Combinatorial Aspects of Generalizations of Schur Functions

Total Page:16

File Type:pdf, Size:1020Kb

Combinatorial Aspects of Generalizations of Schur Functions Combinatorial aspects of generalizations of Schur functions A Thesis Submitted to the Faculty of Drexel University by Derek Heilman in partial fulfillment of the requirements for the degree of Doctor of Philosophy March 2013 CONTENTS ii Contents Abstract iv 1 Introduction 1 2 General background 3 2.1 Symmetric functions . .4 2.2 Schur functions . .6 2.3 The Hall inner product . .9 2.4 The Pieri rule for Schur functions . 10 3 The Pieri rule for the dual Grothendieck polynomials 16 3.1 Grothendieck polynomials . 16 3.2 Dual Grothendieck polynomials . 17 3.3 Elegant fillings . 18 3.4 Pieri rule for the dual Grothendieck polynomials . 21 4 Insertion proof of the dual Grothendieck Pieri rule 24 4.1 Examples . 25 4.2 Insertion algorithm . 27 4.3 Sign changing involution on reverse plane partitions and XO-diagrams 32 4.4 Combinatorial proof of the dual Grothendieck Pieri rule . 41 5 Factorial Schur functions and their expansion 42 5.1 Definition of a factorial Schur polynomial . 43 5.2 The expansion of factorial Schur functions in terms of Schur functions 47 6 A reverse change of basis 52 6.1 Change of basis coefficients . 52 CONTENTS iii 6.2 A combinatorial involution . 55 6.3 Reverse change of basis . 57 References 59 ABSTRACT iv Abstract Combinatorial aspects of generalizations of Schur functions Derek Heilman Jennifer Morse, Ph.D The understanding of the space of symmetric functions is gained through the study of its bases. Certain bases can be defined by purely combinatorial methods, some- times enabling important properties of the functions to fall from carefully constructed combinatorial algorithms. A classic example is given by the Schur basis, made up of functions that can be defined using semi-standard Young tableaux. The Pieri rule for multiplying an important special case of Schur functions is proven using an insertion algorithm on tableaux that was defined by Robinson, Schensted, and Knuth. Further- more, the transition matrices between Schur functions and other symmetric function bases are often linked to representation theoretic multiplicities. The description of these matrices can sometimes be given combinatorially as the enumeration of a set of objects such as tableaux. A similar combinatorial approach is applied here to a basis for the symmetric function space that is dual to the Grothendieck polynomial basis. These polynomials are defined combinatorially using reverse plane partitions. Bijecting reverse plane partitions with a subset of semi-standard Young tableaux over a doubly-sized alphabet enables the extension of RSK-insertion to reverse plane partitions. This insertion, paired with a sign changing involution, is used to give the desired combinatorial proof of the Pieri rule for this basis. Another basis of symmetric functions is given by the set of factorial Schur functions. While their expansion into Schur functions can ABSTRACT v be described combinatorially, the reverse change of basis had no such formulation. A new set of combinatorial objects is introduced to describe the expansion coefficients, and another sign changing involution is used to prove that these do in fact encode the transition matrices. 1 INTRODUCTION 1 1 Introduction Symmetric functions play a large role in many mathematical fields including group theory, Lie algebras, and algebraic geometry. There are many different bases for the ring of symmetric functions, one of the most fundamental is the Schur functions. Schur functions are indexed by partitions and are directly connected to other mathematical fields including geometry and representation theory. The most usual definition of a Schur function is the combinatorial one (Section 2). This definition uses combinatorial objects allowing many instrumental mathematical proofs. These combinatorial proofs can be seen visually acting on these objects. One example is the RSK insertion proof, which proves the Pieri rule for Schur functions. Another set of functions that form a basis for the ring of symmetric functions are the Grothendieck polynomials, they have many similar properties to those of Schur functions [6; 8; 15; 18]. Lascoux and Schutzenberger introduced Grothendieck polynomials [14]. These are inhomogeneous polynomials representing classes of structure sheaves of Schubert varieties in the Grothendieck ring of the flag varieties. Fomin and Kirillov continued the study of these polynomials giving a combinatorial construction of Grothendieck polynomials in terms of rc-graphs [5]. Buch continued work on these polynomials and developed the Littlewood-Richardson rule for them [3]. Similar to the Littlewood- Richardson rule for Schur functions, this rule defines the coefficients for the expansion of the product of two Grothendieck polynomials in terms of Grothendieck polynomi- als. The set of polynomials that are dual to the Grothendieck polynomials is known as the dual Grothendieck polynomials. The Littlewood-Richardson coefficients for these dual polynomials are also derived in Buch's paper by means of the coproduct [3]. The dual Grothendieck polynomials were first studied directly and called dual stable Grothendieck polynomials [11]. They can be defined combinatorially using 1 INTRODUCTION 2 objects known as reverse plane partitions. Recall that the Pieri rule for Schur func- tions has a very elegant proof using RSK insertion. However, there was no such elegant proof for the dual Grothendieck polynomials due to the structure of the re- verse plane partitions. There does exists a bijection between reverse plane partitions and pairs of semi-standard Young tableaux and elegant fillings. Lam and Pylyavskyy defined one bijection and Bandlow and Morse defined another slightly more intuitive approach [11; 1]. These topics will be covered in Section 3. Using these pairs of semi-standard Young tableaux and elegant fillings, a similar insertion method will be used to construct an insertion based proof for the Pieri rule for the dual Grothendieck polynomials (Section 4). The proof will also require a sign changing involution to be defined to account for the remaining terms (section 4). Schur functions, when limited to n variables, can be generalized to a different type of functions. One set of these functions are the factorial Schur functions. They are a generalization of Schur functions introducing another set of variables a. When Biedenharn and Louck first discovered them, they fixed the values of the variables a to ai = 1 − i [2]. This was done to decompose tensor products of representations when using particular bases. Factorial Schur functions are special cases of double Schu- bert polynomials for Grassmannian permutations [14; 13]. Knutson and Tao also showed that factorial Schur functions are the equivariant cohomology of Grassmanni- ans [9]. Chen and Louck gave new foundations based on divided difference operators [4]. Goulden and Hamel further developed the analogy between Schur functions and factorial Schur functions [7]. Molev and Sagan found a Littlewood-Richardson rule for factorial Schur functions as well as other useful results [17]. Kreiman later dis- covered more interesting facts for factorial Schur functions [10]. One of these facts is the the change of basis formula for expanding factorial Schur functions in terms of Schur functions, as well as Schur functions in terms of factorial Schur functions. Molev also gave an easy combinatorial method for computing the coefficients of the 2 GENERAL BACKGROUND 3 expansion of factorial Schur functions in terms of Schur functions, which is covered in Section 5 [16]. Although this method can be used to compute the reverse expansion, it requires more mechanics. Section 6 will give a simple combinatorial method of describing these reverse change of basis coefficients and an elegant proof. 2 General background This section will describe symmetric functions, bases for the ring of symmetric func- tions, and tools for Schur functions from algebraic combinatorics. The theory of sym- metric functions applies to enumerative combinatorics. These applications branch out to many other fields of mathematics including group theory, Lie algebras, algebraic geometry, and representation theory. Partitions and Ferrers diagrams will play an important role in indexing and describing bases for the ring of symmetric functions. Fillings of Ferrers diagrams and particularly semi-standard Young tableaux are the primary combinatorial objects used to both define Schur functions and appear as a tool in various combinatorial proofs. Monomial symmetric functions and the complete homogeneous symmetric polynomials are two bases for the ring of symmetric func- tions. The Hall inner product is defined using the the monomial symmetric functions and the complete homogeneous symmetric polynomials. This Hall inner product is used to define duality between two bases for the ring of symmetric functions. The Schur functions are the only set of functions that is dual to itself. Expanding products of Schur functions in terms of Schur functions was a classical problem in the field of algebraic combinatorics. A simplified version of this problem is the Pieri rule for the Schur functions. The classical proof of the Pieri rule for Schur functions was done using the RSK algorithm [6; 8; 15; 18]. 2 GENERAL BACKGROUND 4 2.1 Symmetric functions For an m-tuple of non-negative integers, γ = (γ1; γ2; ··· ; γm), and n independent variables, (x1; x2; : : : ; xn), define γ (γ1,γ2,...,γm) γ1 γ2 γm x = x = x1 x2 : : : xm . For an infinite sequence of non-negative integers ,γ = (γ1; γ2;:::), and infinite inde- pendent variables, (x1; x2;:::), define γ (γ1,γ2;:::) γ1 γ2 x = x = x1 x2 ··· . (2;1;3;0;4) 2 1 3 0 4 2 3 4 Example. x = x1x2x3x4x5 = x1x2x3x5. P α For a set of n independent variables x = (x1; x2; : : : ; xn), given f(x) = cαx , where α ranges over n-tuples of non-negative integers and cα 2 R, f(x) is a symmetric function of n variables if f(x) = f(!(x)) 8! 2 Sn, where Sn is the symmetric group of degree n. Therefore f(x) is invariant by any permutation on the variables x.Λn is the ring formed from all the symmetric functions of n variables.
Recommended publications
  • Comultiplication Rules for the Double Schur Functions and Cauchy Identities
    Comultiplication rules for the double Schur functions and Cauchy identities A. I. Molev School of Mathematics and Statistics University of Sydney, NSW 2006, Australia [email protected] Submitted: Aug 27, 2008; Accepted: Jan 17, 2009; Published: Jan 23, 2009 Mathematics Subject Classifications: 05E05 Abstract The double Schur functions form a distinguished basis of the ring Λ(xjja) which is a multiparameter generalization of the ring of symmetric functions Λ(x). The canonical comultiplication on Λ(x) is extended to Λ(xjja) in a natural way so that the double power sums symmetric functions are primitive elements. We calculate the dual Littlewood{Richardson coefficients in two different ways thus providing comultiplication rules for the double Schur functions. We also prove multiparameter analogues of the Cauchy identity. A new family of Schur type functions plays the role of a dual object in the identities. We describe some properties of these dual Schur functions including a combinatorial presentation and an expansion formula in terms of the ordinary Schur functions. The dual Littlewood{Richardson coefficients provide a multiplication rule for the dual Schur functions. Contents 1 Introduction 2 2 Double and supersymmetric Schur functions 6 2.1 Definitions and preliminaries . 6 2.2 Analogues of classical bases . 9 2.3 Duality isomorphism . 10 2.4 Skew double Schur functions . 11 3 Cauchy identities and dual Schur functions 14 3.1 Definition of dual Schur functions and Cauchy identities . 14 3.2 Combinatorial presentation . 17 3.3 Jacobi{Trudi-type formulas . 20 3.4 Expansions in terms of Schur functions . 22 the electronic journal of combinatorics 16 (2009), #R13 1 4 Dual Littlewood{Richardson polynomials 29 5 Transition matrices 33 5.1 Pairing between the double and dual symmetric functions .
    [Show full text]
  • A Combinatorial Proof That Schubert Vs. Schur Coefficients Are Nonnegative
    A COMBINATORIAL PROOF THAT SCHUBERT VS. SCHUR COEFFICIENTS ARE NONNEGATIVE SAMI ASSAF, NANTEL BERGERON, AND FRANK SOTTILE Abstract. We give a combinatorial proof that the product of a Schubert polynomial by a Schur polynomial is a nonnegative sum of Schubert polynomials. Our proof uses Assaf’s theory of dual equivalence to show that a quasisymmetric function of Bergeron and Sottile is Schur-positive. By a geometric comparison theorem of Buch and Mihalcea, this implies the nonnegativity of Gromov-Witten invariants of the Grassmannian. Dedicated to the memory of Alain Lascoux Introduction A Littlewood-Richardson coefficient is the multiplicity of an irreducible representa- tion of the general linear group in a tensor product of two irreducible representations, and is thus a nonnegative integer. Littlewood and Richardson conjectured a formula for these coefficients in 1934 [25], which was proven in the 1970’s by Thomas [33] and Sch¨utzenberger [31]. Since Littlewood-Richardson coefficients may be defined combina- torially as the coefficients of Schur functions in the expansion of a product of two Schur functions, these proofs of the Littlewood-Richardson rule furnish combinatorial proofs of the nonnegativity of Schur structure constants. The Littlewood-Richardson coefficients are also the structure constants for expressing products in the cohomology of a Grassmannian in terms of its basis of Schubert classes. Independent of the Littlewood-Richardson rule, these Schubert structure constants are known to be nonnegative integers through geometric arguments. The integral cohomol- ogy ring of any flag manifold has a Schubert basis and again geometry implies that the corresponding Schubert structure constants are nonnegative integers.
    [Show full text]
  • Young Tableaux and Arf Partitions
    Turkish Journal of Mathematics Turk J Math (2019) 43: 448 – 459 http://journals.tubitak.gov.tr/math/ © TÜBİTAK Research Article doi:10.3906/mat-1807-181 Young tableaux and Arf partitions Nesrin TUTAŞ1;∗,, Halil İbrahim KARAKAŞ2, Nihal GÜMÜŞBAŞ1, 1Department of Mathematics, Faculty of Science, Akdeniz University, Antalya, Turkey 2Faculty of Commercial Science, Başkent University, Ankara, Turkey Received: 24.07.2018 • Accepted/Published Online: 24.12.2018 • Final Version: 18.01.2019 Abstract: The aim of this work is to exhibit some relations between partitions of natural numbers and Arf semigroups. We also give characterizations of Arf semigroups via the hook-sets of Young tableaux of partitions. Key words: Partition, Young tableau, numerical set, numerical semigroup, Arf semigroup, Arf closure 1. Introduction Numerical semigroups have many applications in several branches of mathematics such as algebraic geometry and coding theory. They play an important role in the theory of algebraic geometric codes. The computation of the order bound on the minimum distance of such a code involves computations in some Weierstrass semigroup. Some families of numerical semigroups have been deeply studied from this point of view. When the Weierstrass semigroup at a point Q is an Arf semigroup, better results are developed for the order bound; see [8] and [3]. Partitions of positive integers can be graphically visualized with Young tableaux. They occur in several branches of mathematics and physics, including the study of symmetric polynomials and representations of the symmetric group. The combinatorial properties of partitions have been investigated up to now and we have quite a lot of knowledge. A connection with numerical semigroups is given in [4] and [10].
    [Show full text]
  • Tropicalization, Symmetric Polynomials, and Complexity
    TROPICALIZATION, SYMMETRIC POLYNOMIALS, AND COMPLEXITY ALEXANDER WOO AND ALEXANDER YONG ABSTRACT. D. Grigoriev-G. Koshevoy recently proved that tropical Schur polynomials have (at worst) polynomial tropical semiring complexity. They also conjectured tropical skew Schur polynomials have at least exponential complexity; we establish a polynomial complexity upper bound. Our proof uses results about (stable) Schubert polynomials, due to R. P. Stanley and S. Billey-W. Jockusch-R. P. Stanley, together with a sufficient condition for polynomial complexity that is connected to the saturated Newton polytope property. 1. INTRODUCTION The tropicalization of a polynomial X i1 i2 in f = ci1;:::;in x1 x2 ··· xn 2 C[x1; x2; : : : ; xn] n (i1;i2;:::;in)2Z≥0 (with respect to the trivial valuation val(a) = 0 for all a 2 C∗) is defined to be (1) Trop(f) := max fi1x1 + ··· + inxng: i1;:::;in This is a polynomial over the tropical semiring (R; ⊕; ), where a ⊕ b = max(a; b) and a b = a + b respectively denote tropical addition and multiplication, respectively. We refer to the books [ItMiSh09, MaSt15] for more about tropical mathematics. Let Symn denote the ring of symmetric polynomials in x1; : : : ; xn. A linear basis of Symn is given by the Schur polynomials. These polynomials are indexed by partitions λ (identi- fied with their Ferrers/Young diagrams). They are generating series over semistandard Young tableaux T of shape λ with entries from [n] := f1; 2; : : : ; ng: X T T Y #i’s in T sλ(x1; : : : ; xn) := x where x := xi . T i The importance of this basis stems from its applications to, for example, enumerative and algebraic combinatorics, the representation theory of symmetric groups and general linear groups, and Schubert calculus on Grassmannians; see, for example, [Fu97, St99].
    [Show full text]
  • Flag Varieties and Interpretations of Young Tableau Algorithms
    Flag Varieties and Interpretations of Young Tableau Algorithms Marc A. A. van Leeuwen Universit´ede Poitiers, D´epartement de Math´ematiques, SP2MI, T´el´eport 2, BP 179, 86960 Futuroscope Cedex, France [email protected] URL: /~maavl/ ABSTRACT The conjugacy classes of nilpotent n × n matrices can be parametrised by partitions λ of n, and for a nilpotent η in the class parametrised by λ, the variety Fη of η-stable flags has its irreducible components parametrised by the standard Young tableaux of shape λ. We indicate how several algorithmic constructions defined for Young tableaux have significance in this context, thus extending Steinberg’s result that the relative position of flags generically chosen in the irreducible components of Fη parametrised by tableaux P and Q, is the permutation associated to (P,Q) under the Robinson-Schensted correspondence. Other constructions for which we give interpretations are Sch¨utzenberger’s involution of the set of Young tableaux, jeu de taquin (leading also to an interpretation of Littlewood-Richardson coefficients), and the transpose Robinson-Schensted correspondence (defined using column insertion). In each case we use a doubly indexed family of partitions, defined in terms of the flag (or pair of flags) determined by a point chosen in the variety under consideration, and we show that for generic choices, the family satisfies combinatorial relations that make it correspond to an instance of the algorithmic operation being interpreted, as described in [vLee3]. 1991 Mathematics Subject Classification: 05E15, 20G15. Keywords and Phrases: flag manifold, nilpotent, Jordan decomposition, jeu de taquin, Robinson-Schensted correspondence, Littlewood-Richardson rule.
    [Show full text]
  • The Theory of Schur Polynomials Revisited
    THE THEORY OF SCHUR POLYNOMIALS REVISITED HARRY TAMVAKIS Abstract. We use Young’s raising operators to give short and uniform proofs of several well known results about Schur polynomials and symmetric func- tions, starting from the Jacobi-Trudi identity. 1. Introduction One of the earliest papers to study the symmetric functions later known as the Schur polynomials sλ is that of Jacobi [J], where the following two formulas are found. The first is Cauchy’s definition of sλ as a quotient of determinants: λi+n−j n−j (1) sλ(x1,...,xn) = det(xi )i,j . det(xi )i,j where λ =(λ1,...,λn) is an integer partition with at most n non-zero parts. The second is the Jacobi-Trudi identity (2) sλ = det(hλi+j−i)1≤i,j≤n which expresses sλ as a polynomial in the complete symmetric functions hr, r ≥ 0. Nearly a century later, Littlewood [L] obtained the positive combinatorial expansion (3) s (x)= xc(T ) λ X T where the sum is over all semistandard Young tableaux T of shape λ, and c(T ) denotes the content vector of T . The traditional approach to the theory of Schur polynomials begins with the classical definition (1); see for example [FH, M, Ma]. Since equation (1) is a special case of the Weyl character formula, this method is particularly suitable for applica- tions to representation theory. The more combinatorial treatments [Sa, Sta] use (3) as the definition of sλ(x), and proceed from there. It is not hard to relate formulas (1) and (3) to each other directly; see e.g.
    [Show full text]
  • Notes on Grassmannians
    NOTES ON GRASSMANNIANS ANDERS SKOVSTED BUCH This is class notes under construction. We have not attempted to account for the history of the results covered here. 1. Construction of Grassmannians 1.1. The set of points. Let k = k be an algebraically closed field, and let kn be the vector space of column vectors with n coordinates. Given a non-negative integer m ≤ n, the Grassmann variety Gr(m, n) is defined as a set by Gr(m, n)= {Σ ⊂ kn | Σ is a vector subspace with dim(Σ) = m} . Our first goal is to show that Gr(m, n) has a structure of algebraic variety. 1.2. Space with functions. Let FR(n, m) = {A ∈ Mat(n × m) | rank(A) = m} be the set of all n × m matrices of full rank, and let π : FR(n, m) → Gr(m, n) be the map defined by π(A) = Span(A), the column span of A. We define a topology on Gr(m, n) be declaring the a subset U ⊂ Gr(m, n) is open if and only if π−1(U) is open in FR(n, m), and further declare that a function f : U → k is regular if and only if f ◦ π is a regular function on π−1(U). This gives Gr(m, n) the structure of a space with functions. ex:morphism Exercise 1.1. (1) The map π : FR(n, m) → Gr(m, n) is a morphism of spaces with functions. (2) Let X be a space with functions and φ : Gr(m, n) → X a map.
    [Show full text]
  • Diagrammatic Young Projection Operators for U(N)
    Diagrammatic Young Projection Operators for U(n) Henriette Elvang 1, Predrag Cvitanovi´c 2, and Anthony D. Kennedy 3 1 Department of Physics, UCSB, Santa Barbara, CA 93106 2 Center for Nonlinear Science, Georgia Institute of Technology, Atlanta, GA 30332-0430 3 School of Physics, JCMB, King’s Buildings, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (Dated: April 23, 2004) We utilize a diagrammatic notation for invariant tensors to construct the Young projection operators for the irreducible representations of the unitary group U(n), prove their uniqueness, idempotency, and orthogonality, and rederive the formula for their dimensions. We show that all U(n) invariant scalars (3n-j coefficients) can be constructed and evaluated diagrammatically from these U(n) Young projection operators. We prove that the values of all U(n) 3n-j coefficients are proportional to the dimension of the maximal representation in the coefficient, with the proportionality factor fully determined by its Sk symmetric group value. We also derive a family of new sum rules for the 3-j and 6-j coefficients, and discuss relations that follow from the negative dimensionality theorem. PACS numbers: 02.20.-a,02.20.Hj,02.20.Qs,02.20.Sv,02.70.-c,12.38.Bx,11.15.Bt 2 I. INTRODUCTION Symmetries are beautiful, and theoretical physics is replete with them, but there comes a time when a calcula- tion must be done. Innumerable calculations in high-energy physics, nuclear physics, atomic physics, and quantum chemistry require construction of irreducible many-particle states (irreps), decomposition of Kronecker products of such states into irreps, and evaluations of group theoretical weights (Wigner 3n-j symbols, reduced matrix elements, quantum field theory “vacuum bubbles”).
    [Show full text]
  • Boolean Product Polynomials, Schur Positivity, and Chern Plethysm
    BOOLEAN PRODUCT POLYNOMIALS, SCHUR POSITIVITY, AND CHERN PLETHYSM SARA C. BILLEY, BRENDON RHOADES, AND VASU TEWARI Abstract. Let k ≤ n be positive integers, and let Xn = (x1; : : : ; xn) be a list of n variables. P The Boolean product polynomial Bn;k(Xn) is the product of the linear forms i2S xi where S ranges over all k-element subsets of f1; 2; : : : ; ng. We prove that Boolean product polynomials are Schur positive. We do this via a new method of proving Schur positivity using vector bundles and a symmetric function operation we call Chern plethysm. This gives a geometric method for producing a vast array of Schur positive polynomials whose Schur positivity lacks (at present) a combinatorial or representation theoretic proof. We relate the polynomials Bn;k(Xn) for certain k to other combinatorial objects including derangements, positroids, alternating sign matrices, and reverse flagged fillings of a partition shape. We also relate Bn;n−1(Xn) to a bigraded action of the symmetric group Sn on a divergence free quotient of superspace. 1. Introduction The symmetric group Sn of permutations of [n] := f1; 2; : : : ; ng acts on the polynomial ring C[Xn] := C[x1; : : : ; xn] by variable permutation. Elements of the invariant subring Sn (1.1) C[Xn] := fF (Xn) 2 C[Xn]: w:F (Xn) = F (Xn) for all w 2 Sn g are called symmetric polynomials. Symmetric polynomials are typically defined using sums of products of the variables x1; : : : ; xn. Examples include the power sum, the elementary symmetric polynomial, and the homogeneous symmetric polynomial which are (respectively) (1.2) k k X X pk(Xn) = x1 + ··· + xn; ek(Xn) = xi1 ··· xik ; hk(Xn) = xi1 ··· xik : 1≤i1<···<ik≤n 1≤i1≤···≤ik≤n Given a partition λ = (λ1 ≥ · · · ≥ λk > 0) with k ≤ n parts, we have the monomial symmetric polynomial X (1.3) m (X ) = xλ1 ··· xλk ; λ n i1 ik i1; : : : ; ik distinct as well as the Schur polynomial sλ(Xn) whose definition is recalled in Section 2.
    [Show full text]
  • FRG Report: the Crystal Structure of the Plethysm of Schur Functions
    FRG report: The crystal structure of the plethysm of Schur functions Mike Zabrocki, Franco Saliola Apr 1-8, 2018 Our focused research group consisted of Laura Colmenarejo, Rosa Orellana, Franco Saliola, Anne Schilling and Mike Zabrocki. We worked at the BIRS station from April 1 until April 8 (except Rosa Orellana who left on April 6). 1 The problem The irreducible polynomial representations of GLn are indexed by partitions with at most n parts. Given such a representation indexed by the partition λ, its character is the Schur polynomial X weight(T ) sλ = x : (1) T 2SSYT(λ) Composition of these representations becomes composition of their characters, denoted sλ[sµ] and this op- eration is known as the operation of plethysm. Composition of characters is a symmetric polynomial which Littlewood [Lit44] called the (outer) plethysm. The objective of our focused research group project is the resolution of the following well known open problem. ν Problem 1 Find a combinatorial interpretation of the coefficients aλ,µ in the expansion X ν sλ[sµ] = aλ,µsν : (2) ν In the last more than a century of research in representation theory, the basic problem of understanding ν the coefficients aλ,µ has stood as a measure of progress in the field. A related question that we felt was an important first step in the resolution of Problem 1 is the following second approach to understanding the underlying representation theory. Problem 2 Find a combinatorial interpretation for the multiplicity of an irreducible Sn module indexed by a partition λ in an irreducible polynomial GLn module indexed by a partition µ.
    [Show full text]
  • SYMMETRIC POLYNOMIALS and Uq(̂Sl2)
    REPRESENTATION THEORY An Electronic Journal of the American Mathematical Society Volume 4, Pages 46{63 (February 7, 2000) S 1088-4165(00)00065-0 b SYMMETRIC POLYNOMIALS AND Uq(sl2) NAIHUAN JING Abstract. We study the explicit formula of Lusztig's integral forms of the b level one quantum affine algebra Uq(sl2) in the endomorphism ring of sym- metric functions in infinitely many variables tensored with the group algebra of Z. Schur functions are realized as certain orthonormal basis vectors in the vertex representation associated to the standard Heisenberg algebra. In this picture the Littlewood-Richardson rule is expressed by integral formulas, and −1 b is used to define the action of Lusztig's Z[q; q ]-form of Uq(sl2)onSchur polynomials. As a result the Z[q; q−1]-lattice of Schur functions tensored with the group algebra contains Lusztig's integral lattice. 1. Introduction The relation between vertex representations and symmetric functions is one of the interesting aspects of affine Kac-Moody algebras and the quantum affine alge- bras. In the late 1970's to the early 1980's the Kyoto school [DJKM] found that the polynomial solutions of KP hierarchies are obtained by Schur polynomials. This breakthrough was achieved in formulating the KP and KdV hierarchies in terms of affine Lie algebras. On the other hand, I. Frenkel [F1] identified the two construc- tions of the affine Lie algebras via vertex operators, which put the boson-fermion correspondence in a rigorous formulation. I. Frenkel [F2] further showed that the boson-fermion correspondence can give the Frobenius formula of the irreducible characters for the symmetric group Sn (see also [J1]).
    [Show full text]
  • Introduction to Algebraic Combinatorics: (Incomplete) Notes from a Course Taught by Jennifer Morse
    INTRODUCTION TO ALGEBRAIC COMBINATORICS: (INCOMPLETE) NOTES FROM A COURSE TAUGHT BY JENNIFER MORSE GEORGE H. SEELINGER These are a set of incomplete notes from an introductory class on algebraic combinatorics I took with Dr. Jennifer Morse in Spring 2018. Especially early on in these notes, I have taken the liberty of skipping a lot of details, since I was mainly focused on understanding symmetric functions when writ- ing. Throughout I have assumed basic knowledge of the group theory of the symmetric group, ring theory of polynomial rings, and familiarity with set theoretic constructions, such as posets. A reader with a strong grasp on introductory enumerative combinatorics would probably have few problems skipping ahead to symmetric functions and referring back to the earlier sec- tions as necessary. I want to thank Matthew Lancellotti, Mojdeh Tarighat, and Per Alexan- dersson for helpful discussions, comments, and suggestions about these notes. Also, a special thank you to Jennifer Morse for teaching the class on which these notes are based and for many fruitful and enlightening conversations. In these notes, we use French notation for Ferrers diagrams and Young tableaux, so the Ferrers diagram of (5; 3; 3; 1) is We also frequently use one-line notation for permutations, so the permuta- tion σ = (4; 3; 5; 2; 1) 2 S5 has σ(1) = 4; σ(2) = 3; σ(3) = 5; σ(4) = 2; σ(5) = 1 0. Prelimaries This section is an introduction to some notions on permutations and par- titions. Most of the arguments are given in brief or not at all. A familiar reader can skip this section and refer back to it as necessary.
    [Show full text]