Response to Microtubule-Interacting Agents in Primary Epithelial Ovarian Cancer Cells
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download (1MB)
THE IN VITRO METABOLISM OF THREE ANTICANCER DRUGS by Yun Fan B.S., West China University of Medical Sciences, 1996 M.S., West China University of Medical Sciences, 2001 Submitted to the Graduate Faculty of School of Pharmacy in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2007 UNIVERSITY OF PITTSBURGH SCHOOL OF PHARMACY This dissertation was presented by Yun Fan It was defended on March 23, 2007 and approved by Samuel M. Poloyac, Assistant Professor, Pharmaceutical Sciences Raman Venkataramanan, Professor, Pharmaceutical Sciences Jack C. Yalowich, Associate Professor, Pharmacology Michael A. Zemaitis, Professor, Pharmaceutical Sciences Billy W. Day, Professor, Pharmaceutical Sciences ii Copyright © by Yun Fan 2007 iii THE IN VITRO METABOLISM OF THREE ANTICANCER DRUGS Yun Fan, Ph.D. University of Pittsburgh, 2007 Etoposide is a widely used topoisomerase II inhibitor particularly useful in the clinic for treatment of disseminated tumors, including childhood leukemia. However, its use is associated with the increased risk of development of secondary acute myelogenous leukemias. The mechanism behind this is still unclear. It was hypothesized that etoposide ortho-quinone, a reactive metabolite previously shown to be generated in vitro by myeloperoxidase, the major oxidative enzyme in the bone marrow cells from which the secondary leukemias arise, might be a contributor to the development of treatment-related secondary leukemias. Experiments showed that the glutathione adduct of etoposide ortho-quinone was formed in myeloperoxidase- expressing human myeloid leukemia HL60 cells treated with etoposide, that its formation was enhanced by addition of the myeloperoxidase substrate hydrogen peroxide, and that the glutathione adduct level was dependent on myeloperoxidase. -
An Sirna Screen Identifies RSK1 As a Key Modulator of Lung Cancer
Oncogene (2011) 30, 3513–3521 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE An siRNA screen identifies RSK1 as a key modulator of lung cancer metastasis R Lara1,7, FA Mauri2, H Taylor3, R Derua4, A Shia3, C Gray5, A Nicols5, RJ Shiner2, E Schofield6, PA Bates6, E Waelkens4, M Dallman3, J Lamb3, D Zicha5, J Downward7, MJ Seckl1 and OE Pardo1 1Department of Oncology, Hammersmith Campus, Cyclotron Building, London, UK; 2Histopathology Imperial College London, Hammersmith Campus, London, UK; 3Division of Cell and Molecular Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK; 4Labo Proteı¨ne Fosforylatie en Proteomics, Katholieke Universiteit Leuven, Leuven, Belgium; 5Light Microscopy Department, London Research Institute, London, UK; 6Biomolecular Modelling Laboratory, London Research Institute, London, UK and 7Signal Transduction Laboratory, Cancer Research UK, London Research Institute, London, UK We performed a kinome-wide siRNA screen and identified Introduction 70 kinases altering cell migration in A549 lung cancer cells. In particular, ribosomal S6 kinase 1 (RSK1) Lung cancer is the most common cancer killer with silencing increased, whereas RSK2 and RSK4 down- a 5-year survival rate o5%. Non-small cell lung cancer regulation inhibited cell motility. In a secondary collagen- (NSCLC) accounts for 80% of cases of which adeno- based three-dimensional invasion screen, 38 of our hits carcinoma represents the majority. Most patients cross-validated, including RSK1 and RSK4. In two further present with metastatic lesions and are incurable. Hence, lung cancer cell lines, RSK1 but not RSK4 silencing a better understanding of the biological processes showed identical modulation of cell motility. -
Development of Carbon Dots As Fluorescent Probes for Fluorescence in Situ Hybridisation (FISH) Application
Development of Carbon Dots as Fluorescent Probes for Fluorescence In Situ Hybridisation (FISH) Application By Phyllis Jacqueline Nishi A thesis submitted to the Faculty of Engineering, Computing and Science Swinburne University of Technology Sarawak In fulfilment of the requirements for the degree of Master of Science by Research 2019 Abstract Fluorescence in situ hybridisation (FISH) is an important bioimaging technique in molecular cytogenetics that utilises fluorescent probes that can bind specifically to a target nucleic acid sequence of a DNA or RNA. It is important that the fluorophores used to fluorescently tag probes are bright, small-sized, non-toxic and come in various colours. Thus, there is a need for new and alternative fluorescent labels to be developed to improve the performance of FISH. This thesis explores on the synthesis and application of carbon dots (CDs) as a class of versatile fluorescent label in FISH. The synthetic method for the production of CDs for use as fluorescent probes in FISH was described. CDs were synthesised by hydrothermal treatment of a carbon source in concentrated phosphoric acid solution. In this work, carboxymethylcellulose (CMC) was selected as the starting precursor and then converted into CDs with carboxylic functional groups. The optical properties and characterisation of the synthesised CDs were carried out. An amine-functionalised oligonucleotide probe was designed to detect and localise glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA in human adult low calcium high temperature keratinocytes (HaCaT) cell line. CDs were neutralised, isolated and dried before conjugated with the GAPDH oligonucleotide probe via carbodiimide crosslinker chemistry. The conjugated CD-GAPDH probe were applied for in situ hybridisation in fixed HaCaT cell line. -
Nicole Goodwin Macmillan Group Meeting April 21, 2004
Discodermolide A Synthetic Challenge Me Me Me HO Me O O OH O NH2 Me Me OH O Me Me OH Nicole Goodwin MacMillan Group Meeting April 21, 2004 Me Me Me HO Discodermolide Me O O OH O NH2 Isolation and Biological Activity Me Me OH O Me Me OH ! Isolated in 1990 by the Harbor Branch Oceanographic Institution from the Caribbean deep-sea sponge Discodermia dissoluta ! Not practical to produce discodermolide from biological sources ! 0.002% (by mass) isolation from frozen sponge ! must be deep-sea harvested at a depth in excess of 33 m ! Causes cell-cycle arrest at the G2/M phase boundary and cell death by apoptosis ! Member of an elite group of natural products that act as microtubule-stabilizing agent and mitotic spindle poisons ! Taxol, epothilones A and B, sarcodictyin A, eleutherobin, laulimalide, FR182877, peloruside A, dictyostatin ! Effective in Taxol-resistant carcinoma cells ! presence of a small concentration of Taxol amplified discodermolide's toxicity by 20-fold ! potential synergies with the combination of discodermolide with Taxol and other anticancer drugs ! Licensed by Novartis from HBOI in 1998 as a new-generation anticancer drug 1 Cell Apoptosis M - Mitosis G0 Discodermolide disrupts the G2/M phases of the cell cycle. Resting Discodermolide, like Taxol, inhibits microtubule depolymerization by binding G1 - Gap 1 to tubulin. G2 - Gap 2 cells increase in size, cell growth control checkpoint no microtubules = no spindle fiber new proteins formation S - Synthesis DNA replication Me Me Me HO Discodermolide Me O O OH O NH2 Isolation -
United States Patent (19) 11 Patent Number: 5,789,605 Smith, I Et Al
IIIUSOO5789605A United States Patent (19) 11 Patent Number: 5,789,605 Smith, I et al. 45) Date of Patent: Aug. 4, 1998 54 SYNTHETICTECHNIQUES AND Jacquesy et al., "Metabromation Du Dimethyl-2, 6 Phenol INTERMEDIATES FOR POLYHYDROXY, Et De Son Ether Methylique En Milieu Superacide", Tetra DENYL LACTONES AND MIMCS hedron, 1981, 37, 747-751. THEREOF Kim et al., "Conversion of Acetals into Monothioacetals, O-Alkoxyazides and O-Alkoxyalkyl Thioacetates with 75) Inventors: Amos B. Smith, III. Merion; Yuping Magnesium Bromide". Tetra, lett, 1989, 30(48), Qiu; Michael Kaufman, both of 6697-6700. Philadelphia; Hirokaza Arimoto, Longley et al., "Discodermolide-A New, Marine-Derived Drexel Hill, all of Pa.; David R. Jones, Immunosuppressive Compound". Transplantation, 1991. Milford, Ohio; Kaoru Kobayashi, 52(4) 650-656. Osaka, Japan Longley et al., "Discodermolide-A New, Marine-Derived Immunosuppressive Compound". Transplantation, 1991. 73 Assignee: Trustees of the University of 52(4), 657-661. Pennsylvania, Philadelphia, Pa. Longley et al., "Immunosuppression by Discodermolide". Ann. N.Y. Acad. Sci., 1993. 696, 94-107. (21) Appl. No.:759,817 Nerenburg et al., "Total Synthesis of the Immunosuppres 22 Filed: Dec. 3, 1996 sive Agent (-)-Discodermolide". J. Am. Chem, Soc., 1993, 115, 12621-12622. (51) Int. Cl. ................. C07D407/06; C07D 319/06; Paterson, I. et al., "Studies Towards the Total Synthesis of CO7D 309/10 the Marine-derived Immunosuppressant Discodermolide; (52) U.S. Cl. .......................... 549/370; 549/374; 549/417 Asymmetric Synthesis of a C-Cö-Lactone Subunit". J. (58) Field of Search ..................................... 549/370,374, Chen. Soc. Chen, Commun., 1993, 1790-1792. 549/417 Paterson, I. et al., "Studies Towards the Total Synthesis of the Marine-derived Immunosuppresant Discodermolide; 56 References Cited Asymmetric Synthesis of a C-C Subunit". -
Dissertation.Pdf (1.198Mb)
Syntheses and Bioactivities of Targeted and Conformationally Restrained Paclitaxel and Discodermolide Analogs Chao Yang Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University In the partial fulfillment of the requirement for the degree of Doctor of Philosophy In Chemistry Dr. David G. I. Kingston, Chairman Dr. Karen Brewer Dr. Paul R. Carlier Dr. Felicia. Etzkorn Dr. Harry W. Gibson August 26 2008 Blacksburg, Virginia Keywords: Taxol, drug targeting, , thio-taxol, tubulin-binding conformation, , T-taxol conformation, macrocyclic taxoids, discodermolide Copyright 2008, Chao Yang Syntheses and Bioactivities of Targeted and Conformationally Restrained Paclitaxel and Discodermolide Analogs Chao Yang Abstract Paclitaxel was isolated from the bark of Taxus brevifolia in the late 1960s. It exerts its biological effect by promoting tubulin polymerization and stabilizing the resulting microtubules. Paclitaxel has become one of the most important current drugs for the treatment of breast and ovarian cancers. Studies aimed at understanding the biologically active conformation of paclitaxel bound on β–tubulin are described. In this work, the synthesis of isotopically labeled taxol analogs is described and the REDOR studies of this compound complexed to tubulin agrees with the hypothesis that palictaxel adopts T-taxol conformation. Based on T-taxol conformation, macrocyclic analogs of taxol have been prepared and their biological activities were evaluated. The results show a direct evidence to support T-taxol conformation. (+) Discodermolide is a polyketide isolated from the Caribbean deep sea sponge Discodermia dissoluta in 1990. Similar to paclitaxel, discodermolide interacts with tubulin and stabilizes the microtubule in vivo. Studies aimed at understanding the biologically active conformation of discodermolide bound on β–tubulin are described. -
Total Synthesis of the Marine Natural Product (+)-Discodermolide in Multigram Quantities*
Pure Appl. Chem., Vol. 79, No. 4, pp. 685–700, 2007. doi:10.1351/pac200779040685 © 2007 IUPAC Total synthesis of the marine natural product (+)-discodermolide in multigram quantities* Stuart J. Mickel Novartis Pharma AG, CHAD, WKL-684.2.31 Klybeckstrasse, 4052 Basel, Switzerland Abstract: The novel polyketide (+)-discodermolide was isolated in very small quantities from sponge extracts. This compound is one of several microtubule stabilizers showing promise as novel chemotherapeutic agents for the treatment of cancer. The clinical evaluation of this and similar compounds is hampered by lack of material, and at present, the only way to obtain the necessary quantities is total chemical synthesis. Keywords: discodermolide; boron aldol reaction; isolation; side products; olefination. INTRODUCTION The marine natural product (+)-discodermolide 1 was isolated by workers at the Harbor Branch Oceanographic Institute from the deep-sea sponge Discodermia dissoluta in 1990 [1]. It is obtained from the sponge in extremely small quantities, 0.002 % in the frozen material. This compound is one of several natural products exhibiting inhibition of microtubule depolymerization and as such shows considerable promise as a novel chemotherapeutic agent for the treatment of cancer [2]. In contrast to Taxol®, another microtubule stabilizer, (+)-1 shows activity in the Taxol-resistant cell lines which over- express P-glycoprotein, the multidrug-resistant transporter. The similarities and differences between (+)-1 and Taxol have recently been discussed in detail [3]. The structure of (+)-1 consists of a linear polypropionate chain interrupted by 3 cis-olefins. It con- tains 13 chiral centers, 6 of which are hydroxyl groups, one esterified as a lactone, another as a car- bamic acid ester. -
Marine Natural Products: a Source of Novel Anticancer Drugs
marine drugs Review Marine Natural Products: A Source of Novel Anticancer Drugs Shaden A. M. Khalifa 1,2, Nizar Elias 3, Mohamed A. Farag 4,5, Lei Chen 6, Aamer Saeed 7 , Mohamed-Elamir F. Hegazy 8,9, Moustafa S. Moustafa 10, Aida Abd El-Wahed 10, Saleh M. Al-Mousawi 10, Syed G. Musharraf 11, Fang-Rong Chang 12 , Arihiro Iwasaki 13 , Kiyotake Suenaga 13 , Muaaz Alajlani 14,15, Ulf Göransson 15 and Hesham R. El-Seedi 15,16,17,18,* 1 Clinical Research Centre, Karolinska University Hospital, Novum, 14157 Huddinge, Stockholm, Sweden 2 Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden 3 Department of Laboratory Medicine, Faculty of Medicine, University of Kalamoon, P.O. Box 222 Dayr Atiyah, Syria 4 Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562 Cairo, Egypt 5 Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, 11835 New Cairo, Egypt 6 College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China 7 Department of Chemitry, Quaid-i-Azam University, Islamabad 45320, Pakistan 8 Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudingerweg 5, 55128 Mainz, Germany 9 Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, 12622 Giza, Egypt 10 Department of Chemistry, Faculty of Science, University of Kuwait, 13060 Safat, Kuwait 11 H.E.J. Research Institute of Chemistry, -
Aldol Reactions: E-Enolates and Anti-Selectivity
Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 5-2005 Aldol Reactions: E-Enolates and Anti-Selectivity Matthew Grant Anderson Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/gradreports Part of the Organic Chemistry Commons Recommended Citation Anderson, Matthew Grant, "Aldol Reactions: E-Enolates and Anti-Selectivity" (2005). All Graduate Plan B and other Reports. 1312. https://digitalcommons.usu.edu/gradreports/1312 This Report is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ALDOL REACTIONS: E-ENOLATES AND ANTI-SELECTIVITY Prepared By: MATTHEW GRANT ANDERSON A non-thesis paper submitted in partial fulfillment of the requirement for a Plan B Degree of Masters of Science in Organic Chemistry UTAH STATE UNIVERSITY Logan, Utah 2005 Contents Page CONTENTS ...................................................................................... .i LIST OF TABLES, FIGURES AND SCHEMES ....................................... ii,iii ABSTRACT .................................................................................... iv CHAPTER I. ALDOL REACTIONS:E-ENOLATES AND ANTI SELECTIVITY ......... 1 CHAPTER II. SECTION 1. MODELS OF E-ENOLATE FORMATION ...... .... ....... ... 12 SECTION 2. PATERSON ENOLATE PAPER ..... ......................... -
(+)-Discodermolide: a Marine Natural Product Against Cancer
Review Article TheScientificWorldJOURNAL (2004) 4, 415–436 ISSN 1537-744X; DOI 10.1100/tsw.2004.96 (+)-Discodermolide: A Marine Natural Product Against Cancer Marcus Vinícius Nora De Souza FioCruz-Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Far Manguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro-RJ E-mail: [email protected] Received February 25, 2004; Revised May 1, 2004; Accepted May 25, 2004; Published June 11, 2004 (+)-Discodermolide was isolated in 1990 by Gunasekera et al. from the deep-water Caribbean sponge Discodermia dissoluta. It attacks cancer cells in a similar way to the successful cancer drug Taxol® that has become the best-selling anticancer drug in history. Taxol is also the first natural product described that stabilizes the microtubules involved in many aspects of cellular biology and that represent an important target of anticancer chemotherapeutics. However, (+)-discodermolide appears to be far more potent than Taxol® against tumors that have developed multiple-drug resistance, with an IC50 in the low nanomolar range. Due to these excellent results, this natural product was licensed to Novartis Pharmaceutical Corporation in early 1998. The present review covers the history, biological activity, total synthesis, and synthetic analogs of (+)- discodermolide. KEYWORDS: (+)-discodermolide, cancer, tubuline, natural products DOMAINS: drug discovery INTRODUCTION Cancer is a growing public health problem with estimated worldwide new cases at over a million per year[1]. In the U.S., cancer is the second leading cause of death after heart disease, but it is the major cause of death in women between the ages of 35 and 74[2]. -
Mechanistic Insight Into Taxol-Induced Cell Death
Oncogene (2008) 27, 4580–4591 & 2008 Macmillan Publishers Limited All rights reserved 0950-9232/08 $30.00 www.nature.com/onc ORIGINAL ARTICLE Mechanistic insight into taxol-induced cell death F Impens1,2, P Van Damme1,2, H Demol1,2, J Van Damme1,2, J Vandekerckhove1,2 and K Gevaert1,2 1Department of Medical Protein Research, VIB, Ghent, Belgium and 2Department of Biochemistry, Ghent University, Ghent, Belgium We analysed the involvement of proteases during taxol- One class of chemotherapeutic drugs that induce such mediated cell death of human A549 non-small-cell lung alternative forms of PCD is microtubule-stabilizing carcinoma cells using a proteomics approach that specifi- agents with their prototypical representative taxol cally targets protein N termini and further detects newly (paclitaxel). Taxol and derivatives are used as potent formed N termini that are the result of protein processing. drugs against several solid tumors. Although their Our analysis revealed 27 protease-mediated cleavages, cytotoxic mechanism depends on cell type, concentra- which we divided in sites C-terminal to aspartic acid (Asp) tion and exposure duration, in most studies with and sites C-terminal to non-Aspresidues, as the result of clinically relevant taxol concentrations (10–200 nM), caspase and non-caspase protease activities, respectively. apoptosis is induced by blocking the mitotic spindle Remarkably, some of the former were insensitive to potent and a G2/M arrest (Schiff and Horwitz, 1980; Torres pancaspase inhibitors, and we therefore suggest that and Horwitz, 1998; Blagosklonny and Fojo, 1999; Zhao previous inhibitor-based studies that report on the caspase- et al., 2005). -
Current Screening Methodologies in Drug Discovery for Selected Human Diseases
marine drugs Review Current Screening Methodologies in Drug Discovery for Selected Human Diseases Olga Maria Lage 1,2,*, María C. Ramos 3, Rita Calisto 1,2, Eduarda Almeida 1,2, Vitor Vasconcelos 1,2 ID and Francisca Vicente 3 1 Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/nº 4169-007 Porto, Portugal; [email protected] (R.C.); [email protected] (E.A.); [email protected] (V.V.) 2 CIIMAR/CIMAR–Centro Interdisciplinar de Investigação Marinha e Ambiental–Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal 3 Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain; [email protected] (M.C.R.); [email protected] (F.V.) * Correspondence: [email protected]; Tel.: +351-22-0402724; Fax.: +351-22-0402799 Received: 7 August 2018; Accepted: 11 August 2018; Published: 14 August 2018 Abstract: The increase of many deadly diseases like infections by multidrug-resistant bacteria implies re-inventing the wheel on drug discovery. A better comprehension of the metabolisms and regulation of diseases, the increase in knowledge based on the study of disease-born microorganisms’ genomes, the development of more representative disease models and improvement of techniques, technologies, and computation applied to biology are advances that will foster drug discovery in upcoming years. In this paper, several aspects of current methodologies for drug discovery of antibacterial and antifungals, anti-tropical diseases, antibiofilm and antiquorum sensing, anticancer and neuroprotectors are considered.