Algorithmic Resource Verification

Total Page:16

File Type:pdf, Size:1020Kb

Algorithmic Resource Verification Algorithmic Resource Verification THÈSE NO 7885 (2017) PRÉSENTÉE LE 9 NOVEMBRE 2017 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS LABORATOIRE D'ANALYSE ET DE RAISONNEMENT AUTOMATISÉS PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Ravichandhran KANDHADAI MADHAVAN acceptée sur proposition du jury: Prof. M. Odersky, président du jury Prof. V. Kuncak, directeur de thèse Prof. R. Majumdar, rapporteur Dr G. Ramalingam, rapporteur Prof. J. Larus, rapporteur Suisse 2017 This thesis is dedicated to my maternal grandmother. Observing her I learnt what it means to work hard and be devoted. Acknowledgements As I reflect upon my journey through my PhD I feel a sense of elation but at the same time an overwhelming sense of gratitude to many people who made me realize this dream. I take this opportunity to thank them all. First and foremost, I thank my advisor Professor Viktor Kuncak for the very many ways in which he has helped me during the course of my PhD. It is impossible for me to imagine a person who would have more faith and confidence in me than my advisor. His presence felt like having a companion with immense knowledge and experience who is working side-by-side with me towards my PhD. Besides his help with the technical aspects of the research, he was a great source of moral support. He shared my elation and pride when I was going through a high phase, my disappointment and dejection during paper rejections, and my effort, nervousness and excitement while working on numerous submission deadlines. I also thank him for all the big responsibilities that he had trusted me with: mentoring interns, managing several aspects of teaching like setting up questions, leading teaching assistants and giving substitute lectures. These were great experiences that I, retrospectively, think I am very fortunate to have had. I am very grateful to him that he had overlooked many of my blunders and mistakes in discharging my responsibilities and have always been very kind and supportive. Since it is impossible to elucidate all ways in which he has helped me, I would conclude by saying that I would always be proud to be called his advisee and I hope that I can live up to the trust and confidence he has in me in the future as well. I thank Dr. G. Ramalingam for being a constant source of inspiration and guidance all through my research career. He has helped me in my career in numerous ways: first as a great teacher, later as a great mentor and always as a great, supportive friend. I developed and honed much of my research skills by observing him. What I find amazing and contagious is his rational and deep reasoning not just about research problems but also about issues in life. I hope to have absorbed a bit of that skill having been in close acquaintance with him for these many years. I thank him for motivating me to pursue a PhD, to join EPFL and to work with my advisor. This thesis would not have been possible without his advise and motivation. I am very happy and proud that this dissertation is reviewed by him. I thank Professor Martin Odersky for being an excellent teacher and a source of inspiration. I greatly enjoyed the conversations we had and enjoyed working with him as a teaching assistant. I am very grateful to him for being very supportive about my research, and for presiding over the defense jury. I thank other members of the defense committee: Professor Jim Larus and Professor Rupak Majumdar for reviewing my dissertation and providing me very valuable i Acknowledgements comments and feedback on the research, despite their very busy schedules. I greatly enjoyed discussing my research with them. I thank Pratik Fegade and Sumith Kulal who in the course of their internships helped with im- proving the system and the approach described in this dissertation. Particularly, I thank Pratik Fegade for contributions to the development of the techniques detailed in section 3.8 of this dissertation, and Sumith Kulal for helping carry out many experiments detailed in section 5. I thank my current and past lab mates Mikaël Mayer, Jad Hamza, Manos Koukoutos, Nicolas Voirol, Etienne Kneuss, Tihomir Gvero, Regis Blanc, Eva Darulova, Manohar Jonalagedda, Ivan Kuraj, Hossein Hojjat, Phillipe Suter, Andrew Reynolds, Mukund Raghothaman, Georg Schimd, Marco Antognini, Romain Edelmann, and also many other friends and colleagues. I enjoyed the numerous discussions I had with them in the lab, over meals, during outing and in every other place we were caught up in. In their company I felt like a truly important person. In particular, I thank Mikaël Mayer for being an amazing friend and collaborator all through my PhD life – with him I could freely share my successes as well as my frustrations. I thank Fabien Salvi for providing great computing infrastructure and for accommodating each and every request of mine no matter how urgent and time constrained they were. I thank Sylvie Jankow for her kindness and help with administrative tasks. Furthermore, I thank Professor K.V. Raghavan for being an excellent advisor of my master’s thesis and for being a constant source of encouragement. I thank him for persuading me to continue with a research career and eventually pursue PhD. I am also thankful to him and Professor Deepak D’Souza for introducing me to the area of program analysis. I fell in love with this amazing field at that very instant, and it feels like the rest of my research path was a foregone conclusion. I thank Dr. Sriram Rajamani for being a great source of inspiration and support in my research career. Last but not the least, I thank my amazing family for their never ending love, support and sacrifices. I thank my parents for, well, everything I am today. I thank my sister, my grand- mother and my brother-in-law for their limitless love and support. I thank my nieces Abi and Apoorva for showing me that life outside research can also be awesome. It is funny that they were born, grew and went to school while I was still pursuing my PhD. And, of course, I thank my wife Nikhila for her love and encouragement and, more importantly, for tolerating all my quirks. I thank numerous other friends, colleagues and relatives who I, unfortunately, could not mention but have made my PhD years the best phase in my life so far. Lausanne, August 2017 Ravichandhran Kandhadai Madhavan ii Preface Is the program I have written efficient? This is a question we face from the very moment we discover what programming is all about. The improvements in absolute performance of hardware systems have made this question more important than ever, because analytical behavior becomes more pronounced with large sizes of the data that today’s applications manipulate. Despite the importance of this question, there are surprisingly few techniques and tools that can help the developer answer such questions. Program verification is an active area of research, yet most approaches for software focus on safety verification of the values that the program computes. For performance, one often relies on testing, which is not only very incomplete, but provides little help in capturing the reasons for the behavior of the program. This thesis presents a system that can automatically verify efficiency of programs. The verified bounds are guaranteed to hold for all program inputs. The prototypical examples of resources are time (for example, the number of operations performed), or notions related to memory usage (for example, the number of allocation steps performed). These bounds are properties of the algorithms, not of the unerlying hardware implementation. The presented system is remarkable in that it suffices for the developers to provide only sketches of the bounds that are expected to hold (corresponding to expected asymptotic complexity). The system can infer the concrete coefficients automatically and confirm the resource bounds. The paradigm supported by the approach in this thesis is purely functional, making it feasible to consider verification of very sophisticated data structures. Indeed, a “by product” of this thesis is that the author verified a version of rather non-trivial Conc Trees data structure that was introduced by Dr. Aleksandar Prokopec, and that play an important role in parallel collections framework of Scala. The thesis deals with subtleties of verifying performance of programs in the presence of higher-order functions. What is more, the thesis supports efficient functional programming in practice through treatment of the construct inspired by imperative behavior: memoization (caching). Memoization, and it special case, lazy evaluation, are known to improve efficiency of functional programs both in practice and in asymptotic terms, so they make functional programming languages more practical. Yet, reasoning about the performance in the presence of these constructs introduces substantial aspects of state into the model. The thesis shows how to make specification and verification feasible even under this challanging scenario. iii Preface Verification of program correctness has been a long road, and we are starting to see practical solutions that are cost-effective, especially for functional programs. With each step along this road, the gap in reasoning ability between developers and tools is narrowing. The work in this thesis makes a big step along an under-explored dimension of program meaning—reasoning about performance bounds. Given the extent to which program development is driven by performance considerations, closing this gap is likely to have not only great benefits for verifying programs, but will also open up new applications that leverage reliable performance information to improve and adapt software systems.
Recommended publications
  • Unfold/Fold Transformations and Loop Optimization of Logic Programs
    Unfold/Fold Transformations and Loop Optimization of Logic Programs Saumya K. Debray Department of Computer Science The University of Arizona Tucson, AZ 85721 Abstract: Programs typically spend much of their execution time in loops. This makes the generation of ef®cient code for loops essential for good performance. Loop optimization of logic programming languages is complicated by the fact that such languages lack the iterative constructs of traditional languages, and instead use recursion to express loops. In this paper, we examine the application of unfold/fold transformations to three kinds of loop optimization for logic programming languages: recur- sion removal, loop fusion and code motion out of loops. We describe simple unfold/fold transformation sequences for these optimizations that can be automated relatively easily. In the process, we show that the properties of uni®cation and logical variables can sometimes be used to generalize, from traditional languages, the conditions under which these optimizations may be carried out. Our experience suggests that such source-level transformations may be used as an effective tool for the optimization of logic pro- grams. 1. Introduction The focus of this paper is on the static optimization of logic programs. Speci®cally, we investigate loop optimization of logic programs. Since programs typically spend most of their time in loops, the generation of ef®cient code for loops is essential for good performance. In the context of logic programming languages, the situation is complicated by the fact that iterative constructs, such as for or while, are unavailable. Loops are usually expressed using recursive procedures, and loop optimizations have be considered within the general framework of inter- procedural optimization.
    [Show full text]
  • A Right-To-Left Type System for Value Recursion
    1 A right-to-left type system for value recursion 61 2 62 3 63 4 Alban Reynaud Gabriel Scherer Jeremy Yallop 64 5 ENS Lyon, France INRIA, France University of Cambridge, UK 65 6 66 1 Introduction Seeking to address these problems, we designed and imple- 7 67 mented a new check for recursive definition safety based ona 8 In OCaml recursive functions are defined using the let rec opera- 68 novel static analysis, formulated as a simple type system (which we 9 tor, as in the following definition of factorial: 69 have proved sound with respect to an existing operational seman- 10 let rec fac x = if x = 0 then 1 70 tics [Nordlander et al. 2008]), and implemented as part of OCaml’s 11 else x * (fac (x - 1)) 71 type-checking phase. Our check was merged into the OCaml distri- 12 Beside functions, let rec can define recursive values, such as 72 bution in August 2018. 13 an infinite list ones where every element is 1: 73 Moving the check from the middle end to the type checker re- 14 74 let rec ones = 1 :: ones stores the desirable property that compilation of well-typed programs 15 75 Note that this “infinite” list is actually cyclic, and consists of asingle does not go wrong. This property is convenient for tools that reuse 16 76 cons-cell referencing itself. OCaml’s type-checker without performing compilation, such as 17 77 However, not all recursive definitions can be computed. The MetaOCaml [Kiselyov 2014] (which type-checks quoted code) and 18 78 following definition is justly rejected by the compiler: Merlin [Bour et al.
    [Show full text]
  • Functional Programming (ML)
    Functional Programming CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 Functional Programming Function evaluation is the basic concept for a programming paradigm that has been implemented in functional programming languages. The language ML (“Meta Language”) was originally introduced in the 1970’s as part of a theorem proving system, and was intended for describing and implementing proof strategies. Standard ML of New Jersey (SML) is an implementation of ML. The basic mode of computation in SML is the use of the definition and application of functions. 2 (c) Paul Fodor (CS Stony Brook) Install Standard ML Download from: http://www.smlnj.org Start Standard ML: Type ''sml'' from the shell (run command line in Windows) Exit Standard ML: Ctrl-Z under Windows Ctrl-D under Unix/Mac 3 (c) Paul Fodor (CS Stony Brook) Standard ML The basic cycle of SML activity has three parts: read input from the user, evaluate it, print the computed value (or an error message). 4 (c) Paul Fodor (CS Stony Brook) First SML example SML prompt: - Simple example: - 3; val it = 3 : int The first line contains the SML prompt, followed by an expression typed in by the user and ended by a semicolon. The second line is SML’s response, indicating the value of the input expression and its type. 5 (c) Paul Fodor (CS Stony Brook) Interacting with SML SML has a number of built-in operators and data types. it provides the standard arithmetic operators - 3+2; val it = 5 : int The Boolean values true and false are available, as are logical operators such as not (negation), andalso (conjunction), and orelse (disjunction).
    [Show full text]
  • Abstract Recursion and Intrinsic Complexity
    ABSTRACT RECURSION AND INTRINSIC COMPLEXITY Yiannis N. Moschovakis Department of Mathematics University of California, Los Angeles [email protected] October 2018 iv Abstract recursion and intrinsic complexity was first published by Cambridge University Press as Volume 48 in the Lecture Notes in Logic, c Association for Symbolic Logic, 2019. The Cambridge University Press catalog entry for the work can be found at https://www.cambridge.org/us/academic/subjects/mathematics /logic-categories-and-sets /abstract-recursion-and-intrinsic-complexity. The published version can be purchased through Cambridge University Press and other standard distribution channels. This copy is made available for personal use only and must not be sold or redistributed. This final prepublication draft of ARIC was compiled on November 30, 2018, 22:50 CONTENTS Introduction ................................................... .... 1 Chapter 1. Preliminaries .......................................... 7 1A.Standardnotations................................ ............. 7 Partial functions, 9. Monotone and continuous functionals, 10. Trees, 12. Problems, 14. 1B. Continuous, call-by-value recursion . ..................... 15 The where -notation for mutual recursion, 17. Recursion rules, 17. Problems, 19. 1C.Somebasicalgorithms............................. .................... 21 The merge-sort algorithm, 21. The Euclidean algorithm, 23. The binary (Stein) algorithm, 24. Horner’s rule, 25. Problems, 25. 1D.Partialstructures............................... ......................
    [Show full text]
  • Generating Mutually Recursive Definitions
    Generating Mutually Recursive Definitions Jeremy Yallop Oleg Kiselyov University of Cambridge, UK Tohoku University, Japan [email protected] [email protected] Abstract let rec s = function A :: r ! s r j B :: r ! t r j [] ! true and t = function A :: r ! s r j B :: r ! u r j [] ! false Many functional programs — state machines (Krishnamurthi and u = function A :: r ! t r j B :: r ! u r j [] ! false 2006), top-down and bottom-up parsers (Hutton and Meijer 1996; Hinze and Paterson 2003), evaluators (Abelson et al. 1984), GUI where each function s, t, and u realizes a recognizer, taking a list of initialization graphs (Syme 2006), &c. — are conveniently ex- A and B symbols and returning a boolean. However, the program pressed as groups of mutually recursive bindings. One therefore that builds such a group from a description of an arbitrary state expects program generators, such as those written in MetaOCaml, machine cannot be expressed in MetaOCaml. to be able to build programs with mutual recursion. The limited support for generating mutual recursion is a con- Unfortunately, currently MetaOCaml can only build recursive sequence of expression-based quotation: brackets enclose expres- groups whose size is hard-coded in the generating program. The sions, and splices insert expressions into expressions — but a group general case requires something other than quotation, and seem- of bindings is not an expression. There is a second difficulty: gen- ingly weakens static guarantees on the resulting code. We describe erating recursive definitions with ‘backward’ and ‘forward’ refer- the challenges and propose a new language construct for assuredly ences seemingly requires unrestricted, Lisp-like gensym, which de- generating binding groups of arbitrary size – illustrating with a col- feats MetaOCaml’s static guarantees.
    [Show full text]
  • Inductively Defined Functions in Functional Programming Languages
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector JOURNAL OF COMPUTER AND SYSTEM SCIENCES 34, 4099421 (1987) Inductively Defined Functions in Functional Programming Languages R. M. BURSTALL Department of Computer Science, University of Edinburgh, King$ Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland, U.K. Received December 1985; revised August 1986 This paper proposes a notation for defining functions or procedures in such a way that their termination is guaranteed by the scope rules. It uses an extension of case expressions. Suggested uses include programming languages and logical languages; an application is also given to the problem of proving inequations from initial algebra specifications. 0 1987 Academic Press, Inc. 1. INTRODUCTION When we define recursive functions on natural numbers we can ensure that they terminate without a special proof, by adhering to the schema for primitive recur- sion. The schema can be extended to other data types. This requires inspection of the function definition to ensure that it conforms to such a schema, involving second-order pattern matching. However, if we combine the recursion with a case expression which decomposes elements of the data type we can use the ordinary scoping rules for variables to ensure termination, without imposing any special schema. I formulate this proposal for “inductive” case expressions in ML [S], since it offers succinct data-type definitions and a convenient case expression. Any other functional language with these facilities could do as well. A number of people have advocated the use of initial algebras to define data types in specification languages, see, for example, Goguen, Thatcher and Wagner [3] and Burstall and Goguen [ 11.
    [Show full text]
  • Using Prolog for Transforming XML Documents
    Using Prolog for Transforming XML Documents Rene´ Haberland Technical University of Dresden, Free State of Saxony, Germany Saint Petersburg State University, Saint Petersburg, Russia email: [email protected] (translation into English from 2007) Abstract—Proponents of the programming language Prolog all or with severe restrictions into hosting languages, like Java, share the opinion Prolog is more appropriate for transforming C++ or Pascal. XML documents than other well-established techniques and In order to resolve this problem, two strategies can be languages like XSLT. This work proposes a tuProlog-styled interpreter for parsing XML documents into Prolog-internal identified as most promising. First, integrate new features. The lists and vice versa for serialising lists into XML documents. language gets extended. However, this can only succeed if lingual concepts are universal enough w.r.t. lexemes, idioms. Based on this implementation, a comparison between XSLT Second, choose a federated approach. Depending on the imple- and Prolog follows. First, criteria are researched, such as con- mentation, the hosting language is simulated by introspection. sidered language features of XSLT, usability and expressibility. These criteria are validated. Second, it is assessed when Prolog Solely concepts remain untouched. distinguishes between input and output parameters towards The reasons against the first approach are a massive rise in reversible transformation. complexity and a notoriously incompatible paradigm. Hence, the federated approach is chosen to implement the transfor- I. INTRODUCTION mation language with Prolog being visible to the user. A. Preliminaries A transformation within XML is a mapping from XML onto B. Motivation XML. W.l.o.g. only XML as output is considered in this work.
    [Show full text]
  • Recursion: Memoization Introduction to Object Oriented Programming Instructors: Daniel Deutch , Amiram Yehudai Teaching Assistants: Michal Kleinbort, Amir Rubinstein
    Extended Introduction to Computer Science CS1001.py Lecture 13: More Recursion: Memoization Introduction to Object Oriented Programming Instructors: Daniel Deutch , Amiram Yehudai Teaching Assistants: Michal Kleinbort, Amir Rubinstein School of Computer Science Tel-Aviv University Winter Semester, 2013-15 http://tau-cs1001-py.wikidot.com Lecture 11-12 : Highlights Recursion, and recursive functions • Basic examples and definition of recursion • Fibonacci • factorial • Binary search - revisited • Sorting • QuickSort • MergeSort • Towers of Hanoi • Towers of Hanoi nightmare • Tail recursion 2 Lecture 13 - Plan Recursion, and recursive functions Revisiting the results of fibonacci Memoization Recursion depth limit Two additional examples for recursion: Ackermann function Mutual recursion Classes and methods (a very gentle intro to object oriented programming). 3 Pitfalls of Using Recursion Every modern programming language, including, of course, Python, supports recursion as one of the built- in control mechanism. However, recursion is not the only control mechanism in Python, and surely is not the one employed most often. Furthermore, as we will now see, cases where “naive recursion" is highly convenient for writing code may lead to highly inefficient run times. For this reason, we will also introduce techniques to get rid of recursion (in addition to the elimination of tail recursion that we already saw). We note, however, that in some cases, eliminating recursion altogether requires very crude means. 4 Computing Fibonacci Numbers We coded Fibonacci numbers, using recursion, as following: def fibonacci (n): """ plain Fibonacci , using recursion """ if n <2: return 1 else : return fibonacci (n -2)+ fibonacci (n -1) But surely nothing could go wrong with such simple and elegant code..
    [Show full text]
  • Strong Functional Pearl: Harper's Regular-Expression Matcher In
    Strong Functional Pearl: Harper’s Regular-Expression Matcher in Cedille AARON STUMP, University of Iowa, United States 122 CHRISTOPHER JENKINS, University of Iowa, United States of America STEPHAN SPAHN, University of Iowa, United States of America COLIN MCDONALD, University of Notre Dame, United States This paper describes an implementation of Harper’s continuation-based regular-expression matcher as a strong functional program in Cedille; i.e., Cedille statically confirms termination of the program on all inputs. The approach uses neither dependent types nor termination proofs. Instead, a particular interface dubbed a recursion universe is provided by Cedille, and the language ensures that all programs written against this interface terminate. Standard polymorphic typing is all that is needed to check the code against the interface. This answers a challenge posed by Bove, Krauss, and Sozeau. CCS Concepts: • Software and its engineering ! Functional languages; Recursion; • Theory of compu- tation ! Regular languages. Additional Key Words and Phrases: strong functional programming, regular-expression matcher, programming with continuations, recursion schemes ACM Reference Format: Aaron Stump, Christopher Jenkins, Stephan Spahn, and Colin McDonald. 2020. Strong Functional Pearl: Harper’s Regular-Expression Matcher in Cedille. Proc. ACM Program. Lang. 4, ICFP, Article 122 (August 2020), 25 pages. https://doi.org/10.1145/3409004 1 INTRODUCTION Constructive type theory requires termination of programs intended as proofs under the Curry- Howard isomorphism [Sørensen and Urzyczyn 2006]. The language of types is enriched beyond that of traditional pure functional programming (FP) to include dependent types. These allow the expression of program properties as types, and proofs of such properties as dependently typed programs.
    [Show full text]
  • A Survey on Teaching and Learning Recursive Programming
    Informatics in Education, 2014, Vol. 13, No. 1, 87–119 87 © 2014 Vilnius University A Survey on Teaching and Learning Recursive Programming Christian RINDERKNECHT Department of Programming Languages and Compilers, Eötvös Loránd University Budapest, Hungary E-mail: [email protected] Received: July 2013 Abstract. We survey the literature about the teaching and learning of recursive programming. After a short history of the advent of recursion in programming languages and its adoption by programmers, we present curricular approaches to recursion, including a review of textbooks and some programming methodology, as well as the functional and imperative paradigms and the distinction between control flow vs. data flow. We follow the researchers in stating the problem with base cases, noting the similarity with induction in mathematics, making concrete analogies for recursion, using games, visualizations, animations, multimedia environments, intelligent tutor- ing systems and visual programming. We cover the usage in schools of the Logo programming language and the associated theoretical didactics, including a brief overview of the constructivist and constructionist theories of learning; we also sketch the learners’ mental models which have been identified so far, and non-classical remedial strategies, such as kinesthesis and syntonicity. We append an extensive and carefully collated bibliography, which we hope will facilitate new research. Key words: computer science education, didactics of programming, recursion, tail recursion, em- bedded recursion, iteration, loop, mental models. Foreword In this article, we survey how practitioners and educators have been teaching recursion, both as a concept and a programming technique, and how pupils have been learning it. After a brief historical account, we opt for a thematic presentation with cross-references, and we append an extensive bibliography which was very carefully collated.
    [Show full text]
  • One with RECURSIVE Is Worth Many Gotos
    One WITH RECURSIVE is Worth Many GOTOs Denis Hirn Torsten Grust University of Tübingen Tübingen, Germany [denis.hirn,torsten.grust]@uni-tuebingen.de ABSTRACT Figure 1c shows a selection of source/dest pairs and the paths PL/SQL integrates an imperative statement-by-statement style of computed by route, assuming generous ttl budgets. programming with the plan-based evaluation of SQL queries. The Observe how PL/SQL UDF route embeds several scalar SQL ex- disparity of both leads to friction at runtime, slowing PL/SQL ex- pressions like loc <> dest, ttl < hop.cost, or route || loc (see ecution down significantly. This work describes a compiler from Lines 10, 14, and 18 in Figure 2). PostgreSQL’s PL/SQL interpreter PL/SQL UDFs to plain SQL queries. Post-compilation, evaluation en- evaluates these simple SQL expressions via a fast path that directly tirely happens on the SQL side of the fence. With the friction gone, invokes the system’s SQL expression evaluator. we observe execution times to improve by about a factor of 2, even Notably, though, route also contains the SQL SELECT-block Q1 for complex UDFs. The compiler builds on techniques long estab- which the function uses to query the routing table for the next hop lished by the programming language community. In particular, it from loc towards dest (the two PL/SQL variables loc and dest are uses trampolined style to compile arbitrarily nested iterative con- free in the SELECT-block and act like parameters for Q1, see Line 13 trol flow in PL/SQL into SQL’s recursive common table expressions.
    [Show full text]
  • Recursive Function Definitions for Isabelle/HOL
    FAKULTÄT FÜR INFORMATIK DER TECHNISCHEN UNIVERSITÄT MÜNCHEN Bachelor’s Thesis in Computer Science Primitively (co)recursive function definitions for Isabelle/HOL Lorenz Panny FAKULTÄT FÜR INFORMATIK DER TECHNISCHEN UNIVERSITÄT MÜNCHEN Bachelor’s Thesis in Computer Science Primitively (co)recursive function definitions for Isabelle/HOL Primitiv-(ko)rekursive Funktionsdefinitionen für Isabelle/HOL Author: Lorenz Panny Supervisor: Prof. Tobias Nipkow, Ph.D. Advisor: Dr. Jasmin Blanchette Advisor: Dmitriy Traytel Date: August 15, 2014 I assure the single-handed composition of this thesis only supported by declared resources. Abstract Isabelle/HOL has lately been extended with a definitional package supporting modular (co)datatypes based on category theoretical constructions. The implementation generates the specified types and associated theorems and constants, notably (co)recursors, but ini- tially, there was no convenient way of specifying functions over these types. This thesis introduces the high-level commands primrec, primcorec and primcorecursive that can be used to define primitively (co)recursive functions over Isabelle’s new (co)datatypes using an intuitive syntax. Automating a tedious process, a user specification is internally re- duced to a (co)recursor-based definition. Using the (co)recursor theorems, it is then proved and introduced as theorems that the definition does in fact fulfill the specified properties. Zusammenfassung Isabelle/HOL wurde kürzlich um ein definitorisches Modul zur Unterstützung modula- rer Ko-/Datentypen, basierend auf einer kategorientheoretischen Konstruktion, erweitert. Die Implementierung generiert die spezifizierten Typen sowie zugehörige Theoreme und Konstanten (insbesondere Ko-/Rekursoren), aber zunächst stand keine bequeme Methode zum Erzeugen von Funktionen über diesen Typen zur Verfügung. In dieser Arbeit werden die Befehle primrec, primcorec und primcorecursive vorgestellt, mit deren Hilfe unter Benutzung intuitiver Syntax primitiv-(ko)rekursive Funktionen über Isabelles neuen Ko- /Datentypen definiert werden können.
    [Show full text]