Readiness Standards for Mathematics Exemplar Lesson Plan

Total Page:16

File Type:pdf, Size:1020Kb

Readiness Standards for Mathematics Exemplar Lesson Plan College- and Career- Readiness Standards for Mathematics Exemplar Lesson Plan “Polynomials, Maximum or Minimum?” A-SSE.2 A-APR.3 F-IF.4 Carey M. Wright, Ed.D., State Superintendent of Education Office of the Chief Academic Officer Kim S. Benton, Ed.D., Chief Academic Officer Office of Professional Development Trecina Green, Executive Director Carol Ladner, Professional Development Coordinator Elizabeth Fulmer, Professional Development Coordinator Office of Secondary Education Jean Massey, Executive Director Marla Davis, Ph.D., NBCT, Bureau Director Office of Elementary Education and Reading Nathan Oakley, Executive Director Mississippi College- and Career-Readiness Standards Mathematics Exemplar Lesson Plan COURSE: Algebra II Title: Polynomials, Maximum or Minimum? Real World Purpose: Estimated Duration: 3 to 4 Days Polynomials can be found in many different and diverse industries such as aerospace, architecture, financial planning, legal, and construction to name a few. But what about polynomial division? Ever think you might do that again after a high school or college math course? You will if you become a pharmacist and need to determine the correct amount of a drug to administer to a patient. The same goes for a chemist. They use polynomial division to derive chemical formulas. I Can: A-SSE.2: Use the structure of an expression to identify ways to rewrite it. For example, see x4 – y4 as (x2)2 – (y2)2 thus recognizing it as a 2 2 2 2 difference of squares that can be factored as (x – y ) (x + y ). A-APR.3: Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. F-IF.4: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* Page 1 of 25 Mississippi College- and Career-Readiness Standards Mathematics Exemplar Lesson Plan Prerequisite Skills: A-SSE.1: Interpret expressions that represent a quantity in terms of its context.* a. Interpret parts of an expression, such as terms, factors, and coefficients. b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1+r)n as the product of P and a factor not depending on P. A-APR.1: Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. A-APR.2: Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x). A-APR.6: Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using inspection, long division, or, for the more complicated examples, a computer algebra system. A-REI.4: Solve quadratic equations in one variable. b. Solve quadratic equations by inspection (e.g., for x2 = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b. A-REI.10: Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). Page 2 of 25 Mississippi College- and Career-Readiness Standards Mathematics Exemplar Lesson Plan Materials/Resources: Key Vocabulary: • www.classzone.com • Algebra tiles • Quadratic • T-chart • www.msemac.redwoods.ed • Graphing calculator • Linear factor • Punnett square u/~kyokoyama/math106/M • Graph paper • Long division • Sum of Cubes ath380pdf • Mini-white board • Synthetic division • Difference of Cubes • www.illustrativemathemati • Expo marker • Polynomial • Difference of Two Square c.org • Eraser • Zero • Complex solutions • www.engageny.com • Algebra II Pearson • Solution • u-substitution • • https://mathstackexchange. Prentice Hall • Root X-intercept • Decreasing interval com • Attachments (Total: 8) • Relative maximum • Union • https://wvde.state.wv.us/st • Relative minimum • • Multiplicity rategybank/FrayerModel.ht Increasing interval • Zero Product Property ml Lesson Introduction Student Exploration Activity: What does the graph model? Student Independent Work (15 minutes estimated) Directions: The teacher will distribute the activity Real-World Context – Graph – Function (Attachment #1). The teacher will review the directions at the top of the activity. The teacher will give students 10 minutes to match the real-world situation to the graph and to match the graph to the function without the use of a calculator. The teacher will spend 5 minutes as closure reviewing students’ work sample and introducing the unit Polynomials, Maximum or Minimum? Page 3 of 25 Mississippi College- and Career-Readiness Standards Mathematics Exemplar Lesson Plan Activity Objective: Using prior knowledge, students will work independently to determine which real-world situation models the polynomial represented by each graph. Students will have an opportunity to match the graph of the polynomial to the function. The teacher will explain the general characteristics of a polynomial function and how to relate the graph to its function. Lesson Activities Guidelines for Group Work • The teacher will remind students during the Pair and Share activities that collaboration is required. Students will share work collaboratively in solving the task given. Once one student finds the solution, the other student needs to check their work. Students will take turns problem solving until the task is complete. Students will use the “Flag It” technique to note any areas of difficulty during the activity on sticky notes. • The teacher will remind students during the Group activities that collaboration is required. Students will need to take turns completing parts of the task until the task is complete. When a student is not identifying or determining solutions, he/she should be checking the work of another student or asking questions of the group. Students will use the “Flag It” technique to note any areas of difficulty during the activity on sticky notes. • The teacher will circulate throughout the classroom to monitor student work and to guide them through the activity using any form of questioning technique they deem appropriate. The teacher is encouraged to ask guiding questions that will encourage productive struggle and critical thinking skills. The teacher will also monitor individual student understanding and general misconceptions. Day 1 1. Activity #1: A-SSE.3a Mini-Review Factoring Quadratic Expressions - All students using Mini-white Boards and Algebra Tiles (15 minutes estimated) The teacher will review factoring quadratics using mini-white boards which allow the teacher to assess students’ prior knowledge. The teacher will allow students to use Algebra Tiles if needed for struggling learners. Quadratics may range from an easier type x2 + 4x (where the leading coefficient is a = 1) to a harder type 4x2 - 4x -15 (where the leading coefficient is a ≠ 1). The teacher will select 5 to 10 quadratics to review during this activity. The teacher will remind students that they can also use T-charts and Punnett Squares if Page 4 of 25 Mississippi College- and Career-Readiness Standards Mathematics Exemplar Lesson Plan needed to factor the quadratics. The teacher will guide students through the activity using effective questioning techniques. Two questions a teacher might ask include, “Do you remember any factoring steps from Algebra I that could assist you?” and “What are the factors of 4 and 15?” The teacher will allow for opportunities at the beginning of the review for students to have productive struggle with factoring techniques for quadratics. Students will also have any opportunity to assess their own level of understanding by noting issues that arise during instruction. Activity Objective: Students were introduced to factoring quadratics in Algebra I and furthered their skills in factoring quadratics and finding zeros in this course. Students will review their prior knowledge and fluency of factoring quadratics to better prepare for Day 2 Activity #2. 2. Activity #2: A-APR.6 Mini-Review Long Division of Polynomials - Students using white board and paper/pencil at desk (20 minutes estimated) The teacher will call two students to the board to divide a 3rd degree or higher polynomial by a given linear factor. For example, x3 - 13x +12 divided by x + 4. One student will perform long division and another student may perform synthetic division. While at their desk, the remainder of the class may use paper/pencil and choose any method they prefer. The two students at the board will compare their solutions. Students at their desks will also check their work. The teacher will remind students that division is a technique to find factors of polynomials. The teacher will guide students to factor the quadratic into linear factors as well. The teacher will choose several different types of long division problems to showcase during the review activity. The teacher will call upon different pairs of students for each problem as time permits. The teacher will ask guided questions during the review activity to assess students’ conceptual understanding and circulate throughout the classroom to assess students’ procedural skill and determine fluency. Activity Objective: Students will review long division of polynomials as a procedural skill while improving their fluency with factoring. Students will have an opportunity to assess their understanding of polynomial long division during the review.
Recommended publications
  • Lesson 1: Solutions to Polynomial Equations
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 1 M3 PRECALCULUS AND ADVANCED TOPICS Lesson 1: Solutions to Polynomial Equations Classwork Opening Exercise How many solutions are there to the equation 푥2 = 1? Explain how you know. Example 1: Prove that a Quadratic Equation Has Only Two Solutions over the Set of Complex Numbers Prove that 1 and −1 are the only solutions to the equation 푥2 = 1. Let 푥 = 푎 + 푏푖 be a complex number so that 푥2 = 1. a. Substitute 푎 + 푏푖 for 푥 in the equation 푥2 = 1. b. Rewrite both sides in standard form for a complex number. c. Equate the real parts on each side of the equation, and equate the imaginary parts on each side of the equation. d. Solve for 푎 and 푏, and find the solutions for 푥 = 푎 + 푏푖. Lesson 1: Solutions to Polynomial Equations S.1 This work is licensed under a This work is derived from Eureka Math ™ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org This file derived from PreCal-M3-TE-1.3.0-08.2015 Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 1 M3 PRECALCULUS AND ADVANCED TOPICS Exercises Find the product. 1. (푧 − 2)(푧 + 2) 2. (푧 + 3푖)(푧 − 3푖) Write each of the following quadratic expressions as the product of two linear factors. 3. 푧2 − 4 4. 푧2 + 4 5. 푧2 − 4푖 6. 푧2 + 4푖 Lesson 1: Solutions to Polynomial Equations S.2 This work is licensed under a This work is derived from Eureka Math ™ and licensed by Great Minds.
    [Show full text]
  • Use of Iteration Technique to Find Zeros of Functions and Powers of Numbers
    USE OF ITERATION TECHNIQUE TO FIND ZEROS OF FUNCTIONS AND POWERS OF NUMBERS Many functions y=f(x) have multiple zeros at discrete points along the x axis. The location of most of these zeros can be estimated approximately by looking at a graph of the function. Simple roots are the ones where f(x) passes through zero value with finite value for its slope while double roots occur for functions where its derivative also vanish simultaneously. The standard way to find these zeros of f(x) is to use the Newton-Raphson technique or a variation thereof. The procedure is to expand f(x) in a Taylor series about a starting point starting with the original estimate x=x0. This produces the iteration- 2 df (xn ) 1 d f (xn ) 2 0 = f (xn ) + (xn+1 − xn ) + (xn+1 − xn ) + ... dx 2! dx2 for which the function vanishes. For a function with a simple zero near x=x0, one has the iteration- f (xn ) xn+1 = xn − with x0 given f ′(xn ) For a double root one needs to keep three terms in the Taylor series to yield the iteration- − f ′(x ) + f ′(x)2 − 2 f (x ) f ′′(x ) n n n ∆xn+1 = xn+1 − xn = f ′′(xn ) To demonstrate how this procedure works, take the simple polynomial function- 2 4 f (x) =1+ 2x − 6x + x Its graph and the derivative look like this- There appear to be four real roots located near x=-2.6, -0.3, +0.7, and +2.2. None of these four real roots equal to an integer, however, they correspond to simple zeros near the values indicated.
    [Show full text]
  • 5.2 Polynomial Functions 5.2 Polynomialfunctions
    5.2 Polynomial Functions 5.2 PolynomialFunctions This is part of 5.1 in the current text In this section, you will learn about the properties, characteristics, and applications of polynomial functions. Upon completion you will be able to: • Recognize the degree, leading coefficient, and end behavior of a given polynomial function. • Memorize the graphs of parent polynomial functions (linear, quadratic, and cubic). • State the domain of a polynomial function, using interval notation. • Define what it means to be a root/zero of a function. • Identify the coefficients of a given quadratic function and he direction the corresponding graph opens. • Determine the verte$ and properties of the graph of a given quadratic function (domain, range, and minimum/maximum value). • Compute the roots/zeroes of a quadratic function by applying the quadratic formula and/or by factoring. • !&etch the graph of a given quadratic function using its properties. • Use properties of quadratic functions to solve business and social science problems. DescribingPolynomialFunctions ' polynomial function consists of either zero or the sum of a finite number of non-zero terms, each of which is the product of a number, called the coefficient of the term, and a variable raised to a non-negative integer (a natural number) power. Definition ' polynomial function is a function of the form n n ) * f(x =a n x +a n ) x − +...+a * x +a ) x+a +, − wherea ,a ,...,a are real numbers andn ) is a natural number. � + ) n ≥ In a previous chapter we discussed linear functions, f(x =mx=b , and the equation of a horizontal line, y=b .
    [Show full text]
  • Factors, Zeros, and Solutions
    Mathematics Instructional Plan – Algebra II Factors, Zeros, and Solutions Strand: Functions Topic: Exploring relationships among factors, zeros, and solutions Primary SOL: AII.8 The student will investigate and describe the relationships among solutions of an equation, zeros of a function, x-intercepts of a graph, and factors of a polynomial expression. Related SOL: AII.1d, AII.4b, AII.7b Materials Zeros and Factors activity sheet (attached) Matching Cards activity sheet (attached) Sorting Challenge activity sheet (attached) Graphing utility Colored paper Graph paper Vocabulary factor, fundamental theorem of algebra, imaginary numbers, multiplicity, polynomial, rate of change, real numbers, root, slope, solution, x-intercept, y-intercept, zeros of a function Student/Teacher Actions: What should students be doing? What should teachers be doing? Time: 90 minutes 1. Have students solve the equation 3x + 5 = 11. Then, have students set the left side of the equation equal to zero. Tell students to replace zero with y and consider the line y = 3x − 6. Instruct them to graph the line on graph paper. Review the terms slope, x- intercept, and y-intercept. Then, have them perform the same procedure (i.e., solve, set left side equal to zero, replace zero with y, and graph) for the equation −2x + 6 = 4. They should notice that in both cases, the x-intercept is the same as the solution to the equation. 2. Students explored factoring of zeros in Algebra I. Use the following practice problem to review: y = x2 + 4x + 3. Facilitate a discussion with students using the following questions: o “What is the first step in graphing the given line?” o “How do you find the factors of the line?” o “What role does zero play in graphing the line?” o “In how many ‘places’ did this line cross (intersect) the x-axis?” o “When the function crosses the x-axis, what is the value of y?” o “What is the significance of the x-intercepts of the graphs?” 3.
    [Show full text]
  • Elementary Functions, Student's Text, Unit 21
    DOCUMENT RESUME BD 135 629 SE 021 999 AUTHOR Allen, Frank B.; And Others TITLE Elementary Functions, Student's Text, Unit 21. INSTITUTION Stanford Univ., Calif. School Mathematics Study Group. SPONS AGENCY National Science Foundation, Washington, D.C. PUB DATE 61 NOTE 398p.; For related documents, see SE 021 987-022 002 and ED 130 870-877; Contains occasional light type EDRS PRICE MF-$0.83 HC-$20.75 Plus Postage. DESCRIPTO2S *Curriculum; Elementary Secondary Education; Instruction; *Instructional Materials; Mathematics Education; *Secondary School Mathematics; *Textbooks IDENTIFIERS *Functions (Mathematics); *School Mathematics Study Group ABSTRACT Unit 21 in the SMSG secondary school mathematics series is a student text covering the following topics in elementary functions: functions, polynomial functions, tangents to graphs of polynomial functions, exponential and logarithmic functions, and circular functions. Appendices discuss set notation, mathematical induction, significance of polynomials, area under a polynomial graph, slopes of area functions, the law of growth, approximation and computation of e raised to the x power, an approximation for ln x, measurement of triangles, trigonometric identities and equations, and calculation of sim x and cos x. (DT) *********************************************************************** Documents acquired by ERIC include many informal unpublished * materials not available from other sources. ERIC makes every effort * * to obtain the best copy available. Nevertheless, items of marginal * * reproducibility are often encountered and this affects the quality * * of the microfiche and hardcopy reproductions ERIC makes available * * via the ERIC Document Reproduction Service (EDRS). EDRS is not * responsible for the quality of the original document. Reproductions * * supplied by EDRS are the best that can be made from the original.
    [Show full text]
  • Applications of Derivatives
    5128_Ch04_pp186-260.qxd 1/13/06 12:35 PM Page 186 Chapter 4 Applications of Derivatives n automobile’s gas mileage is a function of many variables, including road surface, tire Atype, velocity, fuel octane rating, road angle, and the speed and direction of the wind. If we look only at velocity’s effect on gas mileage, the mileage of a certain car can be approximated by: m(v) ϭ 0.00015v 3 Ϫ 0.032v 2 ϩ 1.8v ϩ 1.7 (where v is velocity) At what speed should you drive this car to ob- tain the best gas mileage? The ideas in Section 4.1 will help you find the answer. 186 5128_Ch04_pp186-260.qxd 1/13/06 12:36 PM Page 187 Section 4.1 Extreme Values of Functions 187 Chapter 4 Overview In the past, when virtually all graphing was done by hand—often laboriously—derivatives were the key tool used to sketch the graph of a function. Now we can graph a function quickly, and usually correctly, using a grapher. However, confirmation of much of what we see and conclude true from a grapher view must still come from calculus. This chapter shows how to draw conclusions from derivatives about the extreme val- ues of a function and about the general shape of a function’s graph. We will also see how a tangent line captures the shape of a curve near the point of tangency, how to de- duce rates of change we cannot measure from rates of change we already know, and how to find a function when we know only its first derivative and its value at a single point.
    [Show full text]
  • Optimization Algorithms on Matrix Manifolds
    00˙AMS September 23, 2007 © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. Chapter Six Newton’s Method This chapter provides a detailed development of the archetypal second-order optimization method, Newton’s method, as an iteration on manifolds. We propose a formulation of Newton’s method for computing the zeros of a vector field on a manifold equipped with an affine connection and a retrac­ tion. In particular, when the manifold is Riemannian, this geometric Newton method can be used to compute critical points of a cost function by seeking the zeros of its gradient vector field. In the case where the underlying space is Euclidean, the proposed algorithm reduces to the classical Newton method. Although the algorithm formulation is provided in a general framework, the applications of interest in this book are those that have a matrix manifold structure (see Chapter 3). We provide several example applications of the geometric Newton method for principal subspace problems. 6.1 NEWTON’S METHOD ON MANIFOLDS In Chapter 5 we began a discussion of the Newton method and the issues involved in generalizing such an algorithm on an arbitrary manifold. Sec­ tion 5.1 identified the task as computing a zero of a vector field ξ on a Riemannian manifold equipped with a retraction R. The strategy pro­ M posed was to obtain a new iterate xk+1 from a current iterate xk by the following process. 1. Find a tangent vector ηk Txk such that the “directional derivative” of ξ along η is equal to ∈ ξ.
    [Show full text]
  • Lesson 11 M1 ALGEBRA II
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 11 M1 ALGEBRA II Lesson 11: The Special Role of Zero in Factoring Student Outcomes . Students find solutions to polynomial equations where the polynomial expression is not factored into linear factors. Students construct a polynomial function that has a specified set of zeros with stated multiplicity. Lesson Notes This lesson focuses on the first part of standard A-APR.B.3, identifying zeros of polynomials presented in factored form. Although the terms root and zero are interchangeable, for consistency only the term zero is used throughout this lesson and in later lessons. The second part of the standard, using the zeros to construct a rough graph of a polynomial function, is delayed until Lesson 14. The ideas that begin in this lesson continue in Lesson 19, in which students will be able to associate a zero of a polynomial function to a factor in the factored form of the associated polynomial as a consequence of the remainder theorem, and culminate in Lesson 39, in which students apply the fundamental theorem of algebra to factor polynomial expressions completely over the complex numbers. Classwork Scaffolding: Here is an alternative opening Opening Exercise (12 minutes) activity that may better illuminate the special role of Opening Exercise zero. ퟐ ퟐ Find all solutions to the equation (풙 + ퟓ풙 + ퟔ)(풙 − ퟑ풙 − ퟒ) = ퟎ. For each equation, list some possible values for 푥 and 푦. The main point of this opening exercise is for students to recognize and then formalize that the statement “If 푎푏 = 0, then 푎 = 0 or 푏 = 0” applies not only when 푎 and 푏 are 푥푦 = 10, 푥푦 = 1, numbers or linear functions (which we used when solving a quadratic equation), but also 푥푦 = −1, 푥푦 = 0 applies to cases where 푎 and 푏 are polynomial functions of any degree.
    [Show full text]
  • Real Zeros of Polynomial Functions
    333353_0200.qxp 1/11/07 2:00 PM Page 91 Polynomial and Chapter 2 Rational Functions y y y 2.1 Quadratic Functions 2 2 2 2.2 Polynomial Functions of Higher Degree x x x −44−2 −44−2 −44−2 2.3 Real Zeros of Polynomial Functions 2.4 Complex Numbers 2.5 The Fundamental Theorem of Algebra Polynomial and rational functions are two of the most common types of functions 2.6 Rational Functions and used in algebra and calculus. In Chapter 2, you will learn how to graph these types Asymptotes of functions and how to find the zeros of these functions. 2.7 Graphs of Rational Functions 2.8 Quadratic Models David Madison/Getty Images Selected Applications Polynomial and rational functions have many real-life applications. The applications listed below represent a small sample of the applications in this chapter. ■ Automobile Aerodynamics, Exercise 58, page 101 ■ Revenue, Exercise 93, page 114 ■ U.S. Population, Exercise 91, page 129 ■ Impedance, Exercises 79 and 80, page 138 ■ Profit, Exercise 64, page 145 ■ Data Analysis, Exercises 41 and 42, page 154 ■ Wildlife, Exercise 43, page 155 ■ Comparing Models, Exercise 85, page 164 ■ Media, Aerodynamics is crucial in creating racecars.Two types of racecars designed and built Exercise 18, page 170 by NASCAR teams are short track cars, as shown in the photo, and super-speedway (long track) cars. Both types of racecars are designed either to allow for as much downforce as possible or to reduce the amount of drag on the racecar. 91 333353_0201.qxp 1/11/07 2:02 PM Page 92 92 Chapter 2 Polynomial and Rational Functions 2.1 Quadratic Functions The Graph of a Quadratic Function What you should learn ᭿ Analyze graphs of quadratic functions.
    [Show full text]
  • Root-Finding 3.1 Physical Problems
    Physics 200 Lecture 3 Root-Finding Lecture 3 Physics 200 Laboratory Monday, February 14th, 2011 The fundamental question answered by this week's lab work will be: Given a function F (x), find some/all of the values xi for which F (xi) = 0. It's a f g modest goal, and we will use a simple method to solve the problem. But, as we shall see, there are a wide range of physical problems that have, at their heart, just such a question. We'll start in the simplest, polynomial setting, and work our way up to the \shooting" method. 3.1 Physical Problems We'll set up some direct applications of root-finding with familiar physical examples, and then shift gears and define a numerical root-finding routine that can be used to solve a very different set of problems. 3.1.1 Orbital Motion In two-dimensions, with a spherically symmetric potential (meaning here that V (x; y; z) = V (r), a function of a single variable, r x2 + y2 + z2, ≡ the distance to the origin) we can use circular coordinates to write the total p energy of a test particle moving under the influence of this potential as 1 E = m r_2 + r2 φ_2 + V (r): (3.1) 2 Conservation of momentum tells us that the z-component of angular mo- 2 mentum is conserved, with Lz = (r p) = m r φ_, so we can rewrite the × z 1 of 13 3.1. PHYSICAL PROBLEMS Lecture 3 energy as: 1 1 L2 E = m r_2 + z + V (r) (3.2) 2 2 m r2 ≡U(r) where U(r) defines an “effective potential"| { we{z have} turned a two-dimensional problem into a one-dimensional problem for the coordinate r, and an effec- tive potential that governs the motion in this setting.
    [Show full text]
  • Zeros of a Quadratic Function TEACHER NOTES MATH NSPIRED
    Zeros of a Quadratic Function TEACHER NOTES MATH NSPIRED Math Objectives • Students will determine the linear factors of a quadratic function. • Students will connect the algebraic representation to the geometric representation. • Students will discover that the zeros of the linear factors are the zeros of the quadratic function. • Students will discover that the zeros of the quadratic function are the zeros of its linear factors. TI-Nspire™ Technology Skills: • Students will use appropriate tools strategically (CCSS Download a TI-Nspire Mathematical Practice). • document • Students will look for and make use of structure (CCSS • Open a document Mathematical Practice). • Move between pages • Grab and drag a point Vocabulary • zeros Tech Tips: • Make sure the font size on your TI-Nspire handheld is About the Lesson set to Medium. • This lesson involves merging graphical and algebraic • You can hide the function representations of a quadratic function and its linear factors. entry line by pressing • As a result, students will: /G. • Manipulate the parameters of the linear functions and observe the resulting changes in the quadratic function. Lesson Materials: • Find the zeros of the quadratic function by finding the zeros of Student Activity its linear factors. Zeros_of_a_Quadratic_Function _Student.pdf • Solve quadratic equations by factoring and be able to explain Zeros_of_a_Quadratic_Function why this process is valid. _Student.doc TI-Nspire document Zeros_of_a_Quadratic_Function TI-Nspire™ Navigator™ System .tns • Use Screen Capture to examine patterns that emerge. Visit www.mathnspired.com for • Use Live Presenter to engage and focus students. lesson updates and tech tip • Use Teacher Edition computer software to review student videos. documents. ©2011 Texas Instruments Incorporated 1 education.ti.com Zeros of a Quadratic Function TEACHER NOTES MATH NSPIRED Discussion Points and Possible Answers Tech Tip: If students experience difficulty dragging a point on the slider, check to make sure that they have moved the arrow close to the point.
    [Show full text]
  • Teaching Concepts Foundational to Calculus Using Inquiry
    TEACHING CONCEPTS FOUNDATIONAL TO CALCULUS USING INQUIRY AND TECHNOLOGY A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Benjamin David Marko May, 2006 TEACHING CONCEPTS FOUNDATIONAL TO CALCULUS USING INQUIRY AND TECHNOLOGY Benjamin David Marko Thesis Approved: Accepted: Advisor Dean of the College Dr. Antonio R. Quesada Dr. Ronald F. Levant Co-Advisor Dean of the Graduate School Dr. Linda Marie Saliga George R. Newkome, Ph.D. Department Chair Date Dr. Kevin L. Kreider ii ABSTRACT There is currently a push in the state of Ohio to enhance the teaching of concepts foun- dational to Calculus in grades 8-12. Evidence of this came in the spring of 2005 when the Ohio Department of Education called for grant proposals to develop programs that are focused on topics that are foundations to Calculus. Further, the National Council of Teachers of Mathematics has stressed the effective use of technology and inquiry in their past and current standards. This thesis contains inquiry-based lessons that explore concepts that would traditionally be taught in the Calculus classroom, but can be used in lower level courses such as Algebra. The use of the graphing calculator is essential for each one of these lessons to allow students the opportunity to explore more mathematical concepts in a less time consuming manner. iii ACKNOWLEDGEMENTS I would like to take this time to thank a number of people without whom this thesis would not have been possible. Thanks to my advisors, Dr. Antonio Quesada and Dr.
    [Show full text]