Microscopic Dentistry a Practical Guide Microscopic Dentistry a Practical Guide

Total Page:16

File Type:pdf, Size:1020Kb

Microscopic Dentistry a Practical Guide Microscopic Dentistry a Practical Guide Microscopic Dentistry A Practical Guide Microscopic Dentistry A Practical Guide Publisher Editors Carl Zeiss Dr. Tony Druttman Dr. Greg Finn Authors Dr. José Aranguren Cangas Coordination Dr. Kristina Badalyan Slaven Sestic Dr. Rino Burkhardt Dr. Annett Burzlaff Dr. Maciej Goczewski Dr. Manor Haas Oscar Freiherr von Stetten Dr. Bijan Vahedi Dr. Maxim Stosek Dr. Claudia Cia Worschech Dr. Tony Druttman Foreword Dear Reader, Enhancing the visualization of medical The authors have succeeded in providing a most professionals is a core focal point for us at the valuable guide to using the surgical microscope in a Medical Technology Business of ZEISS. We strive range of dental applications. The articles were written to help our users across a broad range of medical with the idea in mind that they shall enable a step-by- disciplines see more. Seeing more can help step implementation that unlocks the full potential of clinicians to generate better outcomes, master even surgical microscopy in your daily practice: highly complex cases, to gain greater enjoyment and satisfaction from their work and finally - but How can the surgical microscope support an most importantly - improve patients’ lives. ergonomically correct, upright working position which is health promoting for the dentist over the long term? Since its inception in 1921, surgical microscopy has been crucial for the advancement of several surgical How can the surgical microscope broaden your clinical fields, such as brain tumour surgery, vascular scope and increase your efficiency - as key to the neurosurgery, cataract or retinal surgery. realization of a return on your investments? As Pioneer in Surgical Microscopes, we have constantly pushed the boundaries of visualization. How can the use of the surgical microscope add crucial Today, a large number of the mentioned surgical benefit to specific procedural steps in every major procedures would not be conceivable without the dental application? use of a surgical microscope. How can documentation with the surgical microscope In dental visualization we are at an earlier stage of increase patients’ involvement in the treatment and this journey. Even though the surgical microscope demonstrate your skills? has become the standard of care in endodontics, today only a single-digit percentage of all dentists I am confident that implementing some of the precious worldwide enjoy the benefits of working with insights of this book in your daily practice will change this tool. We firmly believe that this will change your professional life for the better. as the surgical microscope will pave the way to accelerated medical progress in many applications in dentistry by giving the clinician a greater degree Sincerely, of control in a range of delicate procedural steps. In endodontics, the surgical microscope is already an integral part of the postgraduate curriculum. For other dental applications, we are not there yet. Therefore many dentists are seeking guidance on how to integrate microscopy into their daily Dr. Christian Schwedes practice, beyond endodontics. To help fill this gap, Director Business Sector Dental & Office, we asked leading clinical specialists in different Carl Zeiss Meditec AG disciplines of micro-dentistry to contribute to this publication. Table of contents 1 2 3 4 5 6 7 The OPMI Ergonomics OPMI in Endodontics OPMI in Periodontology OPMI in Restorative Documentation Practice Management and Implantology and Prosthodontics 25 Why use a surgical 55 Definitions 73 Introduction 105 Do we need an OPMI 135 Why use the surgical 181 Why? 191 The benefits of the OPMI microscope? of ergonomics in periodontal and implant microscope in restorative and extend far beyond 26 Benefits 74 Magnification in endodontics therapy? prosthodontic dentistry? 182 How? the obvious and well-proven 27 How the OPMI differs from 56 Overloads Working magnification Photo/video clinical benefits. medical loupes and the 75 Uses of the OPMI in endodontics 106 What are the advantages 136 Prevention and diagnosis intra-oral camera 58 Minimizing overloads and disadvantages of 186 Practical advice 192 Integration into 60 Position of dentist 76 Microendodontic instruments the use of an OPMI 137 Bacterial plaque clinical practice 28 The human eye – how it 61 Operator range of 9-12 o’clock 77 Ultrasonics in periodontology and works and why it is limited working positions Ultrasonics tips implantology? 138 Caries 193 The OPMI Accommodation 62 Position of the patient Uses of ultrasonics in endodontics as a communication tool 29 Stereoscopy 64 OPMI position 78 Mirrors 110 What does the 142 Fractured line – “cracks” Dento-legal aspects Micro instruments Files with a handle “microsurgical concept” 30 The components of 66 Functional design Stropko syringe consist of? 148 Preparation control 194 Marketing an OPMI 79 Burs the OPMI 31 Objective lens 67 OPMI assistance Dyes 122 Which are the first steps to 150 Matrix adaptation 32 Varioscope getting used to working with 195 Health benefits to the dentist 34 Magnification changer 80 Examination of the external the OPMI? 153 Rubber dam applications in 35 Zoom system surface of the tooth anterior and posterior areas 196 Financials of the OPMI 36 Binocular tube 82 Identification of the floor 126 How can you acquire 37 Eyepieces of the pulp chamber expertise in periodontal 154 Cervical lesions 38 Set-up OPMI – Quick Guide 83 Removal of coronal restorations and peri-implant 40 Co-observation Preservation of tooth structure microsurgery? 156 Finishing and polishing 84 Assessement of canal cleanliness 41 Optics after preparation 128 Which are the common 160 Possibilities for analyzing Correction for chromatic 85 Identification of internal cracks errors in the use of the the surgical field at different aberration 86 Canal location OPMI in surgical practice? magnifications 42 High transmission of light 88 Calcified canals Depth of field 91 Evaluation and management 130 References 164 Replacements – avoiding wear 44 Field of view of perforations 45 How to calculate 92 Obturation of the canal 166 The Tunnel preparation technique end magnification Non-surgical retreatment 93 Uses of the OPMI 168 Indirect restorations 46 Ergonomics and workflow in non-surgical retreatment: Varioscope 95 Apical plug with MTA 172 Instruments 47 Looking around the corner – File evaluation MORA interface and angled 174 Excellence in operative optics 94 Endodontic root-end surgery and prosthetic dentistry with regard to communication 48 Light with patients Light sources 49 Filters and pinhole diaphragm 176 References 50 Free floating system – balanced system and magnetic brakes 51 Maintenance 6 OPMI and Varioskop are registered 7 trademarks of Carl Zeiss The moment you see a hidden detail reveal a visible success. This is the moment we work for. // DENTAL OPTICS MADE BY ZEISS Key benefit 1 // Magnification with OPMI* You can only treat what you can see… *OPMI – Operation Microscope Key benefit 1 // Magnification with OPMI INSTRUMENT REMOVAL RETREATMENT CALCIFIED CANALS CRACKS AND FRACTURES SOFT TISSUE MANAGEMENT TUNNEL PREPARATION TOOTH PRESERVATION CARIES 8.5X …or you see more and treat more 13.6X Key benefit 2 // Ergonomics 8 hours of spine strain… 14 15 Key benefit 2 // Ergonomics …or 8 hours of working in comfort 16 17 Key benefit 3 // Visualization and Documentation A picture is worth a thousand words… 18 19 Key benefit 3 // Visualization and documentation …for better communication 20 21 1 The OPMI 1 Author: Dr. Annett Burzlaff 25 Why use a surgical microscope? 26 Benefits 27 How the OPMI differs from medical loupes and intra-oral camera 28 The human eye – how it works and why it is limited Accommodation 29 Stereoscopy 30 The components of an OPMI 31 Objective lens 32 Varioscope 34 Magnification changer 35 Zoom system 36 Binocular tube 37 Eyepieces 38 Set-up OPMI – Quick Guide 40 Co-observation 41 Optics Correction for chromatic aberration 42 High transmission of light Depth of field 44 Field of view 45 How to calculate end magnification 46 Ergonomics and workflow Varioscope 47 Looking around the corner – MORA interface and angled optics 48 Light Light sources 49 Filters and pinhole diaphragm 50 Free floating system – balanced system and magnetic brakes 51 Maintenance 23 1 The OPMI Why use an OPMI? Can you still remember the first time you looked through a Beginning in 1990, many innovative dentists from numerous microscope or magnifying glass? Perhaps the first thing you countries pressed for the use of OPMIs in dentistry: this saw was a daisy which you thought you knew well, but which drive towards microdentistry was led by Dr. Syngcuk Kim then under the OPMI opened up a new world for you. We (Philadelphia, Pennsylvania) and Dr. Clifford Ruddle (Santa are not only drawn into the microcosm by our curiosity, but Barbara, California) in the USA, as well as Dr. Peter Velvart we also benefit from the insight we can gain into intricate (Zurich, Switzerland) in Europe, among others. While details and structures. Microscopy is an integral part of many endodontics is the main discipline in which OPMIs are surgical disciplines nowadays. Doctors first used the surgical used in dentistry, other disciplines such as periodontology, microscope for microsurgical operations in the ENT area in implantology or restorative dentistry are adopting the use 1921. Ophthalmologists then attached lighting technology to of magnification technology. The dentist benefits from the surgical microscope and used it to perform eye operations. several advantages of OPMIs, regardless of the discipline. In the mid-1960s, neurosurgeons recognized the advantages Magnification enhances the visual acuity and supports more of using OPMIs for operations. Neurosurgery is today no precise treatment. However, no light means no information. longer imaginable without documentation and navigation OPMIs are therefore designed in such a way that they combine systems. The OPMI had been undergoing development for the magnifying lens and the light source. No matter whether around 60 years before finding its way into the world of they are working with low or high magnification, the dentists dentistry.
Recommended publications
  • The Zeiss Operating Microscope
    How the Humble Stereomicroscope Found its Way into Modern Surgery: The Zeiss Operating Microscope Fritz Schulze, 2012 Introduction This paper deals predominantly with compound and stereomicroscopes, antique and modern, and their application. Our lives have all been touched indirectly by discoveries and research work done with these microscopes in such fields as bacteriology, pathology, histology, haematology, anatomy and others. There is, however, another less well known type of microscope which affects some of us in a more direct way and of which we hear or read very little: the operating or surgical microscope. I daresay that many of our older readers have had cataract surgery and an IOL (intra-ocular lens) implanted to restore their eyesight. Some less fortunate readers may have had a brain aneurism or tumour operated on, had surgery on their spine, or an organ transplant, not to talk about even a reimplantation of a severed digit. Another likelihood lately is dental surgery or plastic surgery with the transplantation of a piece of skin for example after burn injury. You had your operation and, when recovered, went home and never spent a thought on how your surgery would not have been possible without the operating microscope and up-to-date microsurgical techniques. With this in mind, and with my work at the Zeiss company having been with operating microscopes from the very beginning, I thought it appropriate to share my knowledge with you. The Operating Microscope (Part 1) • The Early Beginning • Enter the Microscope • The First Commercial Operating Microscope • The Requirements of an Operating Microscope • The Zeiss Opmi 1 • The Illumination • Co-observation/Assistance • Documentation • The Stand/Suspension Systems • Asepsis • Different Versions of the Opmi.
    [Show full text]
  • A the Zeiss Operating Microscope
    Appendixes Appendix A. The Zeiss Operating Microscope. .. 215 I. Optical Principles, Illumination Systems, and Support Systems. .. 217 II. Individual Parts, Handling, Assembling, Focus- ing, and Balancing . .. 223 III. Accessories............................... 233 IV. Documentation............................ 239 V. Maintenance and Cleaning. .. 253 Appendix B. Patient Information: Laser Surgery . .. 257 Appendix C. Discharge Instructions . .. 259 Appendix D. Informed Consent. .. 261 Appendix E. Laser Certification . .. 263 Appendix F. Societies...................................... 267 Appendix G. Publications................................... 269 Appendix H. Glossary of Laser Terminology. .. 271 213 -----A The Zeiss Operating Microscope 215 The optical principles of the Zeiss OPMI1, 6-8, and 7 P/H operating micro­ scopes are discussed, along with standard and fiberoptic illumination systems and the range of currently available support systems. JOURNAL OF MICROSURGERY 1:364-369 1980 THE OPERATING MICROSCOPE I. OPTICAL PRINCIPLES, ILLUMINATION SYSTEMS, AND SUPPORT SYSTEMS PETER HOERENZ, Dlpl.·lng.·Phys. Editor's Note: This is the first in a series offive articles by leaving the front objective are parallel to each Mr. Hoerenz on the basic principles and construction of other. Behind the front objective there is a mini­ the operating microscope. Future articles will discuss the ature telescope system, the magnification individual parts of the microscope, accessories, methods changer, which, much like field glasses of the for documentation, and maintenance and cleaning. Galilean design, takes the parallel.ray image from the main objective lens and increases or Since the invention of the operating microscope decreases its magnification. The rays that leave and the spread of microsurgical procedures the Galilean system are again parallel and are through the various surgical disciplines, a large picked up by another telescope system-the number of specialized operating microscopes binocular tubes.
    [Show full text]
  • University of Vaasa
    UNIVERSITY OF VAASA FACULTY OF TECHNOLOGY AUTOMATION TECHNOLOGY Kari Koivuporras ENHANCING A NEUROSURGICAL IMAGING SYSTEM WITH A PC-BASED VIDEO PROCESSING SOLUTION Master’s thesis for the degree of Master of Science in Technology submitted for inspection, Vaasa, 15 March 2011. Supervisor Jarmo Alander Instructor Petri Välisuo 1 PREFACE This thesis is a contribution to CLIN-NIRce, a subproject of the FIELD NIRce project, concentrating on clinical applications. The research in FIELD NIRce is focused on de- veloping portable, self-contained solutions for near-infrared spectroscopy in the field, as opposed to a laboratory environment. The research in FIELD NIRce is funded by the European Union (EU) via the Botnia-Atlantica programme and several public funders in Finland and Sweden. The purpose of this thesis is to explore and implement new features for a particular med- ical imaging system, built upon a neurosurgical operating microscope at Töölö Hospital, Helsinki. The collaborative efforts on this topic were initiated in August 2008 by the automation research group working at the Department of Electrical Engineering and En- ergy Technology in University of Vaasa and a group of neurosurgeons at the Department of Neurosurgery of Helsinki University Central Hospital (HUCS). The work included in this thesis was done between April 2010 and March 2011. The majority of the work was done at the University of Vaasa and at home in Vaasa and Raasepori. The project also included several meetings at Töölö Hospital for gathering feedback from the surgeons about the implemented features and to get ideas for new ones. This work was funded by the FIELD NIRce project.
    [Show full text]
  • The Use of the Operating Microscope in Endodontics
    The Use of the Operating Microscope in Endodontics Until recently, endodontic therapy was performed using Gary B. Carr and Arnaldo Castellucci our tactile sensitivity, and the only way to “see” inside the root canal system was to take a radiograph. To perform endodontic therapy entailed “working blind,” in that most of the effort was done using only tactile skills with a INTRODUCTION minimum of visual information available. Before the introduction of the operating microscope we could “feel” Endodontists have frequently boasted they can do much the presence of a problem (a ledge, a perforation, a of their work blindfolded simply because there is “nothing blockage, a broken instrument), and the clinical to see.” The truth of the matter is that there is a great deal management of that problem was never predictable and 1 to see if only we had the right tools. depended on happenstance. Most endodontic procedures occurred in a visual void which placed a premium on the In the last fifteen years for both non-surgical and surgical doctor’s tactile dexterity, mental imaging and perseverance. endodontics, there has been an explosion of new technologies, new instruments and new materials. These The introduction of the operating microscope has developments have improved the precision with which changed both non-surgical and surgical endodontics. In endodontics can be performed. These advances have non-surgical endodontics, every challenge existing in the enabled clinicians to complete procedures which were once straight portion of the root canal system, even if located in considered impossible or which could be performed only the most apical part, can be easily seen and managed by extremely talented or lucky clinicians.
    [Show full text]
  • The Operating Microscope - Part 2
    How the Humble Stereomicroscope Found its Way into Modern Surgery: The Zeiss Operating Microscope Fritz Schulze 2012 The Operating Microscope - Part 2 1. The Opmi 2 2. Motorized Floor Stand and Ceiling Mount 3. The Opmi 6 and 6S 4. The Opmi 7 5. The Stereo Beam Splitter 6. The Opmi 8 7. The Opmi 9 8. Assistant’s Microscopes 9. The New Floor Stands Universal 2 and 3 10. The Opmi 99 11. Outlook The Opmi 2 A great step forward was the introduction by Carl Zeiss of the first motorized zoom operating microscope, the Opmi 2, in 1966 (Fig.40). It represented the beginning of the hands-free manipulation of the surgical microscope. The surgeon could now concentrate fully on his work.. The body of the Opmi 2 was a cylinder of 130mm diameter and equal length. Its rather bulky size was determined by the two bilateral internal coaxial light sources of 6V 18W each, one version having switchable green filters, another focusable collectors (Fig.39). The motorized zoom range of 1:5 had the factors 0.5 – 2.5, indicated in an illuminated window. The general design followed the Opmi series in so far as virtually all available accessories could also be used on the Opmi 2: binocular tubes, objectives, beam splitter, various external illuminators etc. View of Opmi 2 optics from below. Right: lamp socket with 6V 18W double end bulb Left: lamp socket modified to take fibre guide. The two Opmi 2 with vertical suspension for ophthalmic objectives of the Galilean system are clearly visible with the surgery.
    [Show full text]
  • The Exoscope Versus Operating Microscope in Microvascular Surgery
    The Exoscope versus operating microscope in microvascular surgery: A simulation non-inferiority trial Georgios Pafitanis1,2,3, Michalis Hadjiandreou3, Alexander Alamri4, Christopher Uff4, Daniel Walsh5, Simon Myers1,4 1Group for Academic Plastic Surgery, Microvascular Anastomosis Simulation Hub, The Blizard Institute, Queen Mary University of London, London; 2Department of Plastic Surgery, Great Ormond Street Hospital for Children Foundation Trust, London; 3Barts’ and The London School of Medicine and Dentistry, London; 4Department of Neurosurgery, The Royal London Hospital, Barts Health NHS Trust, London; 5Department of Neurosurgery, King’s College Hospital, London, UK Original Article Background The Exoscope is a novel high-definition digital camera system. There is limited Correspondence: Georgios Pafitanis evidence signifying the use of exoscopic devices in microsurgery. This trial objectively assesses Group for Academic Plastic Surgery, Microvascular Anastomosis the effects of the use of the Exoscope as an alternative to the standard operating microscope Simulation Hub, The Blizard Institute, (OM) on the performance of experts in a simulated microvascular anastomosis. Queen Mary University of London, Methods Modus V Exoscope and OM were used by expert microsurgeons to perform stan- 4 Newark Street, Whitechapel, London dardized tasks. Hand-motion analyzer measured the total pathlength (TP), total movements E12AT, UK Tel: +44-2078827173 (TM), total time (TT), and quality of end-product anastomosis. A clinical margin of TT was per- Fax: +44-2078827172 formed to prove non-inferiority. An expert performed consecutive microvascular anastomo- E-mail: [email protected] ses to provide the exoscopic learning curve until reached plateau in TT. Results Ten micro sutures and 10 anastomoses were performed.
    [Show full text]
  • Combining Optical Coherence Tomography (OCT) with an Operating Microscope
    Combining Optical Coherence Tomography (OCT) with an operating microscope Eva Lankenau1, David Klinger1, Christian Winter1, Asim Malik1, Heike Hedwig Müller2, Stefan Oelckers2, Hans-Wilhelm Pau3, Timo Just3, and Gereon Hüttmann1 1 Institute of Biomedical Optics, University of Lübeck, Germany E-mail: [email protected] 2 Möller-Wedel GmbH, Wedel, Germany E-mail: [email protected] 3 ENT-Department, Medical School, University of Rostock, Germany E-mail: [email protected] Abstract. Optical coherence tomography (OCT) is an emerging biomedical imaging technology which gives high-resolution sectional images of light scattering tissue down to a depth of a few millimeter. The objective of this work is to combine OCT with an operation microscope. A spectral domain OCT was adapted via a specially designed scanning optics to the camera port of an operation microscope. This enables a non-contact on-line OCT during different medical applications. Hidden tissue structures were visualized with a resolution below 30 µm. As a first example for an application in otolaryngology we demonstrated that the OCT operation microscope is basically able to reveal parts of the cochlear morphology without opening its enveloping membranes. Thus it may serve as a helpful guide for the surgeon to exactly localize the scala tympani before opening the fluid-filled inner ear for inserting the electrode array of cochlear implants. 1. Introduction Optical coherence tomography (OCT) [1] is an emerging biomedical imaging technology that has been applied to a wide range of biological, medical, and material investigations. Similar to B-mode ultrasound imaging, reflections of near-infrared light are detected, which offers a non-contact real-time in vivo imaging of solid tissues.
    [Show full text]
  • The Operating Microscope in Periodontal Surgeries
    SCIENTIFIC ARCHIVES OF DENTAL SCIENCES (ISSN: 2642-1623) Volume 3 Issue 3 March 2020 Review Article The Operating Microscope in Periodontal Surgeries Luciano Bonatelli Bispo* Clinical Practice, Department of Dentistry, University of Sao Paulo, Brazil *Corresponding Author: Luciano Bonatelli Bispo, Clinical Practice, Department of Dentistry, University of Sao Paulo, Brazil. Received: January 13, 2020; Published: February 17, 2020 Abstract Introduction: The evolution of techniques, materials and a better understanding of the etiology, incidence, prevalence and prevention of periodontal diseases, has improved drugs and surgical therapies in Dentistry. The approximation and suturing of blood vessels, the precise millimetric cut, the better coaptation of the surgical flaps and the first intention healing are some of the benefits of magnification. The aim of this literature review was to demonstrate the advantages of using the operating microscope in Dentistry, particularlyMethods: The in Periodontics,paper selection with was scientific performed basis. by electronic search in the PubMed/MEDLINE and SciELO databases, between 2009 andResults: 2019, The with microscope the terms ofpresents indexation: excellent operatory approximation microscope, for periodontalbetter reproduction plastic microsurgery of aesthetic andand functionalmagnification. details. Additionally, an atraumatic manipulation of the tissues, minimizing bleeding with a clearer and more visible operative field. It enables better blood nutrition of the flaps, approaching the surgical
    [Show full text]