Metabolomics-Guided Elucidation of Plant Abiotic Stress Responses in the 4IR Era: an Overview

Total Page:16

File Type:pdf, Size:1020Kb

Metabolomics-Guided Elucidation of Plant Abiotic Stress Responses in the 4IR Era: an Overview H OH metabolites OH Review Metabolomics-Guided Elucidation of Plant Abiotic Stress Responses in the 4IR Era: An Overview Morena M. Tinte 1, Kekeletso H. Chele 1, Justin J. J. van der Hooft 2,* and Fidele Tugizimana 1,3,* 1 Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; [email protected] (M.M.T.); [email protected] (K.H.C.) 2 Bioinformatics Group, Wageningen University, 6708 PB Wageningen, The Netherlands 3 International Research and Development Division, Omnia Group, Ltd., Johannesburg 2021, South Africa * Correspondence: [email protected] (J.J.J.v.d.H.); [email protected] (F.T.) Abstract: Plants are constantly challenged by changing environmental conditions that include abiotic stresses. These are limiting their development and productivity and are subsequently threatening our food security, especially when considering the pressure of the increasing global population. Thus, there is an urgent need for the next generation of crops with high productivity and resilience to climate change. The dawn of a new era characterized by the emergence of fourth industrial revolution (4IR) technologies has redefined the ideological boundaries of research and applications in plant sciences. Recent technological advances and machine learning (ML)-based computational tools and omics data analysis approaches are allowing scientists to derive comprehensive metabolic descrip- tions and models for the target plant species under specific conditions. Such accurate metabolic descriptions are imperatively essential for devising a roadmap for the next generation of crops that are resilient to environmental deterioration. By synthesizing the recent literature and collating data on metabolomics studies on plant responses to abiotic stresses, in the context of the 4IR era, we point out Citation: Tinte, M.M.; Chele, K.H.; the opportunities and challenges offered by omics science, analytical intelligence, computational tools van der Hooft, J.J.J.; Tugizimana, F. and big data analytics. Specifically, we highlight technological advancements in (plant) metabolomics Metabolomics-Guided Elucidation of workflows and the use of machine learning and computational tools to decipher the dynamics in the Plant Abiotic Stress Responses in the chemical space that define plant responses to abiotic stress conditions. 4IR Era: An Overview. Metabolites 2021, 11, 445. https://doi.org/ Keywords: abiotic stress; metabolomics; 4IR technologies; automation; machine learning 10.3390/metabo11070445 Academic Editor: Peter Meikle 1. Introduction—A Dawn of a New Era and a Prime to Plant Defenses Received: 25 May 2021 Accepted: 3 July 2021 1.1. The Fourth Industrial Revolution (4IR) Era Published: 8 July 2021 The Fourth Industrial Revolution (4IR) era entails the integration of advanced tech- nologies in the physical, digital and biological domains. This includes the confluence and Publisher’s Note: MDPI stays neutral convergence of emerging technologies such as artificial intelligence (AI), the Internet of with regard to jurisdictional claims in Things (IoT), big data analytics, cloud computing, robotics and wireless telecommunica- published maps and institutional affil- tions [1,2]. These innovative technologies have brought about paradigm shifts and are iations. disruptively boosting many industries globally by encouraging new models that enable the acquisition, sharing, and use of data and resources to produce improved products/services in a faster, cheaper, more effective and sustainable manner [3]. In life sciences, particularly in the field of metabolomics—a multidisciplinary omics science that studies metabolism Copyright: © 2021 by the authors. (Section 2.1)—some of these 4IR technologies have been and are integral components of Licensee MDPI, Basel, Switzerland. metabolomics workflows. It suffices to highlight the use of analytical platforms that are This article is an open access article equipped with analytical and artificial intelligence (A/AI), generation of big data, applica- distributed under the terms and tion and development of big data analytics involving the use of machine and deep learning conditions of the Creative Commons (ML and DL) algorithms (Figure1). Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Metabolites 2021, 11, 445. https://doi.org/10.3390/metabo11070445 https://www.mdpi.com/journal/metabolites Metabolites 20212021,, 1111,, 445x FOR PEER REVIEW 32 of of 4143 Figure 1. 4IR technologies in the plant metabolomics workflow. The 4IR technologies and their implementation within the Figure 1. 4IR technologies in the plant metabolomics workflow. The 4IR technologies and their implementation within the plantplant metabolomicsmetabolomics workflowsworkflows are are indicated indicated based based on on colour, colour, as as highlighted highlighted by by the the key. key. An An illustration illustration of of the the preparation preparation of samplesof samples with with the the assistance assistance of of robotics, robotics, advancements advancements in in analytical analytical platforms, platforms, equipped equipped with with A/AI A/AI forfor sample analysis. TheThe generatedgenerated (big)(big) data can be uploaded on cloud-based servers,servers, e-infrastructures for data analysis, storage and sharing. SomeSome ofof thesethese web-based web-based suits suits include include MetaboAnalyst, MetaboAnalyst, XCMS XCMS Online, Online, MetExplore, MetExplore, PhenoMeNal PhenoMeNal and and GNPS. GNPS. Computational Computa- toolstional in tools these in thesee-infrastructures e-infrastructures involve involve the use the ofuse chemometrics of chemometrics methods, methods, ML ML and and DL DL algorithms. algorithms. Metabolic Metabolic pathwaypathway reconstructionreconstruction and and network network analysis analysis are are of oftenten used used for for biological biological interpretation interpretation of metabolomics of metabolomics data. data. The IoT The isIoT an indis- is an indispensablepensable component component supporting supporting most most of these of these cloud cloud metabolomics metabolomics frameworks. frameworks. AsThis the review field matures,focuses on with the advancementsuse of metabolomics in technologies, in interrogating development plant responses and appli- to cationsadverse ofenvironmental state-of-the-art conditions, bioinformatics with a andparticular computational attention tools,to the equipped4IR technologies with ML in algorithms,this multidisciplinary are gaining omics momentum science. Metabolomics for data mining is increasingly and interpretation enabling [ 4the,5]. decoding Typical widelyof the language adopted examplesof cells at include molecular the Globallevel, advancing Natural Product the understanding Social Molecular of regulatory Network- ingnetwork (GNPS), rules an and ecosystem mechanistic of tandem events mass at cellular spectrometry and chemical (MS/MS) space data of storage, the plant analysis under andconsideration. sharing [6], Plants MetaboLights, are naturally a cloud sessile computing organisms, based and repository are thus susceptible that enables to the changing sharing andenvironmental re-use of data conditions and meta-data such as[ 7abiotic], MS2LDA, stress afactors software that tool include that extractsdrought, co-occurring salinity, ex- masstremefragments high and low and temperatures, neutral losses heavy from MS/MS metals, spectralight and using radiation an unsupervised [13,14]. These ML abiotic algo- rithmstress [factors8], MetaboAnalyst, can negatively a web-based affect plant service growth, consisting development of modules and productivity, for data pretreatment, and sub- miningsequently and the pathway agricultural analysis, yield. XCMS, It is, ther a cloud-basedefore, imperative data analysis to comprehensively suite for preprocessing and pre- untargeteddictively understand liquid chromatography-mass the plant metabolism spectrometry under abiotic (LC-MS) stresses, data, as statisticalsuch fundamental analysis, pathwayand actionable analysis insights and multi-omic(adding to the data current integration, knowledgebase, MetExplore, Section an environment 1.2) will contribute for the curationto the development of metabolic of networks, plants with and enhanced PhenoMeNal, resilience a e-infrastructure and productivity, with and a collection support ofstrategies workflows that andpromote tools plant for metabolomics growth under analysis abiotic stress pipelines conditions [5] (Figure [15,16].1). To The logically digiti- zationarticulate of massthese spectraaspects, to the aid review in biological is struct interpretationured to comprise of plant four metabolomicsmain components. data In is illustratedSections 1.1. in and a study 1.2, ofthe more 4IR era than is 70 brieflyRhamnaceae definedplant and extractsintroduced [9] where as well the as authors the current illu- minatemodels clade-specificof plant defense chemical mechanisms. signatures The annotated second throughmain section an integrative then elaborates computational on 4IR metabolomicstechnologies in workflow. the context of (plant) metabolomics workflows, from sample preparation step toThe the increasing annotation momentum of metabolites. and useAutomation of 4IR technologies and technological in lifesciences, advancements particularly in an- inalytical plant techniques, metabolomics, the whichuse of is machine the focus learning of this review,and computational is redefining tools the ideological to aid in Metabolites
Recommended publications
  • In Vitro Antitumor Activity of Sesquiterpene Lactones from Lychnophora Trichocarpha
    275 In Vitro Antitumor Activity of Sesquiterpene Lactones from Lychnophora trichocarpha SAÚDE-GUIMARÃES, D.A.1*; RASLAN, D.S.2; OLIVEIRA, A.B.3 1Laboratório de Plantas Medicinais (LAPLAMED), Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto. Rua Costa Sena, 171, Centro, CEP: 354000-000, Ouro Preto, Minas Gerais, Brazil *[email protected] 2Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. 3Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil. ABSTRACT: The sesquiterpene lactones lychnopholide and eremantholide C were isolated from Lychnophora trichocarpha Spreng. (Asteraceae), which is a plant species native to the Brazilian Savannah or Cerrado and popularly known as arnica. Sesquiterpene lactones are known to present a variety of biological activities including antitumor activity. The present paper reports on the evaluation of the in vitro antitumor activity of lychnopholide and eremantholide C, in the National Cancer Institute, USA (NCI, USA), against a panel of 52 human tumor cell lines of major human tumors derived from nine cancer types. Lychnopholide disclosed significant activity against 30 cell lines of seven cancer types with IC100 (total growth concentration inhibition) values between 0.41 µM and 2.82 µM. Eremantholide C showed significant activity against 30 cell lines of eight cancer types with IC100 values between 21.40 µM and 53.70 µM. Lychnopholide showed values of lethal concentration 50 % (LC50) for 30 human tumor cell lines between 0.72 and 10.00 µM, whereas eremantholide C presented values of LC50 for 21 human tumor cell lines between 52.50 and 91.20 µM.
    [Show full text]
  • Cytotoxic Effects of Selective Species of Caryophyllaceae in Iran
    Research Journal of Pharmacognosy (RJP) 1(2), 2014: 29-32 Received: Dec 2013 Accepted: Jan 2014 Original article Cytotoxic effects of selective species of Caryophyllaceae in Iran F. Naghibi1,2, M. Irani1, A. Hassanpour1, A. Pirani1*, M. Hamzeloo-Moghadam2 1Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 2Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Abstract Cancer is a major cause of death worldwide and causes serious problems in human life. It is developed by uncontrolled growth of a cell or a group of cells. There are many difficulties in treatment of cancer and many researchers are involved in investigating for effective drugs to treat the disease. Caryophyllaceae is a large family of about 86 genera and 2200 herbaceous or subshrub species. The family is known for its ornamental plants and saponin compounds. In the present study, the potential cytotoxic activity of 17 selected species from Caryophyllaceae has been investigated against MCF-7, HepG-2, A-549, HT-29 and MDBK cells using MTT assay. Five species exhibited cytotoxic effects with IC50 values < 100 μg/mL. Silene ampullata and Acanthophyllum bracteatum extracts were toxic only against MCF-7 cell line suggesting them as suitable candidates for more investigations of breast cancer studies. Keywords: Caryophyllaceae, cytotoxic activity, MTT assay Introduction Cancer is known as the second cause of death with lower side effects. Medicinal plants as worldwide and is characterized by the failure in natural compounds represent a vast potential the regulation of the tissue growth that results in resource for anticancer researches [3].
    [Show full text]
  • In Vitro Callus Culture of Dianthus Chinensis L. for Assessment of Flavonoid Related Gene Expression Pro Le
    In Vitro Callus Culture of Dianthus Chinensis L. for Assessment of Flavonoid Related Gene Expression Prole R. Sreelekshmi University of Kerala Elenjikkal A Siril ( [email protected] ) University of Kerala https://orcid.org/0000-0002-4956-8428 Research Article Keywords: China pink, In vitro avonoid production, Friable callus, 2,4- D, Chalcone synthase Posted Date: March 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-320486/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/27 Abstract Dianthus chinensis L. is an edible, ornamental herb used to prepare the Dianthi Herba, a Chinese traditional rejuvenating medicine. Owing to the rapid proliferation of callus tissues, in vitro production of avonoids has their own specic importance. Callus cultures raised followed by auxin directed biosynthesis of avonoid through related transcript prole were carried out. Murashige and Skoog (MS) medium fortied with 2,4- Dichlorophenoxy acetic acid (2,4- D) or picloram induced formation of friable callus from internode derived cultures of D. chinensis. Culture medium containing 2,4- D (10 µM) produced the highest avonoid content, 4.44 mg quercetin equivalent per gram (QE g− 1) under incubation in continuous dark condition, while maximum dry weight yield (0.38 g/ culture) was obtained from 10 µM 2,4- D under 16 h light / 8 h dark condition (50 µmol m− 2 s− 1 irradiance) at 60 days of incubation. The callus raised in light condition in 10 µM 2,4- D selected to analyze avonoid related gene expression prole viz., chalcone synthase (CHS), chalcone isomerase (CHI), avanone-3-hydroxylase (F3H), and avonol synthase (FLS) at specic time intervals.
    [Show full text]
  • Abiotic Stresses and Its Management in Agriculture Assistant Professor
    Abiotic Stresses And Its Management In Agriculture D.Vijayalakshmi Assistant Professor, Department of Crop Physiology, TNAU, Coimbatore Introduction In today‘s climate change sceranios, crops are exposed more frequently to episodes of abiotic stresses such as drought, salinity, elevated temperature, submergence and nutrient deficiencies. These stresses limit crop production. In recent years, advances in physiology, molecular biology and genetics have greatly improved our understanding of crops response to these stresses and the basis of varietal differences in tolerance. This chapter will clearly define the different abiotic stresses and their impacts on agricultural productivity. Stress – Definitions (i) Physical terms Stress is defined as the force per unit area acting upon a material, inducing strain and leading to dimensional change. More generally, it is used to describe the impact of adverse forces, and this is how it is usually applied to biological systems. (ii) Biological terms In the widest biological sense, stress can be any factor that may produce an adverse effect in individual organisms, populations or communities. Stress is also defined as the overpowering pressure that affects the normal functions of individual life or the conditions in which plants are prevented from fully expressing their genetic potential for 361 growth, development and reproduction (Levitt, 1980; Ernst, 1993). (iii) Agricultural terms Stress is defined as a phenomenon that limits crop productivity or destroys biomass (Grime, 1979). Classification Of Stresses It has become traditional for ecologists, physiologists, and agronomists to divide stresses experienced by plants into two major categories: biotic and abiotic. Biotic stresses originate through interactions between organisms, while abiotic stresses are those that depend on the interaction between organisms and the physical environment.
    [Show full text]
  • Redalyc.Lychnophoric Acid from Lychnophora Pinaster: a Complete and Unequivocal Assignment by NMR Spectroscopy
    Eclética Química ISSN: 0100-4670 [email protected] Universidade Estadual Paulista Júlio de Mesquita Filho Brasil Silveira, D.; de Souza Filho, J. D.; de Oliveira, A. B.; Raslan, D. S. Lychnophoric acid from Lychnophora pinaster: a complete and unequivocal assignment by NMR spectroscopy Eclética Química, vol. 30, núm. 1, janeiro-março, 2005, pp. 37-41 Universidade Estadual Paulista Júlio de Mesquita Filho Araraquara, Brasil Available in: http://www.redalyc.org/articulo.oa?id=42930105 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative www.scielo.br/eq Volume 30, número 1, 2005 Lychnophoric acid from Lychnophora pinaster: a complete and unequivocal assignment by NMR spectroscopy. D. Silveira 1*, J. D. de Souza Filho 2, A. B. de Oliveira 3, D. S. Raslan 2 1Faculdade de Ciências da Saúde, UnB Asa Norte, Brasília, DF, Brazil 2Departamento de Química, ICEx, UFMG. Av. Antônio Carlos 6627, CEP 31270-010. Belo Horizonte, MG, Brazil. 3Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, UFMG . Av. Olegário Maciel, 2360, CEP 30180-112. Belo Horizonte, MG, Brazil. *To whom correspondence should be addressed; e-mail: [email protected] Abstract: The investigation of the hexane extract from aerial parts of Lychnophora pinaster provided, besides others substances, the E-isomer of lychnophoric acid, a sesquiterpene derivative previously isolated from L. affinis. Keywords: Lychnophora pinaster; Asteraceae; lychnophoic acid. Introduction Experimental Plant species of the genus Lychnophora General (Asteraceae) are known as “candeia”, “arnica” and “arnica da serra” and are used in folk medicine Melting point was determined on a Mettler o as anti-flogistic, anti-rheumatic, and analgesic [1].
    [Show full text]
  • Evolutionary Consequences of Dioecy in Angiosperms: the Effects of Breeding System on Speciation and Extinction Rates
    EVOLUTIONARY CONSEQUENCES OF DIOECY IN ANGIOSPERMS: THE EFFECTS OF BREEDING SYSTEM ON SPECIATION AND EXTINCTION RATES by JANA C. HEILBUTH B.Sc, Simon Fraser University, 1996 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA July 2001 © Jana Heilbuth, 2001 Wednesday, April 25, 2001 UBC Special Collections - Thesis Authorisation Form Page: 1 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. The University of British Columbia Vancouver, Canada http://www.library.ubc.ca/spcoll/thesauth.html ABSTRACT Dioecy, the breeding system with male and female function on separate individuals, may affect the ability of a lineage to avoid extinction or speciate. Dioecy is a rare breeding system among the angiosperms (approximately 6% of all flowering plants) while hermaphroditism (having male and female function present within each flower) is predominant. Dioecious angiosperms may be rare because the transitions to dioecy have been recent or because dioecious angiosperms experience decreased diversification rates (speciation minus extinction) compared to plants with other breeding systems.
    [Show full text]
  • Phytomicrobiome Studies for Combating the Abiotic Stress
    Review Volume 11, Issue 3, 2021, 10493 - 10509 https://doi.org/10.33263/BRIAC113.1049310509 Phytomicrobiome Studies for Combating the Abiotic Stress 1 2,* 3 4 Shefali , Mahipal Singh Sankhla , Rajeev Kumar , Swaroop S. Sonone 1 Department of Zoology, DPG Degree College, Gurugram, Haryana; [email protected] (S); 2 Department of Forensic Science, School of Basic and Applied Sciences, Galgotias University, Greater Noida; [email protected] (M.S.S.); 3 Department of Forensic Science, School of Basic and Applied Sciences, Galgotias University, Greater Noida; [email protected] (R.K.); 4 Student of M.Sc. Forensic Science, Government Institute of Forensic Science, Aurangabad, Maharashtra; [email protected] (S.S.S.); * Correspondence: [email protected]; Received: 27.09.2020; Revised: 25.10.2020; Accepted: 27.10.2020; Published: 31.10.2020 Abstract: Agricultural productivity is limited by the various factors of which stresses are the principal ones. The reactive oxygen species (ROS) production in different cell sections is done by protracted stress conditions. ROS outbreaks biomolecules and interrupts the unvarying mechanism of the cell that ultimately prods to cell death. Microbes, the highest normal inhabitants of diverse environments, have advanced complex physiological and metabolic mechanisms to manage with possibly toxic oxygen species produced by ecological stresses. The intricate mechanisms are involved in the plant microbiome. Increasing environmental variations during the incessant stress, growing an essential mark, and revealing plant-microbe association concerning protection against environmental challenges. Keywords: Abiotic stress; agricultural productivity; defense mechanism; Phytomicrobiome. © 2020 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
    [Show full text]
  • Biotic and Abiotic Stresses
    Biotic and Abiotic Stresses Plants relentlessly encounter a wide range of environmental stresses which limits the agricultural productivity. The environmental stresses conferred to plants can be categorized as 1) Abiotic stress 2) Biotic stress Abiotic stresses include salinity, drought, flood, extremes in temperature, heavy metals, radiation etc. It is a foremost factor that causes the loss of major crop plants worldwide. This situation is going to be more rigorous due to increasing desertification of world’s terrestrial area, increasing salinization of soil and water, shortage of water resources and environmental pollution. Biotic stress includes attack by various pathogens such as fungi, bacteria, oomycetes, nematodes and herbivores. Diseases caused by these pathogens accounts for major yield loss worldwide. Being sessile plants have no choice to escape from these environmental cues. Expertise in tolerating these stresses is crucial for completing the lifecycle successfully. Therefore, to combat these threats plants have developed various mechanisms for getting adapted to such conditions for survival. They sense the external stress environment, get stimulated and then generate appropriate cellular responses. These cellular responses work by relaying the stimuli from sensors, located on the cell surface or cytoplasm to the transcriptional machinery which is situated in the nucleus, with the help of various signal transduction pathways. This leads to differential transcriptional changes making the plant tolerant against the stress. The signaling pathways play an indispensable role and acts as a connecting link between sensing the stress environment and generating an appropriate physiological and biochemi cal response (Zhu 2002). Recent studies using genomics and proteomics approach . Stresses Plants are constantly exposed to a variety of potential microbial pathogens such as fungi, bacteria, oomycetes, nematodes and herbivores.
    [Show full text]
  • Plant Responses to Abiotic Stress in Their Natural Habitats
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Bulletin UASVM, Horticulture 65(1)/2008 pISSN 1843-5254; eISSN 1843-5394 PLANT RESPONSES TO ABIOTIC STRESS IN THEIR NATURAL HABITATS BOSCAIU M. 1, C. LULL 2, A. LIDON2, I. BAUTISTA 2, P. DONAT 3, O. MAYORAL 3, O. VICENTE 4 1 Instituto Agroforestal Mediterráneo, 2 Departamento de Química, 3 Departamento de Ecosistemas Agroforestales, 4 Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia, Camino de Vera s/n. 46022 Valencia, Spain, [email protected] Keywords: abiotic stress, stress tolerance mechanisms, halophytes, gypsophytes, xerophytes, ion homeostasis, osmolytes, antioxidant systems Abstract: The study of plant responses to abiotic stress is one of the most active research topics in plant biology, due to its unquestionable academic interest, but also because of its practical implications in agriculture, since abiotic stress (mainly draught and high soil salinity) is the major cause for the reduction in crop yields worldwide. Studies in model systems, such as Arabidopsis thaliana , have allowed to define general, basic molecular mechanisms of stress responses (regulation of osmotic balance and ion homeostasis, synthesis of protective metabolites and proteins, activation of antioxidant systems, etc.). However, these responses, in most cases, do not lead to stress tolerance; in fact, Arabidopsis , like most wild plants, and all important crops are rather sensitive, while some specialised plants (halophytes, gypsophytes, xerophytes…) are resistant to drastic abiotic stress conditions in their natural habitats. Therefore, the response mechanisms in plants naturally adapted to stress must be more efficient that those which operate in non-tolerant plants, although both may share the same molecular basis.
    [Show full text]
  • Abiotic Stress Responses in Photosynthetic Organisms
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Natural Resources Natural Resources, School of 12-2011 Abiotic Stress Responses in Photosynthetic Organisms Joseph Msanne University of Nebrsaka-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/natresdiss Part of the Biology Commons, Natural Resources and Conservation Commons, and the Plant Biology Commons Msanne, Joseph, "Abiotic Stress Responses in Photosynthetic Organisms" (2011). Dissertations & Theses in Natural Resources. 37. https://digitalcommons.unl.edu/natresdiss/37 This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ABIOTIC STRESS RESPONSES IN PHOTOSYNTHETIC ORGANISMS By Joseph Msanne A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Natural Resource Sciences Under the Supervision of Professor Tala N. Awada Lincoln, Nebraska December, 2011 ABIOTIC STRESS RESPONSES IN PHOTOSYNTHETIC ORGANISMS Joseph Msanne, Ph.D. University of Nebraska, 2011 Advisor: Tala N. Awada Cellular and molecular aspects of abiotic stress responses in Arabidopsis thaliana subjected to cold, drought, and high salinity and in two photosynthetic green alga, Chlamydomonas reinhardtii and Coccomyxa sp. C-169, subjected to nitrogen deprivation were investigated. Cold, drought, and high salinity can negatively affect plant growth and crop production. The first research aimed at determining the physiological functions of the stress-responsive Arabidopsis thaliana RD29A and RD29B genes.
    [Show full text]
  • Towards a Phylogenetic Classification of Lychnophorinae (Asteraceae: Vernonieae)
    Benoît Francis Patrice Loeuille Towards a phylogenetic classification of Lychnophorinae (Asteraceae: Vernonieae) São Paulo, 2011 Benoît Francis Patrice Loeuille Towards a phylogenetic classification of Lychnophorinae (Asteraceae: Vernonieae) Tese apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Doutor em Ciências, na Área de Botânica. Orientador: José Rubens Pirani São Paulo, 2011 Loeuille, Benoît Towards a phylogenetic classification of Lychnophorinae (Asteraceae: Vernonieae) Número de paginas: 432 Tese (Doutorado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Botânica. 1. Compositae 2. Sistemática 3. Filogenia I. Universidade de São Paulo. Instituto de Biociências. Departamento de Botânica. Comissão Julgadora: Prof(a). Dr(a). Prof(a). Dr(a). Prof(a). Dr(a). Prof(a). Dr(a). Prof. Dr. José Rubens Pirani Orientador To my grandfather, who made me discover the joy of the vegetal world. Chacun sa chimère Sous un grand ciel gris, dans une grande plaine poudreuse, sans chemins, sans gazon, sans un chardon, sans une ortie, je rencontrai plusieurs hommes qui marchaient courbés. Chacun d’eux portait sur son dos une énorme Chimère, aussi lourde qu’un sac de farine ou de charbon, ou le fourniment d’un fantassin romain. Mais la monstrueuse bête n’était pas un poids inerte; au contraire, elle enveloppait et opprimait l’homme de ses muscles élastiques et puissants; elle s’agrafait avec ses deux vastes griffes à la poitrine de sa monture et sa tête fabuleuse surmontait le front de l’homme, comme un de ces casques horribles par lesquels les anciens guerriers espéraient ajouter à la terreur de l’ennemi.
    [Show full text]
  • Phylogenies and Secondary Chemistry in Arnica (Asteraceae)
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 392 Phylogenies and Secondary Chemistry in Arnica (Asteraceae) CATARINA EKENÄS ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 UPPSALA ISBN 978-91-554-7092-0 2008 urn:nbn:se:uu:diva-8459 !"# $ % !& '((" !()(( * * * + , - . , / , '((", + 0 1# 2, # , 34', 56 , , 70 46"84!855&86(4'8(, - 1# 2 . * 9 10-2 . * . # 9 , * * 1 ! " #! !$ 2 1 2 .8 # * * :# 77 1%&'(2 . !6 '3, + . .8 ) / , ; < * . * ** # , * * * , 09 * . # * * 33 * != , 0- # 9 * * 1, , * 2 . * , 0 * * * * * . * , $ * 0- * % # , # 8 * * * * * * $8> # . * * !' , * * . ** , ? . 0- , +,- # # 7-0 -0 :+' 9 +# $8> ./0) . ) 1 ) 2 * 3) ) .456(7 ) , @ / '((" 700 !=5!8='!& 70 46"84!855&86(4'8( ) ))) 8"&54 1 );; ,/,; A B ) ))) 8"&542 List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals: I Ekenäs, C., B. G. Baldwin, and K. Andreasen. 2007. A molecular phylogenetic
    [Show full text]