Software Variability Mechanisms for Improving Run-Time Performance

Total Page:16

File Type:pdf, Size:1020Kb

Software Variability Mechanisms for Improving Run-Time Performance SOFTWARE VARIABILITY MECHANISMS FOR IMPROVING RUN-TIME PERFORMANCE by Eric Norman Eide A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science School of Computing The University of Utah December 2012 Copyright c Eric Norman Eide 2012 All Rights Reserved THE UNIVERSITY OF UTAH GRADUATE SCHOOL STATEMENT OF DISSERTATION APPROVAL The dissertation of Eric Norman Eide has been approved by the following supervisory committee members: Matthew Flatt , Chair October 2, 2012 Date Approved Robert R. Kessler , Member October 2, 2012 Date Approved Gary Lindstrom , Member October 2, 2012 Date Approved John Regehr , Member October 2, 2012 Date Approved Shriram Krishnamurthi , Member October 15, 2012 Date Approved and by Alan Davis , Chair of the School of Computing and by Charles A. Wight, Dean of The Graduate School. ABSTRACT A variability mechanism is a software implementation technique that realizes a choice in the features that are incorporated into a software system. Variability mechanisms are essential for the implementation of configurable software, but the nature of mechanisms as structuring abstractions is not well understood. Mechanisms are often equated with their stereotypical realizations. As a consequence, certain variability mechanisms are generally viewed as having limited applicability due to run-time performance overhead. We claim that it is feasible and useful to realize variability mechanisms in novel ways to improve the run-time performance of software systems. This claim is supported by the implementation and evaluation of three examples. The first is the flexible generation of performance-optimized code from high-level specifications. As exemplified by Flick, an interface definition language (IDL) compiler kit, concepts from traditional programming language compilers can be applied to bring both flexibility and optimization to the domain of IDL compilation. The second is a method for realizing design patterns within software that is neither object-oriented nor, for the most part, dynamically configured. By separating static software design from dynamic system behavior, this technique enables more effective and domain-specific detection of design errors, prediction of run-time behavior, and more effective optimization. The method is demonstrated using a suite of operating-system components. The third, middleware-based brokering of resources, can improve the ability of multi-agent, real-time applications to maintain quality of service (QoS) in the face of resource contention. A CPU broker, for instance, may use application feedback and other inputs to adjust CPU allocations at run time. This helps to ensure that applications continue to function, or at least degrade gracefully, under load. CONTENTS ABSTRACT ............................................................. iii LIST OF TABLES ........................................................ vii LIST OF FIGURES ....................................................... viii ACKNOWLEDGMENTS .................................................. ix CHAPTERS 1. INTRODUCTION .................................................... 1 1.1 Software Configuration and Variation . 1 1.2 Variability Mechanisms . 3 1.2.1 Binding Time . 4 1.2.2 Binding Sites . 5 1.3 Selecting a Variability Mechanism . 8 1.4 Novel Realizations of Variability Mechanisms . 9 1.4.1 Flexible and Optimizing IDL Compilation . 10 1.4.2 Static and Dynamic Structure in Design Patterns . 13 1.4.3 Dynamic CPU Management for Real-Time Systems . 14 1.5 References . 16 PART I FLICK: A FLEXIBLE, OPTIMIZING IDL COMPILER ................ 19 2. FLICK: A FLEXIBLE, OPTIMIZING IDL COMPILER ..................... 20 2.1 Introduction . 20 2.2 Flick . 23 2.2.1 Front Ends . 27 2.2.1.1 AOI: The Abstract Object Interface . 27 2.2.2 Presentation Generators . 28 2.2.2.1 MINT: The Message Interface . 30 2.2.2.2 CAST: The C Abstract Syntax Tree . 30 2.2.2.3 PRES: The Message Presentation . 31 2.2.2.4 PRES C: The C Presentation . 32 2.2.3 Back Ends . 32 2.3 Optimization . 33 2.3.1 Efficient Memory Management . 33 2.3.1.1 Marshal Buffer Management . 33 2.3.1.2 Parameter Management . 34 2.3.2 Efficient Copying and Presentation . 35 2.3.2.1 Data Copying . 35 2.3.2.2 Specialized Transports . 36 2.3.3 Efficient Control Flow . 36 2.3.3.1 Inline Code . 36 2.3.3.2 Message Demultiplexing . 37 2.4 Experimental Results . 38 2.4.1 Marshal Throughput . 39 2.4.2 End-to-End Throughput . 41 2.4.3 End-to-End Throughput Compared to MIG . 45 2.5 Related Work . 46 2.6 Conclusion . 48 2.7 Availability . 48 2.8 Acknowledgments . 48 2.9 References . 49 PART II STATIC AND DYNAMIC STRUCTURE IN DESIGN PATTERNS ...... 51 3. STATIC AND DYNAMIC STRUCTURE IN DESIGN PATTERNS ........... 52 3.1 Introduction . 52 3.2 The Unit Model . 55 3.2.1 Atomic and Compound Units . 55 3.2.2 Exploiting Static Configuration . 57 3.2.2.1 Constraint Checking . 57 3.2.2.2 Cross-Component Inlining . 58 3.2.3 Using Units Without Language Support . 58 3.3 Expressing Patterns with Units . 59 3.3.1 A Method for Expressing Patterns with Units . 61 3.3.2 Example: Managing Block Devices . 65 3.3.3 Example: OSKit Filesystems . 69 3.3.3.1 Abstract Factory . 69 3.3.3.2 Adapter . 69 3.3.3.3 Decorator . 71 3.3.3.4 Strategy . 71 3.3.3.5 Command . 72 3.3.3.6 Singleton . 72 3.3.4 Discussion . 72 3.4 Analysis . 77 3.4.1 Benefits of Our Approach . 77 3.4.1.1 Checking Architectural Constraints . 77 3.4.1.2 Performance Optimization . 78 3.4.1.3 Ease of Understanding and Code Reuse . 79 3.4.2 Costs of Our Approach . 80 3.5 Related Work . 81 3.6 Conclusion . 83 3.7 Acknowledgments . 83 3.8 References . 84 v PART III DYNAMIC CPU MANAGEMENT FOR REAL-TIME, MIDDLEWARE- BASED SYSTEMS ............................................... 86 4. DYNAMIC CPU MANAGEMENT FOR REAL-TIME, MIDDLEWARE-BASED SYSTEMS ........................................................... 87 4.1 Introduction . 87 4.2 Related Work . ..
Recommended publications
  • Demystifying the Real-Time Linux Scheduling Latency
    Demystifying the Real-Time Linux Scheduling Latency Daniel Bristot de Oliveira Red Hat, Italy [email protected] Daniel Casini Scuola Superiore Sant’Anna, Italy [email protected] Rômulo Silva de Oliveira Universidade Federal de Santa Catarina, Brazil [email protected] Tommaso Cucinotta Scuola Superiore Sant’Anna, Italy [email protected] Abstract Linux has become a viable operating system for many real-time workloads. However, the black-box approach adopted by cyclictest, the tool used to evaluate the main real-time metric of the kernel, the scheduling latency, along with the absence of a theoretically-sound description of the in-kernel behavior, sheds some doubts about Linux meriting the real-time adjective. Aiming at clarifying the PREEMPT_RT Linux scheduling latency, this paper leverages the Thread Synchronization Model of Linux to derive a set of properties and rules defining the Linux kernel behavior from a scheduling perspective. These rules are then leveraged to derive a sound bound to the scheduling latency, considering all the sources of delays occurring in all possible sequences of synchronization events in the kernel. This paper also presents a tracing method, efficient in time and memory overheads, to observe the kernel events needed to define the variables used in the analysis. This results in an easy-to-use tool for deriving reliable scheduling latency bounds that can be used in practice. Finally, an experimental analysis compares the cyclictest and the proposed tool, showing that the proposed method can find sound bounds faster with acceptable overheads. 2012 ACM Subject Classification Computer systems organization → Real-time operating systems Keywords and phrases Real-time operating systems, Linux kernel, PREEMPT_RT, Scheduling latency Digital Object Identifier 10.4230/LIPIcs.ECRTS.2020.9 Supplementary Material ECRTS 2020 Artifact Evaluation approved artifact available at https://doi.org/10.4230/DARTS.6.1.3.
    [Show full text]
  • Real-Time Scheduling: from Hard to Soft Real-Time Systems
    Real-Time scheduling: from hard to soft real-time systems Giuseppe Lipari Luigi Palopoli Université de Lille 1 Università di Trento [email protected] [email protected] December 8, 2015 Abstract Real-time systems are traditionally classified into hard real-time and soft real-time: in the first category we have safety critical real-time sys- tems where missing a deadline can have catastrophic consequences, whereas in the second class we find systems for which we need to optimise the Quality of service provided to the user. However, the frontier between these two classes is thinner than one may think, and many systems that were considered as hard real-time in the past should now be reconsidered under a different light. In this paper we shall first recall the fundamental notion of time- predictability and criticality, in order to understand where the real-time deadlines that we use in our theoretical models come from. We shall then introduce the model of a soft real-time system and present one popular method for scheduling hard and soft real-time tasks, the resource reserva- tion framework. Finally, we shall show how resource reservation techniques can be suc- cessfully applied to the design of classical control systems, thus adding robustness to the system and increasing resource utilisation and perfor- mance. 1 Introduction arXiv:1512.01978v1 [cs.OS] 7 Dec 2015 Real-time systems are computational systems whose correctness depends not only on the correctness of the produced results, but also on the time at which they are produced. They must interact with their external environment in a timely manner: for example, real-time systems that control physical plants (digital control systems, or the so-called cyber-physical systems) must perform their computation and produce their results at the typical timing rates of the physical environment, and within a bounded delay.
    [Show full text]
  • Aquosa-Adaptive Quality of Service Architecture
    SOFTWARE—PRACTICE AND EXPERIENCE Softw. Pract. Exper. 2009; 39:1–31 Published online 1 April 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.883 AQuoSA—adaptive quality of service architecture L. Palopoli1,T.Cucinotta2,∗,†, L. Marzario2 and G. Lipari2 1DIT, University of Trento, Italy 2ReTiS Laboratory, Scuola Superiore Sant’Anna, Via Moruzzi, 1, 56124 Pisa, Italy SUMMARY This paper presents an architecture for quality of service (QoS) control of time-sensitive applications in multi-programmed embedded systems. In such systems, tasks must receive appropriate timeliness guarantees from the operating system independently from one another; otherwise, the QoS experienced by the users may decrease. Moreover, fluctuations in time of the workloads make a static partitioning of the central processing unit (CPU) that is neither appropriate nor convenient, whereas an adaptive allocation based on an on-line monitoring of the application behaviour leads to an optimum design. By combining a resource reservation scheduler and a feedback-based mechanism, we allow applications to meet their QoS requirements with the minimum possible impact on CPU occupation. We implemented the framework in AQuoSA (Adaptive Quality of Service Architecture (AQuoSA). http://aquosa.sourceforge.net), a software architecture that runs on top of the Linux kernel. We provide extensive experimental validation of our results and offer an evaluation of the introduced overhead, which is perfectly sustainable in the class of addressed applications. Copyright © 2008 John Wiley & Sons, Ltd. Received 29 June 2007; Revised 28 January 2008; Accepted 1 February 2008 KEY WORDS: resource reservations; adaptive QoS control; soft real time; embedded systems; operating systems 1.
    [Show full text]
  • Execution Time Monitoring in Linux∗
    Execution Time Monitoring in Linux∗ Mikael Asberg,˚ Thomas Nolte Clara M. Otero Perez´ Shinpei Kato MRTC/Malardalen¨ University NXP Semiconductors/Research The University of Tokyo P.O. Box 883, SE-721 23, High Tech Campus 32 (102) 7-3-1 Hongo, Bunkyo-ku, Vaster¨ as,˚ Sweden 5656 AE Eindhoven, Holland Tokyo 113-8656, Japan [email protected] [email protected] [email protected] Abstract estimate and the current system state. For example, if only one component is active, then it can run at the maximum This paper presents an implementation of an Execution QoS using 75% of a given resource. However, if a sec- Time Monitor (ETM) which can be applied in a resource ond identical component is started, then both components management framework, such as the one proposed in the will have to adapt to a lower QoS where each of them uses Open Media Platform (OMP) [4]. OMP is a European 50% of the same resource. project which aims at creating an open, flexible and re- In media processing systems, the load is very dynamic source efficient software architecture for mobile devices and the worst case is often unknown (unpredictable) or too such as cell phones and handsets. One of its goals is to high to do worst case resource allocation (since it will im- open up the possibility for software portability and fast ply wasting resources). The initial resource estimate pro- integration of applications, in order to decrease develop- vided by the component is used to create the initial allo- ment costs.
    [Show full text]
  • UNC Technical Report TR08-010
    OSPERT 2008 Proceedings of the Fourth International Workshop on Operating Systems Platforms for Embedded Real-Time Applications Prague, Czech Republic July 1, 2008 In conjunction with: The 20th Euromicro International Conference on Real-Time Systems, Prague, Czech Republic, July 2-4, 2008 Supported by: The ARTIST2 Network of Excellence on Embedded Systems Design FOREWORD This volume contains the final proceedings of the Fourth International Workshop on Operating Systems Platforms for Embedded Real-Time Applications (OSPERT), which was held on July 1, 2008 in Prague, Czech Republic, in conjunction with the 20th Euromicro International Con- ference on Real-Time Systems. Prior to the workshop, a pre-proceedings was made available, and authors were given the opportunity to modify their papers following the workshop to reflect issues and suggestions raised during the workshop. These final papers are contained herein. Although OSPERT is a relatively new workshop, it has quickly become an important venue for exchanging ideas about operating-systems issues related to real-time and embedded systems. This volume contains the nine papers presented at the workshop. This year’s workshop also featured an invited talk by Peter Zijlstra of Red Hat, entitled “Linux-rt: Turning a General Purpose OS into a Real-Time OS.” Peter’s talk focused on the linux-rt project, its history, current state, and future. The contributed papers were read and evaluated by the Program Committee, but were not formally refereed; it is expected that more polished versions of many of these papers will appear in conferences and fully refereed scientific journals. The Program Committee would like to thank all authors who submitted papers for consideration.
    [Show full text]
  • Low-Latency Audio on Linux by Means of Real-Time Scheduling ∗
    Low-Latency Audio on Linux by Means of Real-Time Scheduling ∗ Tommaso CUCINOTTA and Dario FAGGIOLI and Giacomo BAGNOLI Scuola Superiore Sant'Anna Via G. Moruzzi 1, 56124, Pisa (Italy) ft.cucinotta, [email protected], [email protected] Abstract audio collections and running the proper mixing In this paper, we propose to use resource reserva- software. tions scheduling and feedback-based allocation tech- In fact, developing complex multimedia appli- niques for the provisioning of proper timeliness guar- cations on GNU/Linux allows for the exploita- antees to audio processing applications. This al- tion of a multitude of OS services (e.g., network- lows real-time audio tasks to meet the tight tim- ing), libraries (e.g., sophisticated multimedia ing constraints characterizing them, even if other in- compression libraries) and media/storage sup- teractive activities are present in the system. The port (e.g., memory cards), as well as comfort- JACK sound infrastructure has been modified, lever- able and easy-to-use programming and debug- aging the real-time scheduler present in the Adaptive ging tools. However, contrarily to a Real-Time Quality of Service Architecture (AQuoSA). The ef- Operating System (RTOS), a GPOS is not gen- fectiveness of the proposed approach, which does not erally designed to provide scheduling guarantees require any modifiction to existing JACK clients, is to the running applications. This is why either validated through extensive experiments under dif- large amount of buffering is very likely to oc- ferent load conditions. cur, with an unavoidable impact on response time and latencies, or the POSIX fixed-priority Keywords (e.g., SCHED FIFO) real-time scheduling is uti- JACK, real-time, scheduling, time-sensitive, re- lized, but this turns out to be difficult when source reservation there is more than one time-sensitive applica- tion in the system.
    [Show full text]
  • Real-Time Attributes in Operating Systems
    Real-Time Attributes in Operating Systems Tommaso Cucinotta [email protected] Scuola Superiore Sant'Anna Pisa, Italy Spyridon V. Gogouvitis [email protected] National Technical University of Athens Athens, Greece ABSTRACT General-Purpose Operating Systems (GPOSes) are being used more and more extensively to support interactive, real-time and distributed applications, such as found in the multimedia domain. In fact, the wide availability of supported multimedia devices and protocols, together with the wide availability of libraries and tools for handling multimedia contents, make them an almost ideal platform for the development of this kind of complex applications. However, contrarily to Real-Time Operating Systems, General-Purpose ones used to lack some important functionality that are needed for providing proper scheduling guarantees to application processes. Recently, the increasing use of GPOSes for multimedia applications is gradually pushing OS developers towards enriching the kernel of a GPOS so as to provide more and more real-time functionality, thus enhance the performance and responsiveness of hosted time-sensitive applications. In this chapter, an overview is performed over the efforts done in the direction of enriching GPOSes with real-time capabilities, with a particular focus on the Linux OS. Due to its open-source nature and wide diffusion and availability, Linux is one of the most widely used OSes for such experimentations. INTRODUCTION New generation interactive distributed applications have significant demands on processing, storage and networking capabilities, as well as stringent timing requirements, such as various multimedia, virtual collaboration and e-learning applications. These are, among others, types of applications that have been undergoing in the last few years a very steep demand on the side of end-to-end interactivity level, response time, and throughput.
    [Show full text]
  • Real-Time Scheduling on Multi-Core: Theory and Practice
    FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Real-Time Scheduling on Multi-core: Theory and Practice Paulo Manuel Baltarejo de Sousa Doctoral Program in Informatics Engineering Supervisor: Prof. Eduardo Manuel Medicis Tovar Second Supervisor: Prof. Luís Miguel Pinho Almeida October 29, 2013 c Paulo Manuel Baltarejo de Sousa, 2013 Real-Time Scheduling on Multi-core: Theory and Practice Paulo Manuel Baltarejo de Sousa Doctoral Program in Informatics Engineering October 29, 2013 Abstract Nowadays, multi-core platforms are commonplace for efficiently achieving high computational power, even in embedded systems, with the number of cores steadily increasing and expected to reach hundreds of cores per chip in near future. Real-time computing is becoming increasingly important and pervasive, as more and more industries, infrastructures, and people depend on it. For real-time systems too, multi-cores offer an opportunity for a considerable boost in processing capacity, at relatively low price and power. This could, in principle, help with meeting the timing requirements of computationally intensive applications which could not be met on single-cores. However, real-time system designers must adopt suitable approaches for their system to allow them to fully exploit the capabilities of the multi-core platforms. In this line, scheduling algorithms will, certainly, play an important role. Real-time scheduling algorithms for multiprocessors are typically categorized as global, parti- tioned, and semi-partitioned. Global scheduling algorithms store tasks in one global queue, shared by all processors. Tasks can migrate from one processor to another; that is, a task can be preempted during its execution and resume its execution on another processor.
    [Show full text]
  • A Userspace Library for Multicore Real-Time Scheduling
    Bringing Theory Into Practice: A Userspace Library for Multicore Real-Time Scheduling Malcolm S. Mollison and James H. Anderson Department of Computer Science University of North Carolina at Chapel Hill Abstract approach in deployed systems is unappealing, and that a userspace (i.e., middleware) approach may be much more As multicore computing hardware has become more readily useful, if such an approach were to prove feasible. ubiquitous, real-time scheduling theory aimed at multicore Below, we list some of the reasons for this observation. systems has become increasingly sophisticated and diverse. 1) Customization. Industrial practitioners would benefit Real-time operating systems (RTOSs) are ill-suited for this from the ability to select and deploy resource allocation kind of rapid change, and the slow-moving RTOS ecosystem techniques commensurate with their particular applica- is falling further and further behind advances in real-time tions, rather than being “shoehorned” into the relatively scheduling theory. Thus, supporting new functionality in a “one-size-fits-all” traditional commercial/open-source layer of middleware software running in userspace (i.e., RTOS software model. RTOSs have been very slow outside the RTOS kernel) has been proposed. In this paper, to change, and cannot easily adapt to the growing we describe the first userspace scheduler that supports diversity of resource allocation techniques. preemptive, dynamic-priority, migrating real-time tasks on 2) Robustness. A middleware approach could potentially multicore hardware, and report empirical latency and over- allow different resource allocation techniques to be head measurements. On an eight-core Intel Xeon platform, employed by different groups of co-hosted applica- these measurements are in the range of ones to tens of tions, assuming these groups do not share cores with microseconds under most tested configurations.
    [Show full text]
  • Adaptive Management of Qos in Open Systems
    UNIVERSITY OF TRENTO DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY 38050 Povo – Trento (Italy), Via Sommarive 14 http://www.dit.unitn.it ADAPTIVE MANAGEMENT OF QOS IN OPEN SYSTEMS Luigi Palopoli, Luca Abeni , Tommaso Cucinotta, Luca Marzario and Giuseppe Lipari January 2007 Technical Report # DIT-07-003 . 1 Adaptive management of QoS in Open Systems Luigi Palopoli, Luca Abeni , Tommaso Cucinotta, Luca Marzario, Giuseppe Lipari Abstract In this paper, we present a software architecture to support soft real-time applications, such as multimedia streaming and telecommunication systems, in open embedded systems. Examples of such systems are consumer electronic devices (as cellular phones, PDAs, etc.), as well as multimedia servers (video servers, VoIP servers, etc.) and telecommunication infrastructure devices. For such applications, it is important to keep under control the resource utilization of every task, otherwise the Quality of Service experienced by the users may be degraded. Our proposal is to combine a resource reservation scheduler (that allows us to partition the CPU time in a reliable way) and a feedback based mechanism for dynamically adjusting the CPU fraction (bandwidth) allocated to a tasks. In particular, our controller enables specified Quality of Service (QoS) levels for the application while keeping the allocated bandwidth close to its actual needs. The adaptation mechanism consists of the combination of a prediction and of a feedback correction that operates locally on each task. The consistency of the system is preserved by a supervisor component that manages overload conditions and enacts security policies. We implemented the framework in AQuOSA, a software architecture that runs on top of the Linux kernel.
    [Show full text]
  • Programming Interfaces for Realtime and Cloud-Based Computing
    Programming Interfaces for Realtime and Cloud-based Computing Gregory Katsaros National Technical University of Athens, Greece Tommaso Cucinotta Scuola Superiore Sant'Anna, Pisa, Italy ABSTRACT Research in the fields of Grid Computing, Service Oriented Architectures (SOA) as well as Virtualization technologies has driven the emergence of Cloud service models such as Software- as-a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS). The appearance of different business roles according to this classification, potentially with differing interests, introduces new challenges with regard to the tools and mechanisms put in place in order to enable the efficient provisioning of services. Security, Quality of Service (QoS) assurance and real-time capabilities are just a few issues that the providers are trying to tackle and integrate within the new products and services that they offer. In this chapter, we make an overview of the approaches that aim to APIs for real-time computing. In the first part of this chapter, several Real-Time Application Interfaces will be presented and compared. After that, we will document the state-of-the-art regarding the Cloud APIs available and analyze the architecture and the technologies that they support. INTRODUCTION New generation interactive distributed applications, such as various multimedia, virtual collaboration and e-learning applications, have significant demands on processing, storage and networking capabilities, as well as stringent timing requirements. For these applications, the time at which individual computations and data transfers are terminated is as important as their functional correctness. Contrarily to the traditional domain of hard real-time systems, where a single violation of the timing constraints is not acceptable because it would lead to potential overall system failures and/or life losses, the mentioned applications posses instead soft timing constraints, whose violation leads to degradation of the offered Quality of Service and interactivity level.
    [Show full text]
  • Implementation of the Multi-Level Adaptive Hierarchical Scheduling Framework
    Implementation of the Multi-Level Adaptive Hierarchical Scheduling Framework Nima Moghaddami Khalilzad, Moris Behnam, Thomas Nolte MRTC/Malardalen¨ University P.O. Box 883, SE-721 23 Vaster¨ as,˚ Sweden [email protected] Abstract—We have presented a multi-level adaptive hierarchi- portions based on the worst case CPU demand of the tasks cal scheduling framework in our previous work. The framework is not an efficient design approach. Because even if the worst targets compositional real-time systems which are composed of case CPU demand is available, it will result in an unnecessary both hard and soft real-time systems. While static CPU portions CPU overallocation. Consequently, the CPU resource will be are reserved for hard real-time components, the CPU portions of wasted. soft real-time components are adjusted during run-time. In this paper, we present the implementation details of our framework To address this problem, we presented an adaptive frame- which is implemented as a Linux kernel loadable module. In work in [6] where for hard real-time systems we reserve the addition, we present a case-study to evaluate the performance CPU portions based on their worst case resource demand. and the overhead of our framework. On the other hand, soft real-time systems receive dynamic CPU portions based on their actual need at each point in I. INTRODUCTION time. For acquiring the resource demand of the soft real- time components, we monitor their behavior during run-time Hierarchical scheduling and resource reservation tech- and use the gathered information to adjust the component niques have been widely used for composing independent hard CPU reservations.
    [Show full text]