Logarithmic Concavity of Schur and Related Polynomials

Total Page:16

File Type:pdf, Size:1020Kb

Logarithmic Concavity of Schur and Related Polynomials LOGARITHMIC CONCAVITY OF SCHUR AND RELATED POLYNOMIALS JUNE HUH, JACOB P. MATHERNE, KAROLA MESZ´ AROS,´ AND AVERY ST. DIZIER ABSTRACT. We show that normalized Schur polynomials are strongly log-concave. As a conse- quence, we obtain Okounkov’s log-concavity conjecture for Littlewood–Richardson coefficients in the special case of Kostka numbers. 1. INTRODUCTION Schur polynomials are the characters of finite-dimensional irreducible polynomial represen- tations of the general linear group GLmpCq. Combinatorially, the Schur polynomial of a partition λ in m variables is the generating function µpTq µpTq µ1pTq µmpTq sλpx1; : : : ; xmq “ x ; x “ x1 ¨ ¨ ¨ xm ; T ¸ where the sum is over all Young tableaux T of shape λ with entries from rms, and µipTq “ the number of i’s among the entries of T; for i “ 1; : : : ; m. Collecting Young tableaux of the same weight together, we get µ sλpx1; : : : ; xmq “ Kλµ x ; µ ¸ where Kλµ is the Kostka number counting Young tableaux of given shape λ and weight µ [Kos82]. Correspondingly, the Schur module Vpλq, an irreducible representation of the general linear group with highest weight λ, has the weight space decomposition Vpλq “ Vpλqµ with dim Vpλqµ “ Kλµ: µ arXiv:1906.09633v3 [math.CO] 25 Sep 2019 à Schur polynomials were first studied by Cauchy [Cau15], who defined them as ratios of alter- nants. The connection to the representation theory of GLmpCq was found by Schur [Sch01]. For a gentle introduction to these remarkable polynomials, and for all undefined terms, we refer to [Ful97]. June Huh received support from NSF Grant DMS-1638352 and the Ellentuck Fund. Jacob Matherne received support from NSF Grant DMS-1638352 and the Association of Members of the Institute for Advanced Study. Karola Mesz´ aros´ received support from NSF Grant DMS-1501059, CAREER NSF Grant DMS-1847284 and a von Neumann Fellowship funded by the Friends of the Institute for Advanced Study. 1 2 JUNE HUH, JACOB P. MATHERNE, KAROLA MESZ´ AROS,´ AND AVERY ST. DIZIER We prove several log-concavity properties of Schur polynomials. An operator that turns generating functions into exponential generating functions will play an important role. This linear operator, denoted N, is defined by the condition µ µ1 µm µ x x1 xm m Npx q “ “ ¨ ¨ ¨ for all µ P N : µ! µ1! µm! Recall that a partition is a weakly decreasing sequence of nonnegative integers. Theorem 1 (Continuous). For any partition λ, the normalized Schur polynomial xµ Nps px ; : : : ; x qq “ K λ 1 m λµ µ! µ ¸ m is either identically zero or its logarithm is concave on the positive orthant R¡0. m m Let ei be the i-th standard unit vector in N . For µ P Z and distinct i; j P rms, we set µpi; jq “ µ ` ei ´ ej: We show that the sequence of weight multiplicities of Vpλq we encounter is always log-concave if we walk in the weight diagram along any root direction ei ´ ej. Theorem 2 (Discrete). For any partition λ and any µ P Nm, we have 2 Kλµ ¥ Kλµpi;jqKλµpj;iq for any i; j P rms. ν For partitions ν; κ, λ, the Littlewood–Richardson coefficient cκλ is given by the decomposition cν Vpκq b Vpλq » Vpνq` κλ : ν à ν When the skew shape ν{κ has at most one box in each column, cκλ is the Kostka number Kλµ, where µ “ ν ´ κ.1 Conversely, for any partition λ and any µ, we have ν Kλµ “ cκλ; n n where ν and κ are the partitions given by νi “ j“i µj and κi “ j“i`1 µj. Thus Theorem2 verifies a special case of Okounkov’s conjecture that the discrete function ř ř ν pν; κ, λq ÞÝÑ log cκλ 1The equality between the Littlewood–Richardson coefficient and the Kostka number follows from Pieri’s formula hµ1 px1; : : : ; xmq ¨ ¨ ¨ hµm px1; : : : ; xmq “ Kλµsλpx1; : : : ; xmq; λ ¸ where hµi is the µi-th complete symmetric function [Ful97, Section 6.1]. When ν{κ has at most one box in each column, the left-hand side is the skew Schur function sν{κ, given by the Littlewood–Richardson rule ν sν{κpx1; : : : ; xmq “ cκλsλpx1; : : : ; xmq: λ ¸ LOGARITHMIC CONCAVITY OF SCHUR AND RELATED POLYNOMIALS 3 is concave [Oko03, Conjecture 1].2 We point out that, for any fixed λ, the log-concavity of Kλµ along any direction is known to hold asymptotically. By [Hec82], the Duistermaat–Heckman measure obtained from the orbit of λ under SUm is a translate of the weak limit Kkλµδ 1 µ lim µ k ; kÑ8 K ř µ kλµ 1 where δ 1 is the point mass at µ. It follows from [Gra96] that, in this case, the density function k µ k ř of the Duistermaat–Heckman measure is log-concave.3 We refer to [BGR04, Section 3] for an exposition. In [BH19], the authors introduce Lorentzian polynomials as a generalization of volume poly- nomials in algebraic geometry and stable polynomials in optimization theory. See Section2 for a brief introduction. We show that normalized Schur polynomials are Lorentzian in the sense of [BH19], and deduce Theorems1 and2 from the Lorentzian property. Theorem 3. The normalized Schur polynomial Npsλpx1; : : : ; xmqq is Lorentzian for any λ. Using general properties of Lorentzian polynomials [BH19, Section 6], Theorem3 can be strengthened as follows. 1 ` Corollary 4. For any sequence of partitions λ ; : : : ; λ and any positive integers m1; : : : ; m`, ` k (1) the normalized product of Schur polynomials Np k“1 sλ px1; : : : ; xmk qq is Lorentzian, and ` k (2) the product of normalized Schur polynomials k±“1 Npsλ px1; : : : ; xmk qq is Lorentzian. ± We prove Theorem3 in Section2 in a more general context of Schubert polynomials, but the main idea is simple enough to be outlined here. The volume polynomial of an irreducible complex 4 projective variety Y , with respect to a sequence of nef divisor classes H “ pH1;:::; Hmq, is the homogeneous polynomial 1 vol px ; : : : ; x q “ px H ` ¨ ¨ ¨ ` x H qdim Y ; Y;H 1 m dim Y ! 1 1 m m »Y where the intersection product of Y is used to expand the integrand. Volume polynomials are prototypical examples of Lorentzian polynomials [BH19, Section 10]. To show that the normal- ized Schur polynomial of λ is a volume polynomial, we suppose that the partition λ has m parts, 2 The conjecture holds in the “classical limit” [Oko03, Section 3], but the general case is refuted in [CDW07]: p4n;3n;2n;1nq n ` 2 p8n;6n;4n;2nq n ` 5 c “ and c “ for all n: p3n;2n;1nqp2n;1n;1nq 2 p6n;4n;2nqp4n;2n;2nq 5 ´ ¯ ´ ¯ The same example shows that the log-concavity conjecture for parabolic Kostka numbers [Kir04, Conjecture 6.17] also fails. 3Let pM;!q be a symplectic manifold of dimension 2n with an action of a torus T and a moment map M Ñ t˚. The Duistermaat–Heckman measure is the push-forward of the Liouville measure !n via the moment map. In this generality, Karshon shows that the density function need not be log-concave [Kar96].³ 4A Cartier divisor on a complete variety Y is nef if it intersects every curve in Y nonnegatively. We refer to [Laz04] for a comprehensive introduction. 4 JUNE HUH, JACOB P. MATHERNE, KAROLA MESZ´ AROS,´ AND AVERY ST. DIZIER and choose a large integer ` to get a complementary pair of partitions λ “ pλ1; λ2; : : : ; λmq and κ “ p`; `; : : : ; `q ´ pλm; λm´1; : : : ; λ1q: The Schur polynomials of the partitions λ and κ are related by the identity5 ` ` ´1 ´1 sκpx1; : : : ; xmq “ x1 ¨ ¨ ¨ xmsλpx1 ; : : : ; xm q: Let X be the product of projective spaces pP`qm, and let Y be a subvariety of X whose funda- mental class satisfies ˚ rY s “ sκpH1;:::; Hmq X rXs; Hi “ c1pπi Op1qq; where πi is the i-th projection. The volume polynomial of Y with respect to H is 1 vol px ; : : : ; x q “ px H ` ¨ ¨ ¨ ` x H qdim Y Y;H 1 m dim Y ! 1 1 n m »Y 1 “ s pH ;:::; H qpx H ` ¨ ¨ ¨ ` x H qdim Y “ Nps px ; : : : ; x qq: dim Y ! κ 1 m 1 1 m m λ 1 m »X m ˚ Such Y can be constructed from a sequence of generic global sections i“1 πi Op1q as a degen- eracy locus [Ful98, Example 14.3.2], completing the argument. À In Section2, we introduce Lorentzian polynomials and prove the main results. In Section3, we present evidence for the ubiquity of Lorentzian polynomials through a series of results and conjectures. Acknowledgments. We are grateful to Dave Anderson, Alex Fink, Allen Knutson, Thomas Lam, Ricky Liu, Alex Postnikov, Pavlo Pylyavskyy, Vic Reiner, Mark Shimozono, and Alex Yong for fruitful discussions. We thank the Institute for Advanced Study for providing an excellent environment for our collaboration. 2. NORMALIZED SCHUR POLYNOMIALS ARE LORENTZIAN A subset J Ď Zn is M-convex6 if, for any index i P rns and any α P J and β P J whose i-th coordinates satisfy αi ¡ βi, there is an index j P rns satisfying αj ă βj and α ´ ei ` ej P J and β ´ ej ` ei P J: The notion of M-convexity forms the foundation of discrete convex analysis [Mur03]. The con- vex hull of an M-convex set is a generalized permutohedron in the sense of [Pos09], and con- versely, the set of integral points in an integral generalized permutohedron is an M-convex set [Mur03, Theorem 1.9]. Lorentzian polynomials connect discrete convex analysis with many log-concavity phenom- ena in combinatorics. See [AOGV18, ALOGV18a, ALOGV18b, BES19, BH18, BH19, EH19] for 5 The dual of the Schur module Vpλq has highest weight p´λm;:::; ´λ1q, see [FH91, Exercise 15.50].
Recommended publications
  • Comultiplication Rules for the Double Schur Functions and Cauchy Identities
    Comultiplication rules for the double Schur functions and Cauchy identities A. I. Molev School of Mathematics and Statistics University of Sydney, NSW 2006, Australia [email protected] Submitted: Aug 27, 2008; Accepted: Jan 17, 2009; Published: Jan 23, 2009 Mathematics Subject Classifications: 05E05 Abstract The double Schur functions form a distinguished basis of the ring Λ(xjja) which is a multiparameter generalization of the ring of symmetric functions Λ(x). The canonical comultiplication on Λ(x) is extended to Λ(xjja) in a natural way so that the double power sums symmetric functions are primitive elements. We calculate the dual Littlewood{Richardson coefficients in two different ways thus providing comultiplication rules for the double Schur functions. We also prove multiparameter analogues of the Cauchy identity. A new family of Schur type functions plays the role of a dual object in the identities. We describe some properties of these dual Schur functions including a combinatorial presentation and an expansion formula in terms of the ordinary Schur functions. The dual Littlewood{Richardson coefficients provide a multiplication rule for the dual Schur functions. Contents 1 Introduction 2 2 Double and supersymmetric Schur functions 6 2.1 Definitions and preliminaries . 6 2.2 Analogues of classical bases . 9 2.3 Duality isomorphism . 10 2.4 Skew double Schur functions . 11 3 Cauchy identities and dual Schur functions 14 3.1 Definition of dual Schur functions and Cauchy identities . 14 3.2 Combinatorial presentation . 17 3.3 Jacobi{Trudi-type formulas . 20 3.4 Expansions in terms of Schur functions . 22 the electronic journal of combinatorics 16 (2009), #R13 1 4 Dual Littlewood{Richardson polynomials 29 5 Transition matrices 33 5.1 Pairing between the double and dual symmetric functions .
    [Show full text]
  • A Combinatorial Proof That Schubert Vs. Schur Coefficients Are Nonnegative
    A COMBINATORIAL PROOF THAT SCHUBERT VS. SCHUR COEFFICIENTS ARE NONNEGATIVE SAMI ASSAF, NANTEL BERGERON, AND FRANK SOTTILE Abstract. We give a combinatorial proof that the product of a Schubert polynomial by a Schur polynomial is a nonnegative sum of Schubert polynomials. Our proof uses Assaf’s theory of dual equivalence to show that a quasisymmetric function of Bergeron and Sottile is Schur-positive. By a geometric comparison theorem of Buch and Mihalcea, this implies the nonnegativity of Gromov-Witten invariants of the Grassmannian. Dedicated to the memory of Alain Lascoux Introduction A Littlewood-Richardson coefficient is the multiplicity of an irreducible representa- tion of the general linear group in a tensor product of two irreducible representations, and is thus a nonnegative integer. Littlewood and Richardson conjectured a formula for these coefficients in 1934 [25], which was proven in the 1970’s by Thomas [33] and Sch¨utzenberger [31]. Since Littlewood-Richardson coefficients may be defined combina- torially as the coefficients of Schur functions in the expansion of a product of two Schur functions, these proofs of the Littlewood-Richardson rule furnish combinatorial proofs of the nonnegativity of Schur structure constants. The Littlewood-Richardson coefficients are also the structure constants for expressing products in the cohomology of a Grassmannian in terms of its basis of Schubert classes. Independent of the Littlewood-Richardson rule, these Schubert structure constants are known to be nonnegative integers through geometric arguments. The integral cohomol- ogy ring of any flag manifold has a Schubert basis and again geometry implies that the corresponding Schubert structure constants are nonnegative integers.
    [Show full text]
  • Representation Theory
    Representation Theory Andrew Kobin Fall 2014 Contents Contents Contents 1 Introduction 1 1.1 Group Theory Review . .1 1.2 Partitions . .2 2 Group Representations 4 2.1 Representations . .4 2.2 G-homomorphisms . .9 2.3 Schur's Lemma . 12 2.4 The Commutant and Endomorphism Algebras . 13 2.5 Characters . 17 2.6 Tensor Products . 24 2.7 Restricted and Induced Characters . 25 3 Representations of Sn 28 3.1 Young Subgroups of Sn .............................. 28 3.2 Specht Modules . 33 3.3 The Decomposition of M µ ............................ 44 3.4 The Hook Length Formula . 48 3.5 Application: The RSK Algorithm . 49 4 Symmetric Functions 52 4.1 Generating Functions . 52 4.2 Symmetric Functions . 53 4.3 Schur Functions . 57 4.4 Symmetric Functions and Character Representations . 60 i 1 Introduction 1 Introduction The following are notes from a course in representation theory taught by Dr. Frank Moore at Wake Forest University in the fall of 2014. The main topics covered are: group repre- sentations, characters, the representation theory of Sn, Young tableaux and tabloids, Specht modules, the RSK algorithm and some further applications to combinatorics. 1.1 Group Theory Review Definition. A group is a nonempty set G with a binary operation \·00 : G×G ! G satisfying (1) (Associativity) a(bc) = (ab)c for all a; b; c 2 G. (2) (Identity) There exists an identity element e 2 G such that for every a 2 G, ae = ea = a. (3) (Inverses) For every a 2 G there is some b 2 G such that ab = ba = e.
    [Show full text]
  • The Contributions of Stanley to the Fabric of Symmetric and Quasisymmetric Functions
    THE CONTRIBUTIONS OF STANLEY TO THE FABRIC OF SYMMETRIC AND QUASISYMMETRIC FUNCTIONS SARA C. BILLEY AND PETER R. W. MCNAMARA A E S A D I Dedicated to L N T C H R on the occasion of his 70th birthday. Y R Abstract. We weave together a tale of two rings, SYM and QSYM, following one gold thread spun by Richard Stanley. The lesson we learn from this tale is that \Combinatorial objects like to be counted by quasisymmetric functions." 1. Introduction The twentieth century was a remarkable era for the theory of symmetric func- tions. Schur expanded the range of applications far beyond roots of polynomials to the representation theory of GLn and Sn and beyond. Specht, Hall and Mac- donald unified the algebraic theory making it far more accessible. Lesieur recog- nized the connection between Schur functions and the topology of Grassmannian manifolds spurring interest and further developments by Borel, Bott, Bernstein{ Gelfand{Gelfand, Demazure and many others. Now, symmetric functions routinely appear in many aspects of mathematics and theoretical physics, and have significant importance in quantum computation. In that era of mathematical giants, Richard Stanley's contributions to symmet- ric functions are shining examples of how enumerative combinatorics has inspired and influenced some of the best work of the century. In this article, we focus on a few of the gems that continue to grow in importance over time. Specifically, we survey some results and applications for Stanley symmetric functions, chromatic symmetric functions, P -partitions, generalized Robinson{Schensted{Knuth corre- spondence, and flag symmetry of posets.
    [Show full text]
  • Tropicalization, Symmetric Polynomials, and Complexity
    TROPICALIZATION, SYMMETRIC POLYNOMIALS, AND COMPLEXITY ALEXANDER WOO AND ALEXANDER YONG ABSTRACT. D. Grigoriev-G. Koshevoy recently proved that tropical Schur polynomials have (at worst) polynomial tropical semiring complexity. They also conjectured tropical skew Schur polynomials have at least exponential complexity; we establish a polynomial complexity upper bound. Our proof uses results about (stable) Schubert polynomials, due to R. P. Stanley and S. Billey-W. Jockusch-R. P. Stanley, together with a sufficient condition for polynomial complexity that is connected to the saturated Newton polytope property. 1. INTRODUCTION The tropicalization of a polynomial X i1 i2 in f = ci1;:::;in x1 x2 ··· xn 2 C[x1; x2; : : : ; xn] n (i1;i2;:::;in)2Z≥0 (with respect to the trivial valuation val(a) = 0 for all a 2 C∗) is defined to be (1) Trop(f) := max fi1x1 + ··· + inxng: i1;:::;in This is a polynomial over the tropical semiring (R; ⊕; ), where a ⊕ b = max(a; b) and a b = a + b respectively denote tropical addition and multiplication, respectively. We refer to the books [ItMiSh09, MaSt15] for more about tropical mathematics. Let Symn denote the ring of symmetric polynomials in x1; : : : ; xn. A linear basis of Symn is given by the Schur polynomials. These polynomials are indexed by partitions λ (identi- fied with their Ferrers/Young diagrams). They are generating series over semistandard Young tableaux T of shape λ with entries from [n] := f1; 2; : : : ; ng: X T T Y #i’s in T sλ(x1; : : : ; xn) := x where x := xi . T i The importance of this basis stems from its applications to, for example, enumerative and algebraic combinatorics, the representation theory of symmetric groups and general linear groups, and Schubert calculus on Grassmannians; see, for example, [Fu97, St99].
    [Show full text]
  • Combinatorics of Schubert Polynomials
    COMBINATORICS OF SCHUBERT POLYNOMIALS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Avery J St. Dizier August 2020 c 2020 Avery J St. Dizier ALL RIGHTS RESERVED COMBINATORICS OF SCHUBERT POLYNOMIALS Avery J St. Dizier, Ph.D. Cornell University 2020 In this thesis, we study several aspects of the combinatorics of various im- portant families of polynomials, particularly focusing on Schubert polynomials. Schubert polynomials arise as distinguished representatives of cohomology classes in the cohomology ring of the flag variety. As polynomials, they enjoy a rich and well-studied combinatorics. Through joint works with Fink and M´esz´aros,we connect the supports of Schubert polynomials to a class of polytopes called gener- alized permutahedra. Through a realization of Schubert polynomials as characters of flagged Weyl modules, we show that the exponents of a Schubert polynomial are exactly the integer points in a generalized permutahedron. We also prove a combinatorial description of this permutahedron. We then study characters of flagged Weyl modules more generally and give an interesting inequality on their coefficients. We next shift our focus onto the coefficients of Schubert polynomials. We describe a construction due to Magyar called orthodontia. We use orthodontia to- gether with the previous inequality for characters to give a complete description of the Schubert polynomials that have only zero and one as coefficients. Through joint work with Huh, Matherne, and M´esz´aros,we next show a discrete log-concavity property of the coefficients of Schubert polynomials.
    [Show full text]
  • The Prism Tableau Model for Schubert Polynomials
    THE PRISM TABLEAU MODEL FOR SCHUBERT POLYNOMIALS ANNA WEIGANDT AND ALEXANDER YONG ABSTRACT. The Schubert polynomials lift the Schur basis of symmetric polynomials into a basis for Z[x1; x2;:::]. We suggest the prism tableau model for these polynomials. A novel aspect of this alternative to earlier results is that it directly invokes semistandard tableaux; it does so as part of a colored tableau amalgam. In the Grassmannian case, a prism tableau with colors ignored is a semistandard Young tableau. Our arguments are developed from the Grobner¨ geometry of matrix Schubert varieties. CONTENTS 1. Introduction 2 1.1. Overview 2 1.2. The main result 2 1.3. Organization 5 2. Main idea of the model and its proof 5 3. Proof of the Theorem 1.1 7 3.1. Matrix Schubert varieties and Schubert polynomials 7 3.2. Multi-plus diagrams 9 3.3. Local moves on plus diagrams 10 3.4. Proof of Theorem 3.6 15 3.5. Conclusion of the proof of Theorem 1.1 16 4. Further discussion 18 4.1. Comparisons to the literature 18 4.2. Details of the reduction to semistandard tableaux 19 4.3. Stable Schubert polynomials 20 4.4. An overlay interpretation of chute and ladder moves 20 4.5. Future work 21 Acknowledgments 22 References 22 Date: September 8, 2015. 1 1. INTRODUCTION 1.1. Overview. A. Lascoux–M.-P. Schutzenberger¨ [LaSh82a] recursively defined an inte- gral basis of Pol = Z[x1; x2;:::] given by the Schubert polynomials fSw : w 2 S1g. If w0 is n−1 n−2 the longest length permutation in the symmetric group Sn then Sw0 := x1 x2 ··· xn−1.
    [Show full text]
  • Random Plane Partitions and Corner Distributions Volume 4, Issue 4 (2021), P
    ALGEBRAIC COMBINATORICS Damir Yeliussizov Random plane partitions and corner distributions Volume 4, issue 4 (2021), p. 599-617. <http://alco.centre-mersenne.org/item/ALCO_2021__4_4_599_0> © The journal and the authors, 2021. Some rights reserved. This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/ Access to articles published by the journal Algebraic Combinatorics on the website http://alco.centre-mersenne.org/ implies agreement with the Terms of Use (http://alco.centre-mersenne.org/legal/). Algebraic Combinatorics is member of the Centre Mersenne for Open Scientific Publishing www.centre-mersenne.org Algebraic Combinatorics Volume 4, issue 4 (2021), p. 599–617 https://doi.org/10.5802/alco.171 Random plane partitions and corner distributions Damir Yeliussizov Abstract We explore some probabilistic applications arising in connections with K-theoretic symmetric functions. For instance, we determine certain corner distributions of random lozenge tilings and plane partitions. We also introduce some distributions that are naturally related to the corner growth model. Our main tools are dual symmetric Grothendieck polynomials and normalized Schur functions. 1. Introduction Combinatorics arising in connection with K-theoretic Schubert calculus is quite rich. Accompanied by certain families of symmetric functions, it usually presents some in- homogeneous deformations of objects beyond classical Schur (or Schubert) case. While the subject is intensively studied from combinatorial, algebraic and geometric aspects, see [20,7,8, 34, 19, 13, 35] and many references therein, much less is known about probabilistic connections (unlike interactions between probability and representation theory). Some work in this direction was done in [32, 22] and related problems were addressed in [38].(1) In this paper, we give several probabilistic applications obtained with tools from combinatorial K-theory.
    [Show full text]
  • Arxiv:1705.09649V2 [Math.CO]
    A DEMAZURE CRYSTAL CONSTRUCTION FOR SCHUBERT POLYNOMIALS SAMI ASSAF AND ANNE SCHILLING Abstract. Stanley symmetric functions are the stable limits of Schubert polynomials. In this paper, we show that, conversely, Schubert polynomials are Demazure truncations of Stanley symmetric functions. This parallels the relationship between Schur functions and Demazure characters for the general linear group. We establish this connection by imposing a Demazure crystal structure on key tableaux, recently introduced by the first author in connection with Demazure characters and Schubert polynomials, and linking this to the type A crystal structure on reduced word factorizations, recently introduced by Morse and the second author in connection with Stanley symmetric functions. 1. Introduction Schubert polynomials Sw were first introduced by Bernstein et al. [BGG73] as certain polynomial repre- sentatives of cohomology classes of Schubert cycles Xw in flag varieties. They were extensively studied by Lascoux and Sch¨utzenberger [LS82] using an explicit definition in terms of difference operators ∂w. Subse- quently, a combinatorial expression for Schubert polynomials as the generating polynomial for compatible se- quences for reduced expressions of a permutation w was discovered by Billey, Jockusch, and Stanley [BJS93]. In the special case of the Grassmannian subvariety, Schubert polynomials are Schur polynomials, which also arise as the irreducible characters for the general linear group. The Stanley symmetric functions Fw were introduced by Stanley [Sta84] in the pursuit of enumerations of the reduced expressions of permutations, in particular of the long permutation w0. They are defined combinatorially as the generating functions of reduced factorizations of permutations. Stanley symmetric functions are the stable limit of Schubert polynomials [Mac91a, Mac91b], precisely (1.1) Fw(x1, x2,...) = lim S1m×w(x1, x2,...,xn+m).
    [Show full text]
  • The Theory of Schur Polynomials Revisited
    THE THEORY OF SCHUR POLYNOMIALS REVISITED HARRY TAMVAKIS Abstract. We use Young’s raising operators to give short and uniform proofs of several well known results about Schur polynomials and symmetric func- tions, starting from the Jacobi-Trudi identity. 1. Introduction One of the earliest papers to study the symmetric functions later known as the Schur polynomials sλ is that of Jacobi [J], where the following two formulas are found. The first is Cauchy’s definition of sλ as a quotient of determinants: λi+n−j n−j (1) sλ(x1,...,xn) = det(xi )i,j . det(xi )i,j where λ =(λ1,...,λn) is an integer partition with at most n non-zero parts. The second is the Jacobi-Trudi identity (2) sλ = det(hλi+j−i)1≤i,j≤n which expresses sλ as a polynomial in the complete symmetric functions hr, r ≥ 0. Nearly a century later, Littlewood [L] obtained the positive combinatorial expansion (3) s (x)= xc(T ) λ X T where the sum is over all semistandard Young tableaux T of shape λ, and c(T ) denotes the content vector of T . The traditional approach to the theory of Schur polynomials begins with the classical definition (1); see for example [FH, M, Ma]. Since equation (1) is a special case of the Weyl character formula, this method is particularly suitable for applica- tions to representation theory. The more combinatorial treatments [Sa, Sta] use (3) as the definition of sλ(x), and proceed from there. It is not hard to relate formulas (1) and (3) to each other directly; see e.g.
    [Show full text]
  • On the Complexity of Computing Kostka Numbers and Littlewood-Richardson Coefficients
    Formal Power Series and Algebraic Combinatorics S´eries Formelles et Combinatoire Alg´ebrique San Diego, California 2006 . On the complexity of computing Kostka numbers and Littlewood-Richardson coefficients Hariharan Narayanan Abstract. Kostka numbers and Littlewood-Richardson coefficients appear in combina- torics and representation theory. Interest in their computation stems from the fact that they are present in quantum mechanical computations since Wigner ([17]). In recent times, there have been a number of algorithms proposed to perform this task ([1], [13], [14], [2], [3]). The issue of their computational complexity was explicitly asked by E. Rassart ([13]). We prove that the computation of either quantity is #P -complete. This, implies that unless P = NP , which is widely disbelieved, there do not exist efficient algorithms that compute these numbers. Resum´ e.´ Les nombres de Kostka et les coefficients de Littlewood-Richardson apparaissent en combinatoire et en th´eorie de la repr´esentation. Il est int´eressant de les calculer car ils ap- paraissent dans certains calculs en m´ecanique quantique depuis Wigner ([17]). R´ecemment, plusieurs algorithmes ont ´et´epropos´espour les calculer ([1], [13], [14], [2], [3]). Le probl`eme de la complexit´ede ce calcul a ´et´epos´epar E. Rassart ([13]). Nous d´emontrons que le calcul des nombres de Kotska et des coefficients de Littlewood-Richardson est #P-complet. Cela implique que, `amoins que P=NP, il n’existe pas d’algorithme efficace pour calculer ces nombres. 1. Introduction Let N = {1, 2,...} be the set of positive integers and Z≥0 = N ∪ {0}. Let λ =(λ1,...,λs) ∈ Ns Zt Zu , λ1 ≥ λ2 ≥ ··· ≥ λs ≥ 1, µ = (µ1,...,µt) ∈ ≥0, ν = (ν1,...,νu) ∈ ≥0 and v α = (α1,...,αv) ∈ N , α1 ≥···≥ αv ≥ 1.
    [Show full text]
  • The Permutahedral Variety, Mixed Eulerian Numbers, and Principal Specializations of Schubert Polynomials
    THE PERMUTAHEDRAL VARIETY, MIXED EULERIAN NUMBERS, AND PRINCIPAL SPECIALIZATIONS OF SCHUBERT POLYNOMIALS PHILIPPE NADEAU AND VASU TEWARI Abstract. We compute the expansion of the cohomology class of the permutahedral variety in the basis of Schubert classes. The resulting structure constants aw are expressed as a sum of normalized mixed Eulerian numbers indexed naturally by reduced words of w. The description implies that the aw are positive for all permutations w 2 Sn of length n − 1, thereby answering a question of Harada, Horiguchi, Masuda and Park. We use the same expression to establish the invariance of aw under taking inverses and conjugation by the longest word, and subsequently establish an intriguing cyclic sum rule for the numbers. We then move toward a deeper combinatorial understanding for the aw by exploiting in addition the relation to Postnikov's divided symmetrization. Finally, we are able to give a combinatorial interpretation for aw when w is vexillary, in terms of certain tableau descents. It is based in part on a relation between the numbers aw and principal specializations of Schubert polynomials. Along the way, we prove results and raise questions of independent interest about the combina- torics of permutations, Schubert polynomials and related objects. We also sketch how to extend our approach to other Lie types, highlighting in particular an identity of Klyachko. Contents 1. Introduction and statement of results 2 2. Preliminaries 6 3. Formulas for aw 11 4. Mixed Eulerian numbers 13 5. Properties of the numbers aw 16 6. Combinatorial interpretation of aw in special cases 20 7. The case of vexillary permutations 25 8.
    [Show full text]