Archn&S Jul 0 8 2013

Total Page:16

File Type:pdf, Size:1020Kb

Archn&S Jul 0 8 2013 Dynamic Strategic Interactions: Analysis and Mechanism Design by Utku Ozan Candogan B.S., Electrical and Electronics Engineering, Bilkent University (2007) M.S., Electrical Engineering and Computer Science, Massachusetts Institute of Technology (2009) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of ARCHN&S Doctor of Philosophy MASSACHUSETTS INSTY TE OF TECHNOLOGY at the JUL 0 8 2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2013 LIBRARIES @ Massachusetts Institute of Technology 2013. All rights reserved. Author.......................................................... Department of Electrical Engineering and Computer Science May 22, 2013 C ertified by ........................... ky Asuman zdaglar ,1 Professor Thesis Supervisor C ertified by ................................. --............ ........ Pablo A. Parrilo Professor V, Thesis Supervisor Accepted by ..... 4lie A. Kolodziejski Professor Chair, Department Committee on Graduate Students 2 Dynamic Strategic Interactions: Analysis and Mechanism Design by Utku Ozan Candogan Submitted to the Department of Electrical Engineering and Computer Science on May 22, 2013, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Modern systems, such as engineering systems with autonomous entities, markets, and finan- cial networks, consist of self-interested agents with potentially conflicting objectives. These agents interact in a dynamic manner, modifying their strategies over time to improve their payoffs. The presence of self-interested agents in such systems, necessitates the analysis of the impact of multi-agent decision making on the overall system, and the design of new systems with improved performance guarantees. Motivated by this observation, in the first part of this thesis we focus on fundamental structural properties of games, and exploit them to provide a new framework for analyzing the limiting behavior of strategy update rules in various game-theoretic settings. In the second part, we investigate the design problem of an auctioneer who uses iterative multi-- item auctions for efficient allocation of resources. More specifically, in the first part of the thesis we focus on potential games, a special class of games with desirable equilibrium and dynamic properties, and analyze their preference structure. Exploiting this structure we obtain a decomposition of arbitrary games into three components, which we refer to as the potential, harmonic, and nonstrategic components. Intuitively, the potential component of a game captures interactions that can equivalently be represented as a common interest game, while the harmonic part represents conflicts between the interests of the players. We make this intuition precise by studying the properties of these two components, and establish that indeed they have quite distinct and remarkable characteristics. The decomposition also allows us to approximate a given game with a potential game. We show that the set of approximate equilibria of an arbitrary game can be characterized through the equilibria of a potential game that approximates it. The decomposition provides a valuable tool for the analysis of dynamics in games. Earlier literature established that many natural strategy update rules converge to a Nash equilibrium in potential games. We show that games that are close to a potential game exhibit similar properties. In particular, we focus on three commonly studied discrete-time update rules (better/best response, logit response, and discrete-time fictitious play dynam- ics), and establish that in near-potential games, the limiting behavior of these update rules can be characterized by an approximate equilibrium set, size of which is proportional to the distance of the original game from a potential game. Since a close potential game to a given game can be systematically found via decomposition, our results suggest a systematic framework for studying the limiting behavior of adaptive dynamics in arbitrary finite strate- gic form games: the limiting behavior of dynamics in a given game can be characterized by first approximating this game with a potential game, and then analyzing the limiting behavior of dynamics in the potential game. 3 In the second part of the thesis, we change our focus to implementing efficient out- comes in multi-agent settings by using simple mechanisms. In particular, we develop novel efficient iterative auction formats for multi-item environments, where items exhibit value complementarities/substitutabilities. We obtain our results by focusing on a special class of value functions, which we refer to as graphical valuations. These valuations are not fully general, but importantly they capture value complementarity/substitutability in important practical settings, while allowing for a compact representation of the value functions. We start our analysis by first analyzing how the special structure of graphical valuations can be exploited to design simple iterative auction formats. We show that in settings where the underlying value graph is a tree (and satisfies an additional technical condition), a Walrasian equilibrium always exists (even in the presence of value complementarities). Using this result we provide a linear programming formulation of the efficient allocation problem for this class of valuations. Additionally, we demonstrate that a Walrasian equilibrium may not exist, when the underlying value graph is more general. However, we also establish that in this case a more general pricing equilibrium always exists, and provide a stronger linear programming formulation that can be used to identify the efficient allocation for general graphical valuations. We then consider solutions of these linear programming formulations using iterative algorithms. Complementing these iterative algorithms with appropriate payment rules, we obtain iterative auction formats that implement the efficient outcome at an (ex-post perfect) equilibrium. The auction formats we obtain rely on simple pricing rules that, in the most general case, require offering a bidder-specific price for each item, and bidder-specific discounts/markups for pairs of items. Our results in this part of the thesis suggest that when value functions of bidders exhibit some special structure, it is possible to systematically exploit this structure in order to develop simple efficient iterative auction formats. Thesis Supervisor: Asuman Ozdaglar Title: Professor Thesis Supervisor: Pablo A. Parrilo Title: Professor 4 To my families: past, present, and future. 5 6 Acknowledgments Being a doctoral student at one of the most intellectually stimulating schools in the world has been a privilege. However, for me perhaps the most exciting and gratifying component of my MIT experience has been the opportunity to work with my advisors Asu Ozdaglar and Pablo Parrilo. Their guidance, combined with their endless support and enthusiasm made this thesis possible. Additionally, the nurturing and friendly research environment they created for their students at MIT, which is filled with innate curiosity and interesting ideas, has been essential for my development as a scholar and a researcher. I, with no doubt, have been very fortunate to complete my doctoral studies under their supervision. Both Asu and Pablo are outstanding examples for me, and I will try my best to carry their inspiration and guidance throughout my life. I am also grateful to Prof. Georgia Perakis, and Prof. Daron Acemoglu for serving on my thesis committee. Their insights and perspective inspired me to refine and improve the ideas that are central to thesis, and discover new applications for my results. Consequently, this thesis has benefited enormously from their comments and feedback. I have also been very lucky to have their guidance and support in the job market. I would like to thank them for their dedication and help. I am indebted to faculty members at LIDS, ORC, and CSAIL, especially to John Tsitsiklis, Devavrat Shah, Munther Dahleh, Itai Ashla Vivek Farias, and Constantinos Daskalakis for creating a diverse and rich learning environment at MIT. Their lectures, ideas, and talks have been both inspiring and stimulating. I have learned vastly from my other coauthors as well: Kostas Bimpikis, Ilan Lo- bel, Hamid Nazerzadeh, Jennifer Chayes, Christian Borgs, Ishai Menache, Constantinos Daskalakis, and Christos Papadimitriou. I have been extremely fortunate to work with some of these brightest minds from different communities. I look forward to interacting more with them, and having many other fruitful collaborations. I also want to thank Kostas, Ilan, and Hamid, for being great friends who are always willing to listen. I am deeply grateful to (past and present) members of the Microsoft Research lab in New England, in particular, Jennifer Chayes, Christian Borgs, Ishai Menache, Adam Kalai, Sham Kakade, Brendan Lucier, and Yash Kanoria. In addition to the excellent talks and workshops I attended at Microsoft Research, my interaction with the members of the lab during my internships enriched my experience as a scholar, and exposed me to different ideas and perspectives. Also a special thanks goes to Jennifer for her support and help during my job search. Various friends from ORC and LIDS made MIT a second home for me. I especially would like to thank Alireza Tahbaz-Salehi, Ercan Yildiz, Mohamed Mostagir, Azarakhsh Malekian, Christina Lee, Diego Feijer, Ali ParandehGheibi,
Recommended publications
  • Notices of the American Mathematical Society
    ISSN 0002-9920 of the American Mathematical Society February 2006 Volume 53, Number 2 Math Circles and Olympiads MSRI Asks: Is the U.S. Coming of Age? page 200 A System of Axioms of Set Theory for the Rationalists page 206 Durham Meeting page 299 San Francisco Meeting page 302 ICM Madrid 2006 (see page 213) > To mak• an antmat•d tub• plot Animated Tube Plot 1 Type an expression in one or :;)~~~G~~~t;~~i~~~~~~~~~~~~~:rtwo ' 2 Wrth the insertion point in the 3 Open the Plot Properties dialog the same variables Tl'le next animation shows • knot Plot 30 Animated + Tube Scientific Word ... version 5.5 Scientific Word"' offers the same features as Scientific WorkPlace, without the computer algebra system. Editors INTERNATIONAL Morris Weisfeld Editor-in-Chief Enrico Arbarello MATHEMATICS Joseph Bernstein Enrico Bombieri Richard E. Borcherds Alexei Borodin RESEARCH PAPERS Jean Bourgain Marc Burger James W. Cogdell http://www.hindawi.com/journals/imrp/ Tobias Colding Corrado De Concini IMRP provides very fast publication of lengthy research articles of high current interest in Percy Deift all areas of mathematics. All articles are fully refereed and are judged by their contribution Robbert Dijkgraaf to the advancement of the state of the science of mathematics. Issues are published as S. K. Donaldson frequently as necessary. Each issue will contain only one article. IMRP is expected to publish 400± pages in 2006. Yakov Eliashberg Edward Frenkel Articles of at least 50 pages are welcome and all articles are refereed and judged for Emmanuel Hebey correctness, interest, originality, depth, and applicability. Submissions are made by e-mail to Dennis Hejhal [email protected].
    [Show full text]
  • CS599: Algorithm Design in Strategic Settings Fall 2012 Lecture 2: Game Theory Preliminaries
    CS599: Algorithm Design in Strategic Settings Fall 2012 Lecture 2: Game Theory Preliminaries Instructor: Shaddin Dughmi Administrivia Website: http://www-bcf.usc.edu/~shaddin/cs599fa12 Or go to www.cs.usc.edu/people/shaddin and follow link Emails? Registration Outline 1 Games of Complete Information 2 Games of Incomplete Information Prior-free Games Bayesian Games Outline 1 Games of Complete Information 2 Games of Incomplete Information Prior-free Games Bayesian Games Example: Rock, Paper, Scissors Figure: Rock, Paper, Scissors Games of Complete Information 2/23 Rock, Paper, Scissors is an example of the most basic type of game. Simultaneous move, complete information games Players act simultaneously Each player incurs a utility, determined only by the players’ (joint) actions. Equivalently, player actions determine “state of the world” or “outcome of the game”. The payoff structure of the game, i.e. the map from action vectors to utility vectors, is common knowledge Games of Complete Information 3/23 Typically thought of as an n-dimensional matrix, indexed by a 2 A, with entry (u1(a); : : : ; un(a)). Also useful for representing more general games, like sequential and incomplete information games, but is less natural there. Figure: Generic Normal Form Matrix Standard mathematical representation of such games: Normal Form A game in normal form is a tuple (N; A; u), where N is a finite set of players. Denote n = jNj and N = f1; : : : ; ng. A = A1 × :::An, where Ai is the set of actions of player i. Each ~a = (a1; : : : ; an) 2 A is called an action profile. u = (u1; : : : un), where ui : A ! R is the utility function of player i.
    [Show full text]
  • Strength in Numbers: the Rising of Academic Statistics Departments In
    Agresti · Meng Agresti Eds. Alan Agresti · Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics DepartmentsStatistics in the U.S. Rising of Academic The in Numbers: Strength Statistics Departments in the U.S. Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. Alan Agresti • Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. 123 Editors Alan Agresti Xiao-Li Meng Department of Statistics Department of Statistics University of Florida Harvard University Gainesville, FL Cambridge, MA USA USA ISBN 978-1-4614-3648-5 ISBN 978-1-4614-3649-2 (eBook) DOI 10.1007/978-1-4614-3649-2 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2012942702 Ó Springer Science+Business Media New York 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • Chapter 16 Oligopoly and Game Theory Oligopoly Oligopoly
    Chapter 16 “Game theory is the study of how people Oligopoly behave in strategic situations. By ‘strategic’ we mean a situation in which each person, when deciding what actions to take, must and consider how others might respond to that action.” Game Theory Oligopoly Oligopoly • “Oligopoly is a market structure in which only a few • “Figuring out the environment” when there are sellers offer similar or identical products.” rival firms in your market, means guessing (or • As we saw last time, oligopoly differs from the two ‘ideal’ inferring) what the rivals are doing and then cases, perfect competition and monopoly. choosing a “best response” • In the ‘ideal’ cases, the firm just has to figure out the environment (prices for the perfectly competitive firm, • This means that firms in oligopoly markets are demand curve for the monopolist) and select output to playing a ‘game’ against each other. maximize profits • To understand how they might act, we need to • An oligopolist, on the other hand, also has to figure out the understand how players play games. environment before computing the best output. • This is the role of Game Theory. Some Concepts We Will Use Strategies • Strategies • Strategies are the choices that a player is allowed • Payoffs to make. • Sequential Games •Examples: • Simultaneous Games – In game trees (sequential games), the players choose paths or branches from roots or nodes. • Best Responses – In matrix games players choose rows or columns • Equilibrium – In market games, players choose prices, or quantities, • Dominated strategies or R and D levels. • Dominant Strategies. – In Blackjack, players choose whether to stay or draw.
    [Show full text]
  • Prizes and Awards Session
    PRIZES AND AWARDS SESSION Wednesday, July 12, 2021 9:00 AM EDT 2021 SIAM Annual Meeting July 19 – 23, 2021 Held in Virtual Format 1 Table of Contents AWM-SIAM Sonia Kovalevsky Lecture ................................................................................................... 3 George B. Dantzig Prize ............................................................................................................................. 5 George Pólya Prize for Mathematical Exposition .................................................................................... 7 George Pólya Prize in Applied Combinatorics ......................................................................................... 8 I.E. Block Community Lecture .................................................................................................................. 9 John von Neumann Prize ......................................................................................................................... 11 Lagrange Prize in Continuous Optimization .......................................................................................... 13 Ralph E. Kleinman Prize .......................................................................................................................... 15 SIAM Prize for Distinguished Service to the Profession ....................................................................... 17 SIAM Student Paper Prizes ....................................................................................................................
    [Show full text]
  • A Beautiful Math : John Nash, Game Theory, and the Modern Quest for a Code of Nature / Tom Siegfried
    A BEAUTIFULA BEAUTIFUL MATH MATH JOHN NASH, GAME THEORY, AND THE MODERN QUEST FOR A CODE OF NATURE TOM SIEGFRIED JOSEPH HENRY PRESS Washington, D.C. Joseph Henry Press • 500 Fifth Street, NW • Washington, DC 20001 The Joseph Henry Press, an imprint of the National Academies Press, was created with the goal of making books on science, technology, and health more widely available to professionals and the public. Joseph Henry was one of the founders of the National Academy of Sciences and a leader in early Ameri- can science. Any opinions, findings, conclusions, or recommendations expressed in this volume are those of the author and do not necessarily reflect the views of the National Academy of Sciences or its affiliated institutions. Library of Congress Cataloging-in-Publication Data Siegfried, Tom, 1950- A beautiful math : John Nash, game theory, and the modern quest for a code of nature / Tom Siegfried. — 1st ed. p. cm. Includes bibliographical references and index. ISBN 0-309-10192-1 (hardback) — ISBN 0-309-65928-0 (pdfs) 1. Game theory. I. Title. QA269.S574 2006 519.3—dc22 2006012394 Copyright 2006 by Tom Siegfried. All rights reserved. Printed in the United States of America. Preface Shortly after 9/11, a Russian scientist named Dmitri Gusev pro- posed an explanation for the origin of the name Al Qaeda. He suggested that the terrorist organization took its name from Isaac Asimov’s famous 1950s science fiction novels known as the Foun- dation Trilogy. After all, he reasoned, the Arabic word “qaeda” means something like “base” or “foundation.” And the first novel in Asimov’s trilogy, Foundation, apparently was titled “al-Qaida” in an Arabic translation.
    [Show full text]
  • Guiding Mathematical Discovery How We Started a Math Circle
    Guiding Mathematical Discovery How We Started a Math Circle Jackie Chan, Tenzin Kunsang, Elisa Loy, Fares Soufan, Taylor Yeracaris Advised by Professor Deanna Haunsperger Illustrations by Elisa Loy Carleton College, Mathematics and Statistics Department 2 Table of Contents About the Authors 4 Acknowledgments 6 Preface 7 Designing Circles 9 Leading Circles 11 Logistics & Classroom Management 14 The Circles 18 Shapes and Patterns 20 ​ Penny Shapes 21 Polydrons 23 Knots and What-Not 25 Fractals 28 Tilings and Tessellations 31 Graphs and Trees 35 ​ The Four Islands Problem (Königsberg Bridge Problem) 36 Human Graphs 39 Map Coloring 42 Trees: Dots and Lines 45 Boards and Spatial Reasoning 49 ​ Filing Grids 50 Gerrymandering Marcellusville 53 Pieces on a Chessboard 58 Games and Strategy 63 ​ Game Strategies (Rock/Paper/Scissors) 64 Game Strategies for Nim 67 Tic-Tac-Torus 70 SET 74 KenKen Puzzles 77 3 Logic and Probability 81 ​ The Monty Hall Problem 82 Knights and Knaves 85 Sorting Algorithms 87 Counting and Combinations 90 ​ The Handshake/High Five Problem 91 Anagrams 96 Ciphers 98 Counting Trains 99 But How Many Are There? 103 Numbers and Factors 105 ​ Piles of Triangular Numbers 106 Cup Flips 108 Counting with Cups — The Josephus Problem 111 Water Cups 114 Guess What? 116 Additional Circle Ideas 118 Further Reading 120 Keyword Index 121 4 About the Authors Jackie Chan Jackie is a senior computer science and mathematics major at Carleton College who has had an interest in teaching mathematics since an early age. Jackie’s interest in mathematics education stems from his enjoyment of revealing the intuition behind mathematical concepts.
    [Show full text]
  • Problem Set #8 Solutions: Introduction to Game Theory
    Finance 30210 Solutions to Problem Set #8: Introduction to Game Theory 1) Consider the following version of the prisoners dilemma game (Player one’s payoffs are in bold): Player Two Cooperate Cheat Player One Cooperate $10 $10 $0 $12 Cheat $12 $0 $5 $5 a) What is each player’s dominant strategy? Explain the Nash equilibrium of the game. Start with player one: If player two chooses cooperate, player one should choose cheat ($12 versus $10) If player two chooses cheat, player one should also cheat ($0 versus $5). Therefore, the optimal strategy is to always cheat (for both players) this means that (cheat, cheat) is the only Nash equilibrium. b) Suppose that this game were played three times in a row. Is it possible for the cooperative equilibrium to occur? Explain. If this game is played multiple times, then we start at the end (the third playing of the game). At the last stage, this is like a one shot game (there is no future). Therefore, on the last day, the dominant strategy is for both players to cheat. However, if both parties know that the other will cheat on day three, then there is no reason to cooperate on day 2. However, if both cheat on day two, then there is no incentive to cooperate on day one. 2) Consider the familiar “Rock, Paper, Scissors” game. Two players indicate either “Rock”, “Paper”, or “Scissors” simultaneously. The winner is determined by Rock crushes scissors Paper covers rock Scissors cut paper Indicate a -1 if you lose and +1 if you win.
    [Show full text]
  • Project in Mathematics Dan Saattrup Nielsen Advisor: Asger
    Games and determinacy Project in Mathematics Dan Saattrup Nielsen Advisor: Asger T¨ornquist Date: 17/04-2015 iii of 42 Abstract In this project we introduce the notions of perfect information games in a set- theoretic context, from where we’ll analyse both the consequences of the deter- minacy of games as well as showing large classes of games are determined. More precisely, we’ll show that determinacy of games over the reals implies that every subset of the reals is Lebesgue measurable and has both the Baire and perfect set property (thereby contradicting the axiom of choice). Next, Martin’s result on Borel determinacy will be presented, as well as his proof of analytic determinacy from the existence of a Ramsey cardinal. Lastly, we’ll present a certain kind of stochastic games (that is, games involving chance) called Blackwell games, and present Martin’s proof that determinacy of perfect information games imply the determinacy of Blackwell games. iv of 42 Dan Saattrup Nielsen Contents Introduction v 1 Basic game theory 1 1.1 Infinite games . .1 1.2 Regularity properties and games . .2 1.3 Axiom of determinacy . .9 2 Borel determinacy 11 2.1 Determinacy of open and closed games . 11 2.2 Borel determinacy . 12 3 Analytic determinacy 20 3.1 Ramsey cardinals . 20 3.2 Kleene-Brouwer ordering . 21 3.3 Analytic determinacy . 22 4 Blackwell determinacy 26 4.1 Blackwell games . 26 4.2 Blackwell determinacy . 28 A Preliminaries 38 A.1 Polish spaces and trees . 38 A.2 Borel and analytic sets . 39 A.3 Baire property .
    [Show full text]
  • Lecture 3 1 Introduction to Game Theory 2 Games of Complete
    CSCI699: Topics in Learning and Game Theory Lecture 3 Lecturer: Shaddin Dughmi Scribes: Brendan Avent, Cheng Cheng 1 Introduction to Game Theory Game theory is the mathematical study of interaction among rational decision makers. The goal of game theory is to predict how agents behave in a game. For instance, poker, chess, and rock-paper-scissors are all forms of widely studied games. To formally define the concepts in game theory, we use Bayesian Decision Theory. Explicitly: • Ω is the set of future states. For example, in rock-paper-scissors, the future states can be 0 for a tie, 1 for a win, and -1 for a loss. • A is the set of possible actions. For example, the hand form of rock, paper, scissors in the game of rock-paper-scissors. • For each a ∈ A, there is a distribution x(a) ∈ Ω for which an agent believes he will receive ω ∼ x(a) if he takes action a. • A rational agent will choose an action according to Expected Utility theory; that is, each agent has their own utility function u :Ω → R, and chooses an action a∗ ∈ A that maximizes the expected utility . ∗ – Formally, a ∈ arg max E [u(ω)]. a∈A ω∼x(a) – If there are multiple actions that yield the same maximized expected utility, the agent may randomly choose among them. 2 Games of Complete Information 2.1 Normal Form Games In games of complete information, players act simultaneously and each player’s utility is determined by his actions as well as other players’ actions. The payoff structure of 1 2 GAMES OF COMPLETE INFORMATION 2 the game (i.e., the map from action profiles to utility vectors) is common knowledge to all players in the game.
    [Show full text]
  • Evolution of Restraint in a Structured Rock–Paper–Scissors Community
    Evolution of restraint in a structured rock–paper–scissors community Joshua R. Nahum, Brittany N. Harding, and Benjamin Kerr1 Department of Biology and BEACON Center for the Study of Evolution in Action, University of Washington, Seattle, WA 98195 Edited by John C. Avise, University of California, Irvine, CA, and approved April 19, 2011 (received for review January 31, 2011) It is not immediately clear how costly behavior that benefits others ately experience beneficial social environments (engineered by evolves by natural selection. By saving on inherent costs, individ- their kin), whereas selfish individuals tend to face a milieu lack- uals that do not contribute socially have a selective advantage ing prosocial behavior (because their kin tend to be less altru- over altruists if both types receive equal benefits. Restrained istic). Interaction with kin can occur actively through the choice consumption of a common resource is a form of altruism. The cost of relatives as social contacts or passively through the interaction of this kind of prudent behavior is that restrained individuals give with neighbors in a habitat with limited dispersal. There is now up resources to less-restrained individuals. The benefit of restraint a large body of literature on the effect of active and passive as- is that better resource management may prolong the persistence sortment on the evolution of altruism (5, 11–18). At a funda- of the group. One way to dodge the problem of defection is for mental level, this research focuses on the distribution of inter- altruists to interact disproportionately with other altruists. With actions among altruistic and selfish individuals.
    [Show full text]
  • Lecture 8 — May 5 Lecturer: Juli´Anmestre
    Optimization Summer 2010 Lecture 8 | May 5 Lecturer: Juli´anMestre 8.1 Two-player zero-sum games We consider the following mathematical abstraction of a game played by two players. Each player has a set of possible strategies that she can choose to play. We denote by Si the set of strategies of player i = 1; 2. The outcome of the game is determined by jS1|×|S2j the pay-off matrix D 2 R . Suppose that the players select s1 2 S1 and s2 2 S2 respectively. Then if D(s1; s2) > 0 we can think of player 1 getting D(s1; s2) euros from player 2, and if D(s1; s2) < 0 we can think of player 1 paying jD(s1; s2)j euros to player 2. This type of games are call zero-sum because the sum of the earnings of player 1 and player 2 is always zero. For a concrete example, consider the children game of rock-paper-scissors. The strat- egy of the each player is the same, frock, paper, scissorg, and the pay-off matrix is as follows: rock paper scissors rock 0 -1 1 paper 1 0 -1 scissors -1 1 0 Clearly if a player has to announce her strategy before the other payer, there is no way she can win. An interesting question to consider is whether she could do better by using a randomized strategy? Let us try to make this question more precise. Suppose we are given a pay-off matrix D 2 Rn×m. A mixed strategy for player 1 is a vector x 2 Rn P such that xi ≥ 0 for all i and i xi = 1, where xi represents the probability that payer 1 choose her ith strategy.
    [Show full text]