden- symbolic analysis as a tool platform called AutoHaven. We tify the source files to be built, and then it generates Make- further explain how the extracted information can be used to files.in templates that hold the build logic for the system. support developers in build comprehension tasks and build a Special placeholders annotate these templates, which are tool for build-smell detection. We evaluate infrastructure on later used to adjust the build logic according to the selected ten real-world build system written with GNU Autotools and build configurations; these placeholders are called substitu- identify that our approximation is practical and useful for tion variables. They are used by the configuration script to build analysis. Our evaluation shows that we can correctly pass configuration related settings (i.e. which file to include) capture the configuration actions and detect build smells in and environment configurations (i.e., which compiler to use, real build systems. compiler flags). Overall, we contribute: The Autoconf configure.ac script is written using GNU M4 macros [12], shell scripting, and can also have snippets of • An analysis infrastructure for generator-based build C, C++, or Perl programming languages to check for certain systems written in GNU Autotools that extracts infor- libraries or features in the environment. The M4 language mation from configuration scripts with approximate is macro based, where each macro expands to a predefined parsing and symbolic execution of the configuration snippet of text; in the Autoconf case, these M4 macros are ex- logic. panded to snippets of shell scripts. GNU Autoconf processes • A comprehension tool support for developers to better the configure.ac file, expand the M4 macros and generate understand their GNU Autotools build systems. the configure shell script file. The configure script consumes • A definition of build smells, and a detection tool that the Makefile.in templates and generates concrete Makefiles. identifies build smells, including issues that span mul- For example, a template would have the following line: CC tiple languages. = @CC@. This variable holds the C compiler command for • An evaluation of our infrastructure on ten real-world the build process. When the configure script is executed, it build systems, demonstrating accuracy despite approx- identifies the default C compiler, then substitute the @CC@ imations and the ability to identify real build-smells placeholder in the templates with the C compiler command in the wild. (e.g., CC = gcc). In GNU-Autotools-based build systems, developers can This paper extends a prior workshop paper on the Auto- control what to compile from the source code at file level Haven infrastructure [22]. In that workshop paper, we ar- with the Makefiles, or on a more granular level using con- gued for the need of such an infrastructure and sketched a ditional compilation. In conditional compilation, a block of possible solution. We also surveyed criticism of Autotools code would have an associated condition, and if the condition users in practice and presented the first version of our pars- is met then the block of code is included in the source code ing approach for configuration logic. In this paper, we extend compilation; otherwise, it gets excluded. For conditional com- our prior work by adding a symbolic analysis of the config- pilation, developers use C-Preprocessor macros to surround uration logic, by building two tools (comprehension and blocks of code with CPP control constructs (i.e., #ifdef’s) and build-smell detection) on top of our infrastructure, and by declare the condition using CPP macros. evaluating our approach with ten real-world build systems.
Recommended publications
  • Source Code Trees in the VALLEY of THE
    PROGRAMMING GNOME Source code trees IN THE VALLEY OF THE CODETHORSTEN FISCHER So you’ve just like the one in Listing 1. Not too complex, eh? written yet another Unfortunately, creating a Makefile isn’t always the terrific GNOME best solution, as assumptions on programs program. Great! But locations, path names and others things may not be does it, like so many true in all cases, forcing the user to edit the file in other great programs, order to get it to work properly. lack something in terms of ease of installation? Even the Listing 1: A simple Makefile for a GNOME 1: CC=/usr/bin/gcc best and easiest to use programs 2: CFLAGS=`gnome-config —cflags gnome gnomeui` will cause headaches if you have to 3: LDFLAGS=`gnome-config —libs gnome gnomeui` type in lines like this, 4: OBJ=example.o one.o two.o 5: BINARIES=example With the help of gcc -c sourcee.c gnome-config —libs —cflags 6: gnome gnomeui gnomecanvaspixbuf -o sourcee.o 7: all: $(BINARIES) Automake and Autoconf, 8: you can create easily perhaps repeated for each of the files, and maybe 9: example: $(OBJ) with additional compiler flags too, only to then 10: $(CC) $(LDFLAGS) -o $@ $(OBJ) installed source code demand that everything is linked. And at the end, 11: do you then also have to copy the finished binary 12: .c.o: text trees. Read on to 13: $(CC) $(CFLAGS) -c $< manually into the destination directory? Instead, 14: find out how. wouldn’t you rather have an easy, portable and 15: clean: quick installation process? Well, you can – if you 16: rm -rf $(OBJ) $(BINARIES) know how.
    [Show full text]
  • Red Hat Enterprise Linux 6 Developer Guide
    Red Hat Enterprise Linux 6 Developer Guide An introduction to application development tools in Red Hat Enterprise Linux 6 Dave Brolley William Cohen Roland Grunberg Aldy Hernandez Karsten Hopp Jakub Jelinek Developer Guide Jeff Johnston Benjamin Kosnik Aleksander Kurtakov Chris Moller Phil Muldoon Andrew Overholt Charley Wang Kent Sebastian Red Hat Enterprise Linux 6 Developer Guide An introduction to application development tools in Red Hat Enterprise Linux 6 Edition 0 Author Dave Brolley [email protected] Author William Cohen [email protected] Author Roland Grunberg [email protected] Author Aldy Hernandez [email protected] Author Karsten Hopp [email protected] Author Jakub Jelinek [email protected] Author Jeff Johnston [email protected] Author Benjamin Kosnik [email protected] Author Aleksander Kurtakov [email protected] Author Chris Moller [email protected] Author Phil Muldoon [email protected] Author Andrew Overholt [email protected] Author Charley Wang [email protected] Author Kent Sebastian [email protected] Editor Don Domingo [email protected] Editor Jacquelynn East [email protected] Copyright © 2010 Red Hat, Inc. and others. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
    [Show full text]
  • GNU Build System
    Maemo Diablo Reference Manual for maemo 4.1 GNU Build System December 22, 2008 Contents 1 GNU Build System 2 1.1 Introduction .............................. 2 1.2 GNU Make and Makefiles ...................... 2 1.2.1 Simplest Real Example .................... 3 1.2.2 Anatomy of Makefile ..................... 6 1.2.3 Default Goal .......................... 7 1.2.4 On Names of Makefiles ................... 7 1.2.5 Questions ........................... 8 1.2.6 Adding Make Goals ..................... 8 1.2.7 Making One Target at a Time ................ 9 1.2.8 PHONY Keyword ...................... 9 1.2.9 Specifying Default Goal ................... 10 1.2.10 Other Common Phony Goals ................ 11 1.2.11 Variables in Makefiles .................... 11 1.2.12 Variable Flavors ........................ 11 1.2.13 Recursive Variables ...................... 12 1.2.14 Simple Variables ....................... 13 1.2.15 Automatic Variables ..................... 14 1.2.16 Integrating with Pkg-Config ................ 15 1.3 GNU Autotools ............................ 16 1.3.1 Brief History of Managing Portability ........... 17 1.3.2 GNU Autoconf ........................ 18 1.3.3 Substitutions ......................... 22 1.3.4 Introducing Automake .................... 24 1.3.5 Checking for Distribution Sanity .............. 29 1.3.6 Cleaning up .......................... 29 1.3.7 Integration with Pkg-Config ................ 30 1 Chapter 1 GNU Build System 1.1 Introduction The following code examples are used in this chapter: simple-make-files • autoconf-automake • 1.2 GNU Make and Makefiles The make program from the GNU project is a powerful tool to aid implementing automation in the software building process. Beside this, it can be used to automate any task that uses files and in which these files are transformed into some other form.
    [Show full text]
  • The GNOME Desktop Environment
    The GNOME desktop environment Miguel de Icaza ([email protected]) Instituto de Ciencias Nucleares, UNAM Elliot Lee ([email protected]) Federico Mena ([email protected]) Instituto de Ciencias Nucleares, UNAM Tom Tromey ([email protected]) April 27, 1998 Abstract We present an overview of the free GNU Network Object Model Environment (GNOME). GNOME is a suite of X11 GUI applications that provides joy to users and hackers alike. It has been designed for extensibility and automation by using CORBA and scripting languages throughout the code. GNOME is licensed under the terms of the GNU GPL and the GNU LGPL and has been developed on the Internet by a loosely-coupled team of programmers. 1 Motivation Free operating systems1 are excellent at providing server-class services, and so are often the ideal choice for a server machine. However, the lack of a consistent user interface and of consumer-targeted applications has prevented free operating systems from reaching the vast majority of users — the desktop users. As such, the benefits of free software have only been enjoyed by the technically savvy computer user community. Most users are still locked into proprietary solutions for their desktop environments. By using GNOME, free operating systems will have a complete, user-friendly desktop which will provide users with powerful and easy-to-use graphical applications. Many people have suggested that the cause for the lack of free user-oriented appli- cations is that these do not provide enough excitement to hackers, as opposed to system- level programming. Since most of the GNOME code had to be written by hackers, we kept them happy: the magic recipe here is to design GNOME around an adrenaline response by trying to use exciting models and ideas in the applications.
    [Show full text]
  • Why and How I Use Lilypond Daniel F
    Why and How I Use LilyPond Daniel F. Savarese Version 1.1 Copyright © 2018 Daniel F. Savarese1 even with an academic discount. I never got my money's Introduction worth out of it. At the time I couldn't explain exactly why, but I was never productive using it. In June of 2017, I received an email from someone using my classical guitar transcriptions inquiring about how I Years later, when I started playing piano, I upgraded to use LilyPond2 to typeset (or engrave) music. He was the latest version of Finale and suddenly found it easier dissatisfied with his existing WYSIWYG3 commercial to produce scores using the software. It had nothing to software and was looking for alternatives. He was im- do with new features in the product. After notating eight pressed with the appearance of my transcription of Lá- original piano compositions, I realized that my previous grima and wondered if I would share the source for it difficulties had to do with the idiosyncratic requirements and my other transcriptions. of guitar music that were not well-supported by the soft- ware. Nevertheless, note entry and the overall user inter- I sent the inquirer a lengthy response explaining that I'd face of Finale were tedious. I appreciated how accurate like to share the source for my transcriptions, but that it the MIDI playback could be with respect to dynamics, wouldn't be readily usable by anyone given the rather tempo changes, articulations, and so on. But I had little involved set of support files and programs I've built to need for MIDI output.
    [Show full text]
  • Using GNU Autotools to Manage a “Minimal Project”
    05AAL Ch 04 9/12/00 10:14 AM Page 21 4 Using GNU Autotools to Manage a “Minimal Project” This chapter describes how to manage a minimal project using the GNU Autotools. For this discussion, a minimal project refers to the smallest possible project that can still illustrate a sufficient number of principles related to using the tools. Studying a smaller project makes it easier to understand the more complex interactions between these tools when larger projects require advanced features. The example project used throughout this chapter is a fictitious command interpreter called ‘foonly’. ‘foonly’ is written in C, but like many interpreters, uses a lexical analyzer and a parser expressed using the lex and yacc tools. The package is developed to adhere to the GNU ‘Makefile’ standard, which is the default behavior for Automake. This project does not use many features of the GNU Autotools. The most note- worthy one is libraries; this package does not produce any libraries of its own, so Libtool does not feature them in this chapter. The more complex projects presented in Chapter 7, “A Small GNU Autotools Project” and Chapter 11, “A Large GNU Autotools Project” illustrate how Libtool participates in the build system. The essence of this chapter is to provide a high-level overview of the user-written files and how they interact. 4.1 User-Provided Input Files The smallest project requires the user to provide only two files. The GNU Autotools generate the remainder of the files needed to build the package are in Section 4.2, “Generated Output Files.”
    [Show full text]
  • The Starlink Build System SSN/78.1 —Abstract I
    SSN/78.1 Starlink Project Starlink System Note 78.1 Norman Gray, Peter W Draper, Mark B Taylor, Steven E Rankin 11 April 2005 Copyright 2004-5, Council for the Central Laboratory of the Research Councils Copyright 2007, Particle Physics and Astronomy Research Council Copyright 2007, Science and Technology Facilities Council The Starlink Build System SSN/78.1 —Abstract i Abstract This document provides an introduction to the Starlink build system. It describes how to use the Starlink versions of the GNU autotools (autoconf, automake and libtool), how to build the software set from a checkout, how to add and configure new components, and acts as a reference manual for the Starlink-specific autoconf macros and Starlink automake features. It does not describe the management of the CVS repository in detail, nor any other source maintainance patterns. It should be read in conjunction with the detailed build instructions in the README file at the top of the source tree (which takes precedence over any instructions in this document, though there should be no major disagreements), and with sun248, which additionally includes platform-specific notes. Copyright 2004-5, Council for the Central Laboratory of the Research Councils Copyright 2007, Particle Physics and Astronomy Research Council Copyright 2007, Science and Technology Facilities Council ii SSN/78.1—Contents Contents 1 Introduction 1 1.1 Quick entry-points . 2 2 Tools 3 2.1 Overview of the Autotools . 3 2.1.1 Autoconf . 5 2.1.2 Automake . 9 2.1.3 Libtool . 13 2.1.4 Autoreconf: why you don’t need to know about aclocal .
    [Show full text]
  • Project1: Build a Small Scanner/Parser
    Project1: Build A Small Scanner/Parser Introducing Lex, Yacc, and POET cs5363 1 Project1: Building A Scanner/Parser Parse a subset of the C language Support two types of atomic values: int float Support one type of compound values: arrays Support a basic set of language concepts Variable declarations (int, float, and array variables) Expressions (arithmetic and boolean operations) Statements (assignments, conditionals, and loops) You can choose a different but equivalent language Need to make your own test cases Options of implementation (links available at class web site) Manual in C/C++/Java (or whatever other lang.) Lex and Yacc (together with C/C++) POET: a scripting compiler writing language Or any other approach you choose --- must document how to download/use any tools involved cs5363 2 This is just starting… There will be two other sub-projects Type checking Check the types of expressions in the input program Optimization/analysis/translation Do something with the input code, output the result The starting project is important because it determines which language you can use for the other projects Lex+Yacc ===> can work only with C/C++ POET ==> work with POET Manual ==> stick to whatever language you pick This class: introduce Lex/Yacc/POET to you cs5363 3 Using Lex to build scanners lex.yy.c MyLex.l lex/flex lex.yy.c a.out gcc/cc Input stream a.out tokens Write a lex specification Save it in a file (MyLex.l) Compile the lex specification file by invoking lex/flex lex MyLex.l A lex.yy.c file is generated
    [Show full text]
  • Autoconf.Pdf
    Autoconf Creating Automatic Configuration Scripts for version 2.66, 2 July 2010 David MacKenzie Ben Elliston Akim Demaille This manual (2 July 2010) is for GNU Autoconf (version 2.66), a package for creating scripts to configure source code packages using templates and an M4 macro package. Copyright c 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, with the Front-Cover texts being \A GNU Manual," and with the Back-Cover Texts as in (a) below. A copy of the license is included in the section entitled \GNU Free Documentation License." (a) The FSF's Back-Cover Text is: \You have the freedom to copy and modify this GNU manual. Buying copies from the FSF supports it in developing GNU and promoting software freedom." i Table of Contents 1 Introduction::::::::::::::::::::::::::::::::::::: 1 2 The GNU Build System:::::::::::::::::::::::: 3 2.1 Automake:::::::::::::::::::::::::::::::::::::::::::::::::::::: 3 2.2 Gnulib ::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 3 2.3 Libtool::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 4 2.4 Pointers:::::::::::::::::::::::::::::::::::::::::::::::::::::::: 4 3 Making configure Scripts :::::::::::::::::::::: 5 3.1 Writing `configure.ac' ::::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • Autotools Tutorial
    Autotools Tutorial Mengke HU ECE Department Drexel University ASPITRG Group Meeting Outline 1 Introduction 2 GNU Coding standards 3 Autoconf 4 Automake 5 Libtools 6 Demonstration The Basics of Autotools 1 The purpose of autotools I It serves the needs of your users (checking platform and libraries; compiling and installing ). I It makes your project incredibly portablefor dierent system platforms. 2 Why should we use autotools: I A lot of free softwares target Linux operating system. I Autotools allow your project to build successfully on future versions or distributions with virtually no changes to the build scripts. The Basics of Autotools 1 The purpose of autotools I It serves the needs of your users (checking platform and libraries; compiling and installing ). I It makes your project incredibly portablefor dierent system platforms. 2 Why should we use autotools: I A lot of free softwares target Linux operating system. I Autotools allow your project to build successfully on future versions or distributions with virtually no changes to the build scripts. The Basics of Autotools 1 3 GNU packages for GNU build system I Autoconf Generate a conguration script for a project I Automake Simplify the process of creating consistent and functional makeles I Libtool Provides an abstraction for the portable creation of shared libraries 2 Basic steps (commends) to build and install software I tar -zxvf package_name-version.tar.gz I cd package_name-version I ./congure I make I sudo make install The Basics of Autotools 1 3 GNU packages for GNU build
    [Show full text]
  • GNU M4, Version 1.4.7 a Powerful Macro Processor Edition 1.4.7, 23 September 2006
    GNU M4, version 1.4.7 A powerful macro processor Edition 1.4.7, 23 September 2006 by Ren´eSeindal This manual is for GNU M4 (version 1.4.7, 23 September 2006), a package containing an implementation of the m4 macro language. Copyright c 1989, 1990, 1991, 1992, 1993, 1994, 2004, 2005, 2006 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation License.” i Table of Contents 1 Introduction and preliminaries ................ 3 1.1 Introduction to m4 ............................................. 3 1.2 Historical references ............................................ 3 1.3 Invoking m4 .................................................... 4 1.4 Problems and bugs ............................................. 8 1.5 Using this manual .............................................. 8 2 Lexical and syntactic conventions ............ 11 2.1 Macro names ................................................. 11 2.2 Quoting input to m4........................................... 11 2.3 Comments in m4 input ........................................ 11 2.4 Other kinds of input tokens ................................... 12 2.5 How m4 copies input to output ................................ 12 3 How to invoke macros........................
    [Show full text]
  • 1 What Is Gimp? 3 2 Default Short Cuts and Dynamic Keybinding 9
    GUM The Gimp User Manual version 1.0.0 Karin Kylander & Olof S Kylander legalities Legalities The Gimp user manual may be reproduced and distributed, subject to the fol- lowing conditions: Copyright © 1997 1998 by Karin Kylander Copyright © 1998 by Olof S Kylander E-mail: [email protected] (summer 98 [email protected]) The Gimp User Manual is an open document; you may reproduce it under the terms of the Graphic Documentation Project Copying Licence (aka GDPL) as published by Frozenriver. This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANT- ABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Graphic Documentation Project Copying License for more details. GRAPHIC DOCUMENTATION PROJECT COPYING LICENSE The following copyright license applies to all works by the Graphic Docu- mentation Project. Please read the license carefully---it is similar to the GNU General Public License, but there are several conditions in it that differ from what you may be used to. The Graphic Documentation Project manuals may be reproduced and distrib- uted in whole, subject to the following conditions: The Gimp User Manual Page i Legalities All Graphic Documentation Project manuals are copyrighted by their respective authors. THEY ARE NOT IN THE PUBLIC DOMAIN. • The copyright notice above and this permission notice must be preserved complete. • All work done under the Graphic Documentation Project Copying License must be available in source code for anyone who wants to obtain it. The source code for a work means the preferred form of the work for making modifications to it.
    [Show full text]