<<

DISTRIBUTION OF IN THE , AND SURROUNDING AREAS

by

Robert S. DeBaca, B.A., M.S.

A Dissertation

In

BIOLOGICAL SCIENCES

Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Approved

John C. Zak Chairperson of the Committee

Kevin R. Mulligan

Robert D. Bradley

Jorge Salazar-Bravo

Carleton J. Phillips

Fred Hartmeister Dean of the Graduate School

August, 2008 Copyright 2008, Robert S. DeBaca The mountains are fountains of men as well as of rivers, of glaciers, of fertile soil. The great poets, philosophers, prophets, able men whose thoughts and deeds have moved the world, have come down from the mountains – mountain dwellers who have grown strong there with the forest trees in Nature’s workshops.

John Muir (1938) “John of the Mountains”

For Hope

ACKNOWLEDGEMENTS

I am greatly indebted to numerous people and agencies for assisting with this project. I thank the Texas Parks and Wildlife Department (TPWD) and the Texas Nature

Conservancy for the financial and logistical support for this project. TPWD extended me trapping privileges, and Linda Hedges, Kelly Bryan, and Mark Lockwood were indispensable at facilitating the project at Davis Mountains State Park. John Karges directed me to some novel trapping sites at Davis Mountains Preserve and targeted some relevant literature. Tom Johnson championed all efforts at Balmorhea State Park and

Phantom Spring.

I am grateful for the efforts many students and professors who performed field work at Davis Mountains Preserve, Davis Mountains State Park, Balmorhea State Park, and Phantom Spring prior to my arrival on the project.

Kevin Mulligan and Lucia Barbato provided me with a job, training, and computer equipment with which I was able to perform the GIS and data analyses for this project. Their influence will benefit me long into the future.

I greatly appreciate the guidance and support of my advisory committee. Also, my family was a great support during my development and education as a biologist. My father gave me tremendous guidance, advice, and support through the years. My mother taught me to see the beauty and artistry in all things. My brothers, J.C. and Tamas, never stopped believing in me. Lastly, and foremost, I am thankful to have Diana, by my side for her consolation, counsel, and unconditional love.

ii

TABLE OF CONTENTS ACKNOWLEDGEMENTS...... ii ABSTRACT...... v LIST OF TABLES...... vii LIST OF FIGURES ...... viii CHAPTER I. INTRODUCTION ...... 1 STATEMENT OF PURPOSE ...... 1 DESCRIPTION OF THE TRANS-PECOS AND DAVIS MOUNTAINS ...... 3 Location ...... 3 Physiography...... 4 Geologic History...... 6 Soils...... 7 Climate...... 8 Vegetation...... 9 ROLE OF DISPERSAL TO BIODIVERSITY ...... 15 THE NATURE OF DISPERSAL TO ECOLOGY AND BIOGEOGRAPHY ...... 16 II. BIOGEOGRAPHY OF MONTANE MAMMALS AND ASSOCIATED HABITAT IN THE TRANS-PECOS...... 19 INTRODUCTION ...... 19 MATERIALS AND METHODS ...... 22 RESULTS ...... 25 DISCUSSION ...... 42 III. TERRESTRIAL PATTERNS OF MAMMALIAN DIVERSITY IN THE DAVIS MOUNTAINS, TX ...... 47 INTRODUCTION ...... 47 MATERIALS AND METHODS ...... 52 Field Sampling and Data Collection...... 52 Data Analysis...... 54 RESULTS ...... 57 DISCUSSION ...... 74 IV. ECOLOGICAL EFFECTS ON SPATIAL AND TEMPORAL DISTRIBUTION OF ,BATS IN THE DAVIS MOUNTAINS, TEXAS...... 78 INTRODUCTION ...... 78 iii

MATERIALS AND METHODS ...... 80 Study Region...... 80 Field Sampling...... 81 Data Analyses ...... 83 RESULTS ...... 84 DISCUSSION ...... 92 V. CONCLUSION...... 97 APPENDIX A ...... 99 APPENDIX B...... 150 APPENDIX C...... 155 LITERATURE CITED...... 160

iv

ABSTRACT

This project focused on the dispersal and distribution patterns of mammals in or near the Davis Mountains, Texas. Data were obtained from existing museum and literature records and from extensive field sampling of the region, which resulted in the acquisition of more than 2,000 museum specimens and related data (Appendix A).

The purpose of this research was to investigate regional and local patterns of mammalian biodiversity as these relate to dispersal and distribution in montane ecosystems at a regional scale in the Trans-Pecos and at a local scale in and near the

Davis Mountains. In the first chapter, paleontological data suggested that now isolated mountain ranges in the Trans-Pecos were once connected in a north-south network.

Research in that chapter examined modern patterns of biodiversity in the mountains that could have resulted from patterns inherited from Pleistocene distributions and dispersal routes of species in mixed-conifer forests or piñon-juniper-oak woodlands. Evidence presented in chapter one indicated that connectivity to source areas could have improved dispersal opportunities through highland corridors and montane areas. The second research chapter evaluated an observed pattern of greater species richness at a middle elevation study site in the Davis Mountains that was about 15 percent the size of a larger study site in the highlands of this mountain range. were the focus of research to find a partial explanation for this pattern, in which a dispersal filter may have allowed dispersal of some species but hindered others along an elevational gradient from lowlands to highlands. This pattern suggested a decrease in the body size of a lowland group of species along this gradient in response to a substrate that becomes more unavailable to

v larger burrowing rodents. That pattern was not statistically significant, but an alternative investigation showed that the smaller mid-elevation site likely had greater habitat variety in comparison to the high elevation one, which could have provided more microhabitats for more species to coexist at the smaller, more diverse site. In the final research chapter, biodiversity patterns were investigated for bats in relation to broad-scaled ecological patterns and site-specific resource partitioning that could account for the observed spatial and temporal distribution patterns. Along an elevational gradient, five species were specific to a smaller series of elevations and habitat types; whereas, twelve species were either too rare to analyze or were widespread throughout the sampled array of environmental conditions. Five species also showed elevational segregation by sex, with females occupying a lower range of elevations than males, which was a surrogate measure of warmer macrohabitat utilization by females. Lastly the most prolific sampling site, a semi-perennial pool, was analyzed for temporal differences in its use by month and by time of night. The results showed that vespertilionid bats dominated use of this resource during mid-summer and during the first two hours of the night and that molossid bats dominated its use after the first two hours and during the latter part of the summer. This partitioning could result from the thermoregulation constraints of the main vespertilionid species that concentrated activity early in the evening and during the warmer months of the sampling period. In response to vespertilionid use and to prevent collisions, the fast- flying, less maneuverable molossid bats may avoid the area until use by other bats dwindles both during the night and warmer months of the season.

vi

LIST OF TABLES 2.1 Matrix of biotic similarity (upper) using the Jaccard similarity index an geographic distance (lower) in Trans-Pecos mountains...... 28 2.2 Geographic and biotic related variables associated with 15 mountain ranges in the Trans-Pecos...... 36 2.3 Results of discriminant function analysis of geographic and physical variables on group membership from cluster analysis...... 39 3.1 taxa documented in the vicinity of the Davis Mountains...... 58 3.2 Diversity comparisons between DMSP and DMP using bootstrap analysis ...... 60 3.3 Contingency table frequencies to test body size associations of lowland species that have dispersed into higher elevations of the Davis Mountains...... 65 3.4 Summary statistics of habitat types encountered on vegetation transects at DMP and DMSP in the Davis Mountains ...... 73 4.1 Frequencies of bat species captured at study sites associated with the Davis Mountains ...... 85 4.2 Elevational occurrences of rare bat species associated with the Davis Mountains ..86 4.3 Elevational occurrences of widespread bat species associated with the Davis Mountains ...... 88 4.4 Elevational occurrences of macrohabitat specific bat species associated with the Davis Mountains ...... 89 4.5 Bat species exhibiting or likely to exhibit macrohabitat segregation of sexes in the Davis Mountains ...... 89

vii

LIST OF FIGURES

1.1 Map of the physical and cultural features near the Davis Mountains...... 4 1.2 Map of the physiographic features of the Trans-Pecos...... 5 1.3 Grassland habitat on the Marfa Plateau south of the Davis Mountains...... 10 1.4 Montane grassland with sotol (in background) typifies some moderate elevations in the Trans-Pecos...... 11 1.5 Plateau grassland with invading juniper can be indicative of an altered fire regime...... 11 1.6 Piñon-juniper woodland is found at higher elevations of many mountain ranges in the Trans-Pecos...... 12 1.7 Piñon-juniper-oak woodlands also are common in higher elevations of the Trans- Pecos...... 12 1.8 Riparian habitat, like that of Limpia Creek in the Davis Mountains, is ephemeral in most places in the Trans-Pecos (elev. 1500 m) ...... 13 1.9 Riparian habitat on Madera Creek at Davis Mountains Preserve flows in most places only during the wet season (elev.1890 m) ...... 13 1.10 A mixed-coniferous forest dominated by ponderosa pine is found on the north face of Mount Livermore (elev. 2080 m)...... 14 1.11 Relictual aspen groves are extremely rare in the Trans-Pecos...... 14 2.1 Mountain ranges of the Trans-Pecos are represented in a cluster analysis of biotic similarity ...... 27 2.2 Maps depict the simulated regression of woodlands and conifer forests in the Trans-Pecos after the Wisconsin (4 maps, a, b, c, d)...... 30-33 2.3 Mountain ranges of the Trans-Pecos with landscape linkages are labeled with their respective groupings from the cluster analysis...... 35 2.4 Graph depicts species-area relationships of mountains in the Trans-Pecos ...... 37 2.5 Plot shows the three groups against the two discriminant functions of prediction of cluster group membership based on five geographic or physical variables...... 40 3.1 Model of soil development in the Davis Mountains and surrounding areas, with developed soils categorized by elevation...... 66 3.2 Distribution of lowland species at DMSP relative to modeled substrates on shallow slopes and elevation classes...... 67 3.3 Distribution of lowland species at DMP relative to modeled substrates on shallow slopes and elevation classes...... 68

viii

3.4 Distribution of highland species at DMSP relative to modeled substrates on shallow slopes and elevation classes...... 70 3.5 Distribution of common mid-elevation species at DMSP relative to modeled substrates...... 71 3.6 Relative coverage of dominant habitat types sampled at DMSP and DMP ...... 72 4.1 Elevation occurrence of bats in and near the Davis Mountains...... 87 4.2 Species of bats in the Davis Mountains exhibiting segregation of the sexes by elevation...... 90 4.3 Capture frequencies of bats at a mid-elevation pool grouped by hour, month, and family ...... 91 4.4 Capture frequencies of bats at a mid-elevation pool grouped by month, and species...... 92

ix

CHAPTER 1

INTRODUCTION

STATEMENT OF PURPOSE

Applied studies in ecology and related disciplines look for competent solutions to

management or conservation issues. Inquiry into new theory or the new discovery of

ecological processes – the means of basic science – typically is not the goal. Another

distinction is that applied studies often do not test hypotheses where basic science does.

The research in the chapters of this thesis originally was an applied study of the most fundamental sense. The research was under contract as a survey of the mammals at

Davis Mountains Preserve, Davis Mountains State Park, Balmorhea State Park, Sandia

Springs Preserve, and Phantom Spring in and near the Davis Mountains, Texas. The inquiry detailed and described the distribution, basic ecology, and interrelationships of the mammalian species inhabiting these areas and proposed management solutions where applicable. Yet the inherent attributes of a survey for management purposes do not lend themselves to deeper inquiry into patterns and processes, a requirement of thesis type research.

To this end, the data collected have been re-analyzed and re-assessed to bridge these two fundamental parts of science. However, this is not without its own limitations.

The original data collected were non-replacement samples of the mammals in their associated habitats. These individuals were subsequently prepared as museum specimens and deposited in the Museum of Texas Tech University. Although this preserves a record of a species presence at a place in time, little is known directly of the ecology beyond that. It is difficult or impossible to know whether or not that piece of habitat at the site of

1

capture was critical to an individual’s survival or whether its use was temporaty while en

route to some other habitat (Garshelis, 2000). Also, little else can be gleaned about the

life of that individual outside of physical attributes of the carcass itself.

The mammals and plants of the Trans-Pecos, of which the Davis Mountains are

part, have been documented and studied for nearly 150 years. These investigations have

produced a large body of historical distributional records, which also have been utilized

in this investigation. Historical records are often problematic, because locality data tend

to be more imprecise farther back in time, and record keeping varies greatly with the skill

and diligence of the collector (DeBaca and Choate, 2002; Rowe, 2005). Ordinary GPS

technology provides a researcher with the ability to record locality data to within a few meters of the actual point on earth; whereas, historical descriptions could have kilometer- sized errors (Rowe, 2005).

Given the constraints in the data, there are limitations on the available ways to examine ecological questions from museum specimens. Available to this analysis, were an abundance of relative frequency records from museum specimens, literature sources, and field journals. These records often only allow for examination of presence and absence of species.

The purpose of this research was to investigate regional and local patterns of

mammalian biodiversity as these relate to dispersal and distribution in montane

ecosystems at a regional scale in the Trans-Pecos and at a local scale in and near the

Davis Mountains. In the first chapter, paleontological data suggested that now isolated

mountain ranges in the Trans-Pecos were once connected in a north-south network.

Research in that chapter examined modern patterns of biodiversity in the mountains that

2 could have resulted from patterns inherited from Pleistocene distributions and dispersal routes of species in mixed-conifer forests or piñon-juniper-oak woodlands. The second research chapter evaluated an observed pattern of greater species richness at a middle elevation study site in the Davis Mountains that was about 15 percent the size of a larger study site in the highlands of this mountain range. Rodents were the focus of research to find a partial explanation for this pattern, in which both a dispersal filter and habitat variety were examined as possible explanations for the pattern. In the final research chapter, distribution patterns of bats were examined for macrohabitat separation in the environment and site-specific partitioning of an ephemeral pool.

DESCRIPTION OF THE TRANS-PECOS AND DAVIS MOUNTAINS

Location

The Trans-Pecos is located in the western boot heel of Texas and southern New Mexico.

The Davis Mountains occur in the central third of the region and cover most of Jeff Davis

County (fig. 1.1, fig. 1.2). Other mountain ranges north of the Davis Mountains include the Apache Mountains, , , and Sacramento

Mountains. Major mountain ranges to the south include the Del Norte Mountains, Chisos

Mountains, and . West of this, from south to north, are the Chinati

Mountains, , Eagle Mountains, Quitman Mountains, Sierra Diablo, and

Hueco Mountains. Still further west are located the Franklin Mountains, Organ

Mountains, and San Andres Mountains (fig. 1.2).

3

Figure 1.1. Map of the physical and cultural features near the Davis Mountains. Major study sites appear in yellow.

Physiography

The Trans-Pecos is situated within the Basin and Range physiographic province.

The northeastern part is included in the Sacramento Section, and the remainder is part of the Mexican Highlands Section (Hunt, 1974). This part of the province contains some of the most distinct series of mountain ranges interspersed by low-lying basins (Thornbury,

1965). The tectonic activity that developed the terrain was a complicated series of block faulting, subsidence, uplift, and volcanism (Hunt, 1974). Additionally, the region is bordered by the Rocky Mountain and Great Plains physiographic provinces and more extensive parts of the Mexican Highlands. Each of these regions or sub-regions has influenced the development of the extant biota of the Trans-Pecos (Hunt, 1974; Spearing,

1991).

4

Figure 1.2. Map of the physiographic features of the Trans-Pecos.

5

Geologic History

The geologic history of the Trans-Pecos is part of a long, complex history of mountain building and subsequent erosion of sediments to form the intervening bajadas

and basins. It is a history that spans most of the history of living organisms on earth.

The first period of orogeny in the region occurred 300 million years ago (mya) as

part of the development of the Ouachita Mountains when separate landmasses coalesced to form Pangaea (Hunt, 1974). Vestiges of the Ouachita Mountains exist in the Trans-

Pecos at the Marathon uplift near the present-day city of Marathon and in the Solitario dome at Big Bend Ranch State Park. These two domes likely began forming during the

Cretaceous in reaction to the intense pressures created by the formation of the Rocky

Mountains, and these were completed during the Eocene from upward laccolithic

intrusion (Spearing, 1991). The overlying Cretaceous sediments were subsequently

eroded away to expose the ancient Paleozoic and Permian strata of the worn and buried

Ouachita Mountains.

The next round of mountain building occurred during the Cretaceous, about 60 mya, when the North American Plate over-rode the Pacific Plate to form the Rocky

Mountains (Marsh, 1987). The intense pressures of this uplift deformed the crust to develop fault block mountain ranges in the Trans-Pecos (Spearing, 1991). This began formation of the north-west to south-east oriented ranges and associated basins (Spearing,

1991); the most prominent mountains being the Franklin, Sierra Diablo, Delaware,

Guadalupe, and Chisos (in part).

The next period of mountain building occurred during the Tertiary and included a

period of faulting and volcanism. This occurred throughout an episode of high tectonic

6

activity that developed when the lithosphere relaxed locally after the formation of the

Rocky Mountains (Spearing, 1991). During the Eocene and Oligocene, fissures opened

that allowed for the intrusion and escape of magma. It was then, about 35 mya, that the

Davis Mountains began growing from material spewed from the Buckhorn Caldera and

the Paisano Volcano; also the Chisos, Chinati, and other mountain ranges of volcanic

origin completed their growth at this time (Spearing, 1991). The present-day volcanic

mountains reached a more mature stage when subsequent erosion freed intrusive basalts

from their overlying cocoons of Cretaceous strata, and when water variably dissected the

surface flows of rhyolite, ash, and tuff that covered the same layers elsewhere (Spearing,

1991). These processes formed many small to large, isolated mountain ranges that

dominate the central part of the Trans-Pecos region (Spearing, 1991). The Sacramento,

Guadalupe, Davis, Chisos, and are the largest of these ranges in the

region.

The last episode of tectonic activity occurred about 10 mya, in which horst and

grabben faulting gave full formation to the remaining mountains and basins of the area

(Spearing, 1991). As block-faulting progressed, sediments eroded from highlands were

deposited in the surrounding basins. In some places these, sediments may have formed a

substrate hundreds of meters thick. The peak of erosion and sedimentation in the Trans-

Pecos occurred during the Pleistocene pluvial (Spearing, 1991).

Soils

Soils in the mountains of the Trans-Pecos are typically rocky, shallow, and poorly

developed. Fine-grained, deep soils usually are restricted to alluvial channels and

surrounding playas (Turner, 1977). Soil formation is influenced highly by topography

7

where steep slopes produce a net loss of material through erosion (hence the shallow

soils) and lowlands develop a net gain of these eroded products (Turner, 1977). Friable

loamy soils sometimes develop near the highest peaks in the region where exceptional

precipitation, biomass, and decay are sufficient to produce a loamy, rich, organic horizon

to the substrate. The Puerta-Madrone Association in the Davis Mountains is an important

example of this type of soil type, and it is composed of rich loam that is variable in rock

content and depth. Soil and substrate likely are key components to the distribution of

plants and terrestrial mammals in the Trans-Pecos (Powell, 1998; Schmidly, 1977).

Climate

The climate of the Trans-Pecos region is a temperate desert climate. The

mountains of the region exert a localized effect on surrounding atmospheric conditions

through an orographic effect (Marsh, 1987). As air masses travel over and across the

mountain ranges, temperature and air pressure decrease. This allows the air mass to

expand in volume, and with a cooler, expanding air mass, water vapor falls out more

easily. Thus, toward the windward side of mountains, there is greater precipitation. As

the air mass descends on the leeward side, pressure and temperature increase, and the air

mass compresses, dries, and forms a rain shadow. The largest and tallest mountain ranges in the Trans-Pecos; the Sacramento Mountains, Organ Mountains, Guadalupe

Mountains, Davis Mountains, and ; have the greatest orographic effect

on local precipitation, which has aided these mountain ranges in maintaining mixed-

conifer forests in some high elevation areas. The degree of slope and aspect also strongly

affect microclimate and habitat development at a smaller scale, which is caused by

differing rates of evapo-transpiration. At any given elevation in the Trans-Pecos the most

8 mesic sites occur on north facing slopes capped with a cliff face, with the cliff producing a shadow that persists half the day or longer.

Not only is there great seasonal variation but also great annual and spatial variation in the total amount of precipitation received throughout the Trans-Pecos. Low elevation deserts near El Paso average only about 22 cm of precipitation; whereas, upper peaks in the Guadalupe or Davis Mountains average about 64 cm. Most precipitation in the Trans-Pecos falls during the summer monsoon from May to August, and droughts are common in the region and can last several years. The most recent drought in the vicinity of the Davis Mountains had lasted 10 years (NOAA Annual Climate Summary of Texas,

2003).

Another important characteristic of montane climates is that of cold air drainage.

At night warm valley air rises and is replaced by colder, denser air from surrounding slopes (Bergen, 1969). The result is that valleys typically undergo a temperature inversion during the course of the night. Temperature and moisture regimes are important aspects of the physical environment that affect biodiversity patterns at both regional and local scales.

Vegetation

Vegetation in the Trans-Pecos includes five general vegetation types (Powell,

1998). Desert grasslands occupy the more mesic basins, plateaus, and some foothill areas

(fig. 1.3). Montane grasslands with grama-bluestem associations can predominate lower to mid elevation parts of most mountain ranges (fig. 1.4). Secondary associates may include sotol, nolina, prickly pear, cholla, or sporadic oak or juniper trees (fig. 1.5). The warmest and driest areas are dominated by scrub that can have a

9

climax community of creosote, agave, acacia, mesquite, or mimosa in this habitat. Oak-

piñon-juniper woodlands are common at middle elevations (fig. 1.6). Oaks dominate the

lower range of elevations, but piñon-juniper dominates the upper parts (fig. 1.7). Well-

developed riparian habitats are found along watercourses with perennial or semi-

perennial water (fig. 1.8). Madera Creek in the Davis Mountains is an example of this

type of habitat (fig. 1.9). Mixed-coniferous forests dominated by ponderosa pine,

southwestern white pine, or Douglas fir are found on northern slopes and drainages at the

highest elevations of the larger mountain ranges (fig. 1.10). Quaking aspen occasionally

grows at sheltered localities in mixed-conifer vegetation of some mountain ranges (fig.

1.11).

Figure 1.3. Grassland habitat on the Marfa Plateau south of the Davis Mountains. An old pocket gopher mound is in left foreground.

10

Figure 1.4. Montane grassland with sotol typifies some moderate elevations in the Trans- Pecos. Photo was taken in the southern Davis Mountains (elev. 1710 m).

Figure 1.5. Plateau grassland with invading juniper can be indicative of an altered fire regime. This site is in the DMSP Primitive Area (1740 m).

11

Figure 1.6. Piñon-juniper woodland is found at higher elevations of many mountain ranges in the Trans-Pecos. Photo was taken in the Davis Mountains with Mount Livermore in the background (elev. 1950 m).

Figure 1.7. Piñon-juniper-oak woodlands also are common in higher elevations of the Trans-Pecos. This site is in the Davis Mountains with Sawtooth Mountain in the background (elev. 1980 m).

12

Figure 1.8. Riparian habitat, like that of Limpia Creek in the Davis Mountains, is ephemeral in most places in the Trans-Pecos (elev. 1500 m).

Figure 1.9. Riparian habitat on Madera Creek at Davis Mountains Preserve flows in most places only during the wet season (elev.1890 m).

13

Figure 1.10. A mixed-coniferous forest dominated by ponderosa pine is found on the north face of Mount Livermore (elev. 2080 m). This vegetation type is uncommon in the Trans-Pecos.

Figure 1.11. Relictual aspen groves are extremely rare in the Trans-Pecos. This one grows on a talus cone on the north face of Mount Livermore (elev. 2450 m).

14

ROLE OF DISPERSAL TO BIODIVERSITY

Dispersal, evolution, and extinction are three of the essential processes that affect biodiversity, and investigations into these processes or the resulting patters form the foundations of biogeographic investigations (Lomolino, et al., 2006). Dispersal by this or other names (immigration or colonization) is integral to most ecological processes or theories. In island biogeography theory, it is immigration that is necessary to balance extinction and achieve equilibrium in the number of species on an island (MacArthur and

Wilson, 1967). Likewise, in metapopulation biology it is colonization that is necessary to maintain satellite populations within a network of the whole population (Hanski, 1999).

Furthermore, predator prey cycles, succession, community change across space, introduction of novel diseases, distribution patterns of a species, and biodiversity itself are tied in one way or another to the patterns and processes of dispersal. The chief power of dispersal is in its ability to lessen competition, open new habitats, and fuel evolution through local adaptation (Krebs, 2001). This process is so crucial to survival; it’s difficult to think of an organism that doesn’t disperse at some point in its lifecycle.

Knowledge of movements (dispersal) of certainly predates western scientific thought, as this information would have been essential to the survival of primitive humans. Those who intuitively knew where to find abundant food, why it occurred in certain places and not others, and where to find more resources after these dwindled had competitive advantage over those who did not. Yet it is Aristotle, our scientific patriarch, who was the first in western thought to record ideas about movements of animals. He described active and passive movements, distinguished between sessile and mobile forms, and described basic mechanics of movement in animals (Aristotle,

15

translated by J. Barnes, 1971). Beginning in the 19th Century and continuing to the present day, investigations into dispersal and the resultant distributions have matured into formal forms of scientific inquiry (Berger, 1989; Porter and Dooley, 1993; Simpson,

1940; Wallace, 1876).

However, scientific examination into dispersal and associated patterns is not without its controversy between proponents of ecological versus historical biogeography.

As with evolutionary inquiries, investigations focusing on dispersal most often can’t measure in real-time the events that have lead to an extant pattern. In some instances the event may be too instantaneous or too remote to notice or measure. In still other examples, the present pattern is one that was inherited from prehistoric dispersal events; therefore, we are left with investigation into the resultant patterns of these processes from which we must gain inference into the event itself. Some biogeographers have criticized that dispersal events are not measurable and can’t be investigated scientifically. They claim that these events can’t be differentiated from vicariance events and that no clear causal or temporal order can be determined between the two (Humphries and Parenti,

1986). In refute, historic biogeography and phylogeographic investigations use extant patterns to gain inference into past events and strengthen their conclusions by examining multiple patterns and lines of evidence (Atmar and Patterson, 1995). This research will not delve further into this controversy.

THE NATURE OF DISPERSAL TO ECOLOGY AND BIOGEOGRAPHY

Dispersal is the process by which an organism moves across a geographic region.

At the organismic level, dispersal can involve an individual leaving its natal site to emigrate to a new area or to successive areas thereafter. Dispersal also can involve population level processes in which multiple individuals move across the landscape to

16

inhabit new areas. Individualistic dispersal can be related to optimum foraging theory

that involves an individual seeking quality habitat that is structured and that has food

resources to meet the foraging and dietary needs of the individual within a territory

(Reichman and Price, 1993). Population level dispersal can relate to concepts contained

in metapopulation dynamics and the blinking on and off of resources followed by local

extinction and eventual recolonization (Hanski, 1999; Hanski and Gaggiotti, 2004).

Dispersal occurs in different forms, different scales, and structures a variety of processes.

Dispersal with successful colonization can lead to geographic range expansion via

three methods: Jump dispersal, diffusion, and secular migration. Jump dispersal

involves propagules that cross a geographic or other dispersal barrier and develop a

founder population (Krebs, 2001). If this colonizing population expands across the landscape with adaptation to local environments, the population enters dispersal by diffusion (Krebs, 2001). With this type of dispersal, the population expands slowly at first, but after local adaptation or optimal environmental conditions it expands its range exponentially. Then as it reaches physical or ecological limits, the expansion slows and stabilizes. If the process of range expansion occurs over the course of evolutionary time with extensive evolutionary change over generations, then this is known as secular migration (Krebs, 2001). The recent introduction of the West Nile Virus to North

America is a good example of jump dispersal followed by diffusion. The virus entered the United States near New York in 1999 either through an infected human or vector and spread to surrounding states during that year (Heinrich, 2000; Rappole et al., 2000).

From 2000 to 2002 the WNV spread southward along the eastern coast and through the southern tier of states and northern Mexico (Estrada-Franco et al., 2003). By the end of

17

2005 the virus had gained a foothold throughout the lower 48 states, most of Canada, southern parts of Mexico, and Central America (NIAID, 2006). In 2005, there also were reports of WNV in northern South America (Mattar et al., 2005). The rapid spread of

WNV in the western hemisphere has been facilitated by its quick uptake as a vector by the native bird and mosquito species, and the slowing rate of spread likely is attributable to the geographic, behavioral, and environmental limitations of its bird and mosquito

hosts (Kilpatric et al., 2006; Rappole et al., 2005; Turell, et al., 2005).

Dispersal can happen by active or passive transport. With active transport an

organism disperses under its own power. With passive transport the environment is the

carrier of the organism – wind currents carrying insects long distances, ocean currents

transporting flotsam with organisms aboard, or larvae of many pelagic organisms carried

by ocean currents to new areas are just a few examples. With dispersal of seeds or spread

of infectious diseases, the transportation method can occur via the dispersal or

movements of another organism or vector (See WNV discussion above).

The study of dispersal processes is a vast subject area that involves many aspects

of ecology and biogeography and affects the individual, populations, and evolutionary

dynamics of species through time. With the increasing impact of humans in natural

ecosystems a better knowledge of dispersal biology can help us to better understand and

control invasions of exotic species, help the management of threatened and endangered

taxa, and aid in ecological restoration efforts. The role of dispersal as one of the limiting

factors to distributions of species is a rich subject area that can be applied to both basic

and applied scientific applications.

18

CHAPTER 2

BIOGEOGRAPHY OF MONTANE MAMMALS AND ASSOCIATED

HABITAT IN THE TRANS-PECOS

INTRODUCTION

The Trans-Pecos region lies at the southeastern periphery of the Basin and Range physiographic province. This land is demarcated by a series of mountains and intervening basins located between the and Pecos River in the boot heel of

Texas and adjacent areas to the north in New Mexico. A once widespread Pleistocene flora and fauna of this region now only survives as isolated remnants on isolated mountain islands (Patterson, 1995; Van Devender, 1990).

Studies of plant and remains from packrat middens indicate that piñon- juniper-oak woodlands dominated the region during the Wisconsin (about 40,000 ybp) at elevations between 600 m to 1,525 m (Van Devender, 1990) and that mixed-conifer forests, similar to Petran subalpine conifer forest, dominated higher elevations. Common woody plant associates included Douglas fir, ponderosa pine, southwestern white pine,

Gambel oak, and, occasionally blue spruce. Alpine tundra occurred above 2,550 m (Van

Devender, 1990) in only the Capitan, Sacramento, and White Mountains. The only glaciated spot was on the east face of Sierra Blanca in the White Mountains (Van

Devender, 1990).

The drawback of paleontologic evidence is that it paints its picture with broad strokes. Preservation of material is sporadic, and discovery of preserved material is rare.

For example, paleo-packrat midden sites in the Trans-Pecos were preserved and found most often at low elevations and were nearly nonexistent in the central Trans-Pecos (Van

19

Devender, 1990). Therefore, the prehistoric relationships of the mountains there are

poorly known from this line of evidence alone.

Although there has not been more recent investigation into the historic

biogeography and paleontology of the Trans-Pecos, other studies in the Southwest

indicate a complicated history that involves both retreat of previously widespread species

and colonization of areas by other species that occur in montane and lowland ecosystems.

Investigation of the history of vegetation change in the Playas Valley in southwestern

New Mexico has provided evidence of piñon-juniper communities being replaced by

Chihuahuan desert scrub elements during the last 16,000 years (Holmgren, et al., 2003).

The vegetation history (described from packrat midden fossils) of Rough Canyon in south-central New Mexico has shown local extinction of mesic adapted Pinus edulis-

Juniperus scopulorum woodlands and replacement with Chihuahuan desert species and xeric-adapted Juniper deppeana woodlands during the last 17,000 years (Betancourt et al., 2001). Furthermore, Jackson et al. (2005) have described the loss of mesic fir forests with subsequent replacement by ponderosa pine forest and piñon-juniper woodlands in northeastern Utah during the last 40,000 years. Betancourt et al. (1991) showed that post-Pleistocene dispersal of Pinus edulis into Owl Canyon in northern Colorado likely was responsible for establishment of this northeastern-most population of piñon pine.

The authors suggested that paleo-Indians may have transported the seeds that established this population. Lastly, phylogenetic investigation of isolated populations of yellow- bellied marmots (Marmota flaviventris) in the Great Basin indicates that populations are maintained by occasional dispersal between mountain ranges (Floyd et al., 2005).

20

Fossil records of mammals from the late Pleistocene to more recent times indicate a pattern of local extinction and retreat of montane species adapted to mesic habitats that have been replaced by xeric ones in the Trans-Pecos (Dalquest and Stangl,

1984; Stangl et al., 1994). Historic distribution of yellow-bellied marmots (Marmota flaviventris) included the Guadalupe and Apache Mountains during the Pleistocene and

Guadalupe Mountains during the early Holocene (Stangl et al., 1994). Also, Pleistocene fossils of the yellow-bellied marmot occur as far south as Nuevo Leon, Mexico (Stock,

1948). There are no extant populations of the yellow-bellied marmot in the Trans-Pecos.

The gray-footed chipmunk (Neotamias canipes) and northern rock mouse ( nasutus) occurred in the Apache Mountains during the Pleistocene, and the northern rock mouse persisted in the Apache Mountains to the early Holocene (Stangl et al., 1994).

Neotamias canipes is found to the north and at higher elevations in the Guadalupe

Mountains today (Stangl et al., 1994). Populations of P. nasutus can be found only at higher elevations of the taller and larger mountain ranges in the Trans-Pecos. The

Mogollon vole (Microtus mogollonensis) has Pleistocene records from the Apache

Mountains (Stangl et al., 1994) and a Holocene record (3,700 ybp) from the Davis

Mountains (Kennedy and Jones, 2006). This species only ranges as far south as the

Guadalupe Mountains today (Stangl et al., 1994), where the local climate is more mesic than that in either the more southern Davis or Apache Mountains. Furthermore, Stangl et al. (1994) alluded that most transmigration of montane species in the past likely was

North-South along montane corridors in the region, but the authors also mentioned that some species may have moved East-West across hilly areas in lowland basins. In light of

21 this existing evidence, biogeographic relationships of montane species in the region deserve a more extensive investigation in the Trans-Pecos region.

The purpose of this research was to elucidate the possible historical biogeography of mountain ranges in the Trans-Pecos. A multi-faceted approach was explored to examine how the present montane biota of the Trans-Pecos relates in a physical and possible historical context. The ultimate objective was to identify possible corridors of dispersal and recession and to provide an explanation of patterns of biodiversity in the region.

MATERIALS AND METHODS

A list of 23 mammalian and 142 woody plant taxa (species, subspecies, or varieties) were compiled for the 15 major mountain ranges of the Trans-Pecos (Appendix

B). The species lists of the mountain ranges were derived from floral and faunal surveys of the region (Dick-Peddie et al., 1999; Harris et al, 1975; Hutchins and Martin, 1980;

Powell, 1998; Schmidly, 1977; Standley, 1920; Stangl et al., 1994; Wooton and Standley,

1915; Yancey, 1997), and only those species exclusively occurring in mountains and mixed-conifer or woodland associations were included in the analyses. These taxa are ecologically associated with Petran, Madrean, and Boreo-cordillerian communities

(personal observation) and include species typically occurring above elevations of 1,350 meters. Woody plants and mammals were chosen because each group has been fairly well documented in the region, dispersal abilities (with the exception of bats) can be limited, and populations could be relicts from more mesic times at the end of the

Pleistocene (about 10,000 ybp) (see discussion in introduction).

22

The inventories were tabulated into a presence and absence matrix of species

belonging to the respective mountain ranges (Appendix B), biotic similarity was

calculated using the Jaccard similarity index, and a cluster analysis was performed using

an unweighted pair-group average (UPGMA) algorithm. Jaccard’s index was chosen

because it seems to balance presence between compared sites without overemphasizing absence. Absence is accounted for in this index by utilizing the total counts for each locality. One problem with cluster analyses based on similarity indices is that the analysis can group sites according ranks of species richness rather than true biological association

(Armstrong, 1972). Further tests were done to ensure that the patterns were biological

and geographical and not simply an artifact of the cluster analysis.

Spatial autocorrelation was evaluated by comparing the results of the similarity

matrix to a matrix of geographic distance. Geographic distance was calculated with the

Geographic Distance Matrix Calculator (Ersts, 2008), using the geographic coordinates

from the geographic center of the 15 mountain ranges. The geographic centers were

determined by isolating Trans-Pecos mountain ranges from a regional digital elevation

model (USGS, NED, 1 arc second) by resampling and selecting all elevations above

1,730 meters. Seventeen hundred thirty meters is about the lower elevation limit of

modern, well-developed, woodlands in the Trans-Pecos. This raster dataset was converted to a vector dataset and the geographic centers of the mountain ranges were

derived with the ST_Centroid function in ArcGIS 9.2, from which the geographic

coordinates (in decimal degrees) were obtained and tabulated. The similarity matrix and geographic distance matrix were compared statistically with a Mantel test to test the null

hypothesis that there was no association between the geographic and ecological distances

23 of the 15 mountain ranges. The Mantel test measures the association between two symmetric matricies, and is often used to measure spatial autocorrelation (Cressie, 1993).

The Mantel test was performed using XLSTAT (Addinsoft, version 4.1). The significance level for all statistical tests in this study was 0.05.

Next, a landscape model was developed using a Geographic Information System.

The model was built from the NED digital elevation model, described above, and a derived hillshade of the Trans-Pecos in ArcGIS 9.2. The simulated change of mixed- conifer and woodland ecosystems upward in elevation and, consequently, northward in latitude was simulated with its starting point based on fossil evidence and elevations presented in Van Devender (1990). The model was progressed in 500 meter intervals, which showed possible forested corridors of dispersal and recession that may have existed during the past 10,000 to 13,000 years. The cluster analysis results of species similarity were plotted on the apparent corridors to visually depict and evaluate the geographic and biotic relationships within the landscape itself.

Species richness of the mountains was evaluated to look for further trends in the groups developed from the cluster analysis. The species-area relationship in these mountain “islands” was evaluated using regression analysis of species richness and area

(area was log transformed). The areas of the mountain ranges were calculated from the same digital elevation data that were processed for the calculation of geographic centers, which is described above. The initial analysis indicated a significant relationship with a low correlation value. However, visual inspection of the points in relation to the regression line showed a trend that eastern mountain ranges typically fell above the regression line and western mountain ranges typically fell below the regression line.

24

The pattern in the results justified a second regression analysis that separated the

eastern and western mountain ranges. The results were graphed with the original

regression line and the two lines were tested for independence using an analysis of

covariance, which tests the null hypothesis that there is no difference among groups in

regression lines by testing for a significant difference among slopes (Zar, 1984). If the

slopes are equal (regression lines are parallel), the elevations can be compared for

significant difference using a T-test to compare two samples or a Tukey test for multiple

samples (Zar, 1984). This latter procedure was not necessary, because results indicated

that slopes were different. By referencing the results of the landscape model and cluster

groups to the regression results, a possible explanation to the species richness pattern was

described.

The observed patterns were tested in one further analysis using a discriminant

function analysis (DFA). The DFA tested for significant relationship of cluster analysis

groups with latitude, longitude, species richness, elevation, the log transformed area of

mountain ranges, and distances to source areas in the southern and

northern . This group of factors could affect development of

ecological communities in the montane areas and were used in other analyses in this

investigation. The Sacramento Mountains in the north and Sierra del Carmen mountain

ranges were used as the source areas for the purposes of this investigation. The DFA

procedure was performed in SYSTAT (version 12.02).

RESULTS

Three major groups resulted from the cluster analysis of biotic similarity. The

Sierra Diablo, Organ, and Franklin mountains formed one group (fig. 2.1). The

25

Guadalupe, Davis, Del Norte, Chisos, Sierra del Carmen, Sierra Vieja, and Chinati

mountains formed the second and largest group (fig. 2.1). The Apache, Quitman, Eagle

and formed a third group (fig. 2.1). The Sacramento Mountains were

intermediate and basal to the first and second of the aforementioned groups. Similarity

was highest in the group labeled B and was lowest in the group labeled C (fig. 2.1).

Similarity in the group labeled A was intemidiate to either group B or C. The closest overall similarity between two mountain ranges was about 50 percent and occurred

between the Davis-Guadalupe pair and the Chinati-Sierra Vieja pair. The Apache

Mountains showed the poorest overall similarity to any other sub-cluster, with overall similarity at about 28 percent. The Mountain ranges are mapped and labeled in figure 1.2 on page 5.

A Mantel test confirmed that the geographic distance and the similarity matrices

(table 2.1) were correlated. The computed p-value (0.028) was lower than the significance level (α=0.05); thus, the null hypothesis (H0) was rejected and the alternative

hypothesis (Ha) was accepted. It can be concluded that woodlands and mixed-conifer

forests of mountain ranges in the Trans-Pecos are more similar where these are closer

together. From these results spatial autocorrelation seems to occur for biotically related

mountain ranges, which also indicates the existence of a geographic component to the

pattern of biotic similarity.

26

a j e Mtns. e Mtns. p Mtns.

le Mtns. le Mtns. an Mtns. g g pache Mtns. Sacramento Mtns. Guadalu Davis Mtns. Del Norte Mtns. Chisos Mtns. Sierra del Carmen Sierra Vie Quitman Mtns. Ea Hueco A Franklin Mtns. Sierra Diablo Or Chinati Mtns. 1 0.9 0.8

0.7 0.6 0.5 0.4 B A 0.3 C 0.2 Jaccard’s Similarity Jaccard’s 0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Mountain Ranges

Figure 2.1. Mountain ranges of the Trans-Pecos are represented in a cluster analysis of biotic similarity. Major clusters are labeled A, B, and C.

27

HUECO MTNS. EAGLE MTNS. GUADALUPE MTNS. DAVIS MTNS. SIERRA VIEJA CHINATI MTNS. CHISOS MTNS. SIERRA DIABLO FRANKLIN MTNS. DEL NORTE APACHE MTNS. SACRAMENTO MTNS. QUITMAN MTNS SIERRA DEL CARMEN ORGAN MTNS.

HUECO MTNS. 427 133.3 121.9 218.6 200.1 259.6 386.1 114.7 49.62 302.2 172.4 148.8 101.1 75.59

EAGLE MTNS. 128 nd geographic distance in kilo- 0.160 158.8 97.37 66.98 252.8 58.33 180.2 174.3 75.37 253.9 36.55 295.2 208.9

GUADALUPE

MTNS. 152 0.090 0.152 191.9 212.5 273.5 375.2 102.1 155.9 273.1 137.4 119.9 401.8 156.7

DAVIS MTNS. 268 0.080 0.144 0.449 66.09 100.5 183.3 107.6 85.14 54.85 307.9 133.2 213.7 291.9

SIERRA VIEJA 0.135 0.308 0.214 0.303 62.41 186.5 111.7 246.3 118.2 88.59 316.9 100.5 231.1 275.7

CHINATI

MTNS. 0.149 0.260 0.260 0.347 0.407 133.1 173.7 304.1 100.3 142.6 379.3 158.6 184.4 334.9 Jaccard similarity index a

CHISOS

MTNS. 286 107 238 432.8 490.5 286.9 58.28 461.6 0.083 0.176 0.325 0.333 0.299 0.418

SIERRA

DIABLO 0.226 0.205 0.292 0.179 0.250 0.241 0.215 164.2 192.7 57.83 206.5 65.14 320.7 185.4

FRANKLIN

222 146 MTNS. 35.4 0.150 0.196 0.281 0.154 0.172 0.250 0.238 0.255 351.2 143.1 475.1

DEL NORTE 0.105 0.200 0.373 0.370 0.308 0.366 0.360 0.209 0.328 138.7 391.1 210.8 129.1 376.3

APACHE

MTNS. 0.167 0.156 0.167 0.159 0.190 0.192 0.103 0.211 0.125 0.183 253.1 103.7 267.8 242.9

SACRAMENTO

MTNS. 0.061 0.082 0.374 0.241 0.122 0.143 0.185 0.205 0.091 0.153 0.114 233.1 520.1 117.2

QUITMAN

MTNS 0.222 0.240 0.076 0.067 0.100 0.143 0.081 0.250 0.200 0.102 0.154 0.043 330.7 176.3 meters (lower) in Trans-Pecos mountains. SIERRA DEL

CARMEN 502 0.073 0.128 0.310 0.385 0.264 0.284 0.446 0.152 0.188 0.260 0.116 0.160 0.084

ORGAN MTNS. Table 2.1. Matrix of biotic similarity (upper) using the 0.095 0.196 0.281 0.200 0.153 0.290 0.182 0.306 0.241 0.254 0.149 0.247 0.116 0.175

28

The results of the GIS modeling showed two peninsulas in the west and an

isthmus in the east that could have developed along highland areas and that may have

facilitated dispersal of species through the region (fig. 2.2). During the Late Wisconsin

(c. 13,000 ybp.), mixed-conifer forests would have dominated these landforms above

1,280 meters, and woodlands would have occurred below that to an elevation of 600

meters, which was the starting point for the simulation (Van Devender, 1990) (fig. 2.2a).

This corridor, comprised of mixed-conifer forests, could have permitted transmigration of

the most mesic adapted species through the region. Results of the model showed that

mixed-conifer associations likely fragmented early (no specified time frame available),

but woodlands likely remained extensive and connected through lowland basins (fig.

2.2b). Afterwards, as the climate dried and warmed, fragmentation of mixed-conifer forests likely increased as these mesic habitats receded to higher elevations and protected slopes, and woodlands would have occupied the corridor position (fig. 2.2c). During this time, woodland adapted species still could have moved through the region. Closer to the present, woodlands likely became isolated and fragmented, mixed-conifer forests likely receded further, and desert grasslands possibly formed in some plateau areas, as habitats reached their present distributions (fig. 2.2d).

Overall, the highlands that connect mountain chains in a north-south orientation would be expected to facilitate dispersal of highland-restricted organisms through the area along this pathway, and basins expectedly would hinder east-west dispersal of the same group of organisms. The highland corridor forming in the isthmus in the eastern

Trans-Pecos (fig. 2.2 a), would be expected to facilitate dispersal to a greater extent than the more isolated peninsulas.

29

Figure 2.2a. Map depicts the simulated distribution of woodlands and conifer forests in the Trans-Pecos during the Late Wisconsin (c. 13,000 ybp.), in which forest and woodlands reached greatest distribution. Conifer forests formed two western peninsulas and an eastern isthmus. Elevation values obtained from (Van Devender, 1990).

30

Figure 2.2b. Map shows the simulated regression of woodlands and conifer forests in the Trans-Pecos after the Wisconsin. Mixed conifer forest becomes fragmented and isolated, but woodlands remain continuous in the lower basins.

31

Figure 2.2c. Map shows the simulated regression of woodlands and conifer forests in the Trans-Pecos, closer to the present, during which fragmentation of mixed-conifer forests continues and woodlands recede to corridor positions.

32

Figure 2.2d. Map depicts the simulated regression of woodlands and conifer forests in the Trans-Pecos at the present. Woodlands are fragmented, mixed-conifer forests have decreased to a small extent, and desert grasslands remain in some areas.

33

When mapped on the landscape, the three major groups identified in the cluster

analysis correspond well with the probable paleo-corridors of the GIS model (fig. 2.3).

The two exceptions are the Apache Mountains and Sierra Diablo (fig. 2.3). The Sierra

Diablo mountain range clustered with the western-most peninsula but is actually situated

in the central peninsula. The Apache Mountains clustered with the central peninsula but

are actually located in the eastern isthmus. The strong pattern of similarly related biotas

in mountains that occur along the simulated network lends credence to the existence of

dispersal corridors and to natural groupings in the cluster analysis.

The observed deviations could be related to the maximum elevation and total area

of the Apache and Sierra Diablo mountain ranges relative to their neighbors (table 2.2 and fig. 1.2). The Apache Mountains, which lie in the eastern corridor, cover the smallest

area and have the lowest maximum elevation of any of the mountains in that eastern

group (table 2.2 and fig. 1.2). Conversely, the Sierra Diablo, occupy the largest area and

have the highest elevation relative to the other mountains in the central peninsula (table

2.2 and fig. 1.2). In comparison to their associated neighbors, extinction of mesic

adapted species may have occurred at a greater rate in the Apache Mountains but may

have occurred at a slower rate in the Sierra Diablo relative to the surrounding

counterparts of each range. As a result, the assemblage of woodland species in the

Apache Mountains is more like those in the warmer, drier, and lower mountains of the

central peninsula, and the assemblage of woodland and mixed-conifer associated species

in the Sierra Diablo more closely resemble the associations in the taller, wetter, and

cooler mountains in the western peninsula.

34

Figure 2.3. Mountain ranges of the Trans-Pecos are labeled with their respective groupings from the cluster analysis and shown with the potential landscape linkages (shown in orange and green). The only mountains that don’t occur in the expected linkage or corridor were the Sierra Diablo (labeled A and circled in pink) and the Apache Mountains (labeled C and circled in pink) in the central part of the map. Refer to figure 2.1 for cluster analysis results.

35

Table 2.2. Geographic and biotic related variables associated with 15 mountain ranges in the Trans-Pecos. Variables used to group membership in discriminant analysis. ) 2 e e) Mountain Range Area (km Cluster Cluster Group Latitude Longitud Species Richness Max Elev. (meters) log Area Dist. Mex. (Sourc DAVIS MTNS. B 30.750 -104.083 84 2,553 15,866 4.2005 427.00 FRANKLIN MTNS. A 32.003 -106.491 36 2,192 1,970 3.2945 295.16 CHISOS MTNS. B 29.250 -103.300 68 2,385 2,063 3.3145 401.75 GUADALUPE MTNS. B 32.333 -104.884 87 2,667 28,850 4.4601 213.69 SACRAMENTO MTNS. AB 33.127 -105.750 5.6781 231.1160 3,659 476,496 APACHE MTNS. C 31.183 -104.357 18 1,722 11 1.0413 184.44 CHINATI MTNS. B 29.905 -104.450 44 2,356 1,605 3.2058 58.28 SIERRA DIABLO A 31.417 -104.900 28 2,015 1,335 3.1255 320.69 ORGAN MTNS. A 32.317 -106.550 36 2,730 5,801 3.7635 475.09 DEL NORTE B 30.200 -103.467 53 2,057 297 2.4728 129.14 QUITMAN MTNS C 31.050 -105.433 12 2,261 101 2.0043 267.79 SIERRA DEL CARMEN B 29.250 -102.700 78 2,675 3,032 3.4817 520.12 SIERRA VIEJA B 30.433 -104.667 32 1,966 74 1.8692 330.70 EAGLE MTNS. C 30.917 -105.083 19 2,247 1,490 3.1732 0.0 HUECO MTNS. C 31.809 -106.018 10 2,047 52 1.7160 176.27

Regression analysis to derive the species-area curve showed a significant positive

relationship for the Trans-Pecos mountain ranges when analyzed together (ρ = 0.004, r2 =

0.473) (red line in fig. 2.4). However, the relatively low correlation value described a wide dispersion of the points around the regression line, which showed that the collective species-area analysis was poor overall and that re-evaluation of the data could improve the results. After plotting maximum elevation and corresponding groupings from the cluster analysis on the regression plot, further patterns became evident (figs. 2.4).

Mountains in the eastern isthmus (fig. 2.3) were relatively species rich and typically fell above the initial regression line; whereas, mountains in either western peninsula were relatively species poor in comparison and typically fell below the initial regression line

(fig. 2.4). The Sacramento Mountains, which were intermediately related to both cluster

36

groups A and B, fell into the species poor group, because it had relatively fewer species

in comparison to its large size (fig. 2.4, table 2.2). The species rich mountains (those that

fell above the regression line) and species poor mountains (those that fell below the

regression line demonstrated a much better fit to two separate regression analyses.

Statistics of the regression line of the species rich group were ρ = 0.001 and r2 = 0.900,

and those for the species poor groups were ρ = 0.003 and r2 = 0.917 (fig. 2.4). Overall,

mountains of comparable area and maximum elevation had nearly twice the number of

montane species in the eastern isthmus compared to either peninsula.

100

90 2667 B Elevation (meters) 2553 B 80 2675 B 70 2385 B 60 3659 2057 B A-B 50 2356 B 40 1966 B 2192 C 2730 C 30

Number of Species Number 2015 A 20 1722 C 2247 A 10 2261 A 2047 A 0 0123456 Logarithm of Area (km2)

Figure 2.4. The graph depicts species-area relationships of mountains in the Trans-Pecos. The initial regression line for all mountain ranges is shown in red. In the second run, the topmost line resulted from regression of species rich mountains, and the lowest regression line resulted from species poor mountains. Mountain ranges are labeled with maximum elevation and the cluster group results.

37

Analysis of covariance of individual species-area curves for the two groups of

mountains used for regression analysis indicated a significant difference between the slopes of the lines. The computed value of the t-test (11.5) and the associated p-value (<

0.001) were lower than the significance level (α=0.05); thus, the null hypothesis (H0) was rejected and the alternative hypothesis (Ha) was accepted that the eastern and western

groups of mountains had different species-area curves. This indicated that the eastern and

western parts of the Trans-Pecos likely had different histories related to transmigration.

A direct discriminant function analysis was used to evaluate group membership of

cluster analysis results to seven variables used in other analyses in this study. The

variables included latitude, longitude, species richness, maximum elevation, the log

transformed areas, distance to a source in the southern Rocky Mounains, and distance to a

source in the Sierra Madre Oriental that were associated with the 15 mountain ranges in

the Trans-Pecos (table 2.2).

Two discriminant functions were calculated for the dataset. The first function had

an Eigen-value of 11.784 and accounted for 90 percent of the variation in the sample

(table 2.3), but the second variable had an Eigen-value of only 1.382 and accounted for

the remaining 10 percent of variation in the sample. The combination of the two

functions explained all the variation in the sample. The first discriminant function

maximally separated group membership of the cluster analysis by latitude and by distance

to the source area of the Rocky Mountains (fig. 2.5 and table 2.3), according to loadings

of the canonical function. The species-area relationship also influenced group prediction

according to the loadings of the first function. Function 2 was similar overall in its

separation of the groups, except that longitude and elevation more strongly influenced the

38

loadings (table 2.3). The high canonical R-value (0.960) also showed that the first

function had a strong relationship as a predictor of groups from the cluster analysis.

Table 2.3. Results of discriminant function analysis of geographic and physical variables on group membership from cluster analysis. LAT (Latitude), LON (Longitude), RICH (species richness), ELEV (maximum elevation in mountain range), LOG-A (log of Area), D-RMTM (distance to Rocky Mountains source), D-MEX (Distance to Sierra Madre Oriental source).

Canonical Pooled Within Group Correlations

Discriminant Among Predictors Functions

1 2 F to Remove Toler- ance LAT LON RICH ELEV LOG-A D-RMTN D-MEX LAT 11.184 3.030 4.53 0.005 1.000 -0.636 0.389 0.397 0.436 -0.985 0.774 LON -0.033 -0.711 0.31 0.313 0.178 -0.081 -0.087 0.708 -0.582 RICH -3.408 -0.055 11.04 0.073 0.686 0.796 -0.287 0.188 ELEV -0.117 -0.950 0.38 0.209 0.878 -0.377 0.217 LOG-A 2.464 1.747 3.79 0.076 -0.421 0.325 D-RMTN 11.479 3.416 3.41 0.004 -0.825 D-MEX 0.891 -0.291 0.52 0.190 1.000 Constant 35.95 60.52 Canonical R 0.960 1.000 Eigen- value 11.784 1.382

Cumulative Proportion of Total Dispersion 0.895 1.000 Classification Matrix A (predicted) B (predicted) C (predicted) % Correct A 4 0 0 100 B 0 7 0 100 C 0 0 4 100 Total 4 7 4 100

The canonical plot scores showed good separation and little or no overlap in the

95 percent confidence interval of mountain ranges in group B and those in either group A or group C on the first function (fig. 2.5). There was appreciable overlap of the 95

percent confidence intervals of groups A and C in the first function (fig. 2.5). Little

separation was achieved by the second function for all groups (fig. 2.5). Function one

39 and two in combination serve to separate group B from group C and A, but these functions only partially differentiate group C from group A.

Canonical Scores Plot 4

1

Function (2) Function -2 Group A B C -5 -5 -2 1 4 Function (1)

Figure 2.5. Plot shows the three groups against the two discriminant functions of prediction of cluster group membership based on five geographic or physical variables. Between groups F-statistic comparisons were small for A to C (1.5) but large for A to B and A to C (6.1, and 6.5 respectively). Ellipses represent the 95 percent confidence limits around each group.

Examination of pooled within group correlations confirmed previous results and showed some new trends. The log transformed area had high correlations with species richness and maximum elevation. The species-area relationships of grouped eastern and

40

western mountain ranges were significant and highly correlated in the regression analysis,

and those results are likely confirmed here (table 2.3). Elevation was highly correlated

with species richness, because the tallest mountain ranges in the Trans-Pecos also appear

to be the ones with the largest area and most number of species (table 2.2 and 2.3).

Species richness appeared moderately related to latitude and weakly related to longitude based on the correlations (table 2.3). As would be expected, latitude and longitude had a relatively high correlation (table 2.3), and the relationship was negative because longitude was recorded in decimal degrees, which is negative in the western hemisphere.

Also, the distances to source areas were strongly correlated to latitude and to one another.

Prediction of group membership was high, with a total successful prediction rate of 100 percent. The discriminant function analysis correctly predicted the membership of all mountain ranges in the cluster analysis groups.

The patterns investigated in discriminant function analysis were able to confirm the influence of geographic position, distance to a source area, and island area to the biotic similarity results of the cluster analysis. The results also indicated that the number of species in mountain ranges did not adversely influence the clustering results by grouping mountain ranges according to species richness rather than species composition, a concern posed by Armstrong (1972). The importance of latitude as the primary component of the first function could reflect an influence of source areas in which the gradient is of species decline is greater for Petran and Boreo-cordillerian species than for

Madrean ones. The relative unimportance of longitude in either function could represent the east-west dichotomy seen in regression analysis and the important role of basins as isolating mechanisms. The influence of area and species richness may reflect the

41

importance of the species-area relationship in shaping both species richness and species composition in the region. These overall patterns identified and analyzed through these results could be part of an inherited legacy that manifests itself in the present landscape.

DISCUSSION

The results of phylogeographic and paleontological investigations have demonstrated both the effect of past vicariant events (Dalquest and Stangl, 1984; Stangl et al., 1994; Stock, 1948, Van Devender, 1990) and recent dispersal (Betancourt et al.,

1991; Betancourt et al., 2001; Floyd et al., 2005; Holmgren, et al., 2003; Jackson et al.,

2005) of montane species largely restricted to mountain “islands” in the southwest.

Fossils of mammals and plants with mesic adaptations have been found in parts of the

Tran-Pecos that are too xeric to support these organisms today (Dalquest and Stangl,

1984; Stangl et al., 1994; Stock, 1948, Van Devender, 1990). This limited evidence provides an indication that some mountain ranges were previously connected through some lower-elevation areas (Dalquest and Stangl, 1984; Stangl et al., 1994; Stock, 1948,

Van Devender, 1990). Although this investigation did not attempt to discern between vicariant and dispersal events that have shaped the species composition in montane woodlands and mixed-conifer forests in the region, it did identify, through several analyses, the potential corridors that likely existed or still influence dispersal of montane organisms in the region.

The initial results of a cluster analysis identified three major groups of biotically similar mountain ranges. A comparison of biotic similarity to geographic distance indicated that closer mountain ranges were more biotically alike than distant ones. This also established that there was a geographic component to the pattern that deserved

42 further assessment. Mapping the groups from the cluster analysis onto a terrain map

(developed, in part, from fossil-based evidence) that depicted the likely corridors in the region showed correspondence of groups to the landscape pattern. Regression analysis of the species-area relationship of these same mountains showed an east-west geographic pattern, in which similarly sized mountains in the eastern group had double the number of species compared to mountains located in the western groups. A likely explanation for this pattern is the arrangement of possible corridors that formed an isthmus in the east and two peninsulas in the west. This isthmus could have aided dispersal of montane species northward from the Sierra Madre Oriental and southward from the southern

Rocky Mountains through its greater connectivity to source areas south and north of the

Trans-Pecos. The western peninsulas would have had strong physical connections and greater dispersal possibilities only to the north, and montane organisms would have been hindered by lowlands surrounding the southern tips of the peninsulas.

Discriminant function analysis results indicated that latitude, distance from northern source areas, and island area were the strongest predictors of the cluster analysis groupings. A latitudinal explanation to the biotic similarities could reflect the stronger physical relationship that the western peninsulas have to northern source areas and the balanced relationship that the eastern isthmus has with southern and northern source areas. In fact, examination of the taxa in the mountains of the eastern corridor (Appendix

B) shows a transition of Madrean dominated assemblages in the Sierra del Carmen and

Chisos Mountains to Petran and boreo-cordillerian dominated assemblages in the

Guadalupe and Sacramento Mountains. The strong association of area with geographic position may be a result of the largest mountain ranges occurring along the eastern

43 isthmus and northern part of the study area. This includes the Chisos, Sierra del Carmen,

Davis, and Guadalupe mountains in the east and Sacramento and Organ mountains in the north. The large size of these mountain ranges provides a better buffer against local extinction, which also may contribute to their large, diverse assemblages of montane species.

Among the mountain ranges in the Trans-Pecos, diversity patterns of montane species do relate to the classic species-area relationship of islands as reviewed by

Lomolino (2001), but when placed in context of landscape structure that can account for range shifts or transmigration over eons, the patterns become more robust. Overall, species richness is nearly double in the eastern Trans-Pecos mountain ranges where the landscape is structured so as to afford greater connectivity to northern and southern species pools. Ultimately, it is the placement of a given mountain range in this network that accounts for much of its potential diversity, and secondarily it is the area and elevation of a given mountain range that allows it to buffer against extinction in the present state of isolation.

The patterns in this investigation were elucidated by multiple lines of evidence, a broad-scaled approach, and computer-aided technologies like GIS and multivariate statistics. With the aid of modern technology and large, regional sets of data, it has become possible statistically test problems with a large extent using natural experiments

(Brown, 1995). Modern technology also provides a means of examining a problem from different perspectives and multiple scales that can provide especially robust conclusions

(Lomolino and Davis, 1997). Local scale investigations can provide insight into diversity patterns related to area and infra-montane patterns of isolation and dispersal among

44

habitat mosaics. Sub-regional to regional scale investigations can re-examine local

patterns and tie these to a larger provincial network, looking at transmigration,

dispersion, and landscape structure.

Although regional-sized investigations are useful at examining large-scaled patterns from pools of species, the presence or absence of any given species in an area

ultimately requires local, small-scaled explanations (Lomolino, 2000). First, a species

must be present in a regional species pool when a potential corridor opens, and then it

must have adequate dispersal capabilities to transmigrate in one or successive generations

while that corridor remains open. Furthermore, species vary in their ability to utilize

corridors. A corridor may provide adequate habitat for ecological generalists, but may

act as filters or barriers for ecological specialists, depending on the perceived patchiness

of available habitat in a given corridor (Baker and Van Vuren, 2004; Bright, 1998). Also,

the same environmental process may have unequal effects on different but adjacent

ecosystems and species living there (Peterson, 2003). Thus, dispersal into an area

becomes an individualistic, Gleasonian process in the end.

The findings in this investigation are important because these create a baseline for

further systematic, paleontological, and conservation biology investigations.

Systematists can examine genetic relationships of isolated populations within the network

of mountain ranges to investigate the patterns associated with the proposed dispersal

corridors. Paleontologists may look to these findings to discover gaps in their

understanding of the prehistoric natural history of the Trans-Pecos and search for

supporting or refuting evidence in preserved yet unearthed remains. Conservation

biologists and land managers can utilize these results to develop a better system of

45 preserves that can account for long-term phenomena like climate change and range shifts that can maintain the tremendous biodiversity of the region.

A deeper understanding of ecosystems is necessary in the face of human-caused or naturally mediated environmental change. This understanding must cut across disciplines, involve different scales, and utilize a variety of approaches. Only when we have a detailed knowledge of the past and present biota, the processes involved, and geo- ecology (Gordon et. al, 2002) can we make informed, intelligent decisions to the long- term conservation of landscapes and the myriad species and interactions in the ecosystems within.

46

CHAPTER 3

TERRESTRIAL PATTERNS OF MAMMALIAN DIVERSITY IN THE DAVIS

MOUNTAINS, TX

INTRODUCTION

The species-area relationship that larger areas have more species is one of the first

patterns of diversity formally investigated in ecology or biogeography. The first published observations date back to the late 18th century and more formal studies of this

pattern began in the mid 19th century. Johann Reinhold Forster, the naturalist on James

Cook's second Pacific voyage (1772), may have been the first to record this observation

when he wrote, “Islands only produce a greater or less number of species as their

circumference is more or less extensive” (Quamen, 1996). H. C. Watson described a

species-area curve for plant species in Britain in the mid 19th Century and de Candolle

produced a similar study in 1855 (Williams, 1964, Rosenzweig, 1995).

Watson identified the plant species present in ever increasing areas of Great

Britain, starting with local areas in Surrey, County up to the entire island of Great Britain

(Rosenzweig, 1995). It was from this investigation that the asymptotic pattern of the

species-area curve was first revealed. That is, species accumulate more rapidly as area

initially increases, and that number reaches an upper limit as greater areas already embody the previously sampled species and environmental conditions, progressing toward the full complement of species in the entire mainland.

The first attempts to mathematically describe the species-area relationship began in the 1920’s. Arhenius (1921) published the first work on the subject, and Gleason

(1922) made refinements to the assumptions and findings of Arhenius. Arhenius’ work

47

suggested the equation that is still used today: log S = z log A + log c. The transformed equation is S = cAz, where the number of species (S) is contained in an area (A), with

positive constants c and z that help determine the slope of the line.

The investigation of z-values was once thought to provide robust comparisons for

island areas. Z-values were thought to be the comparison of choice between areas

because the measure is dimensionless. Typically, z-values are larger for true islands than

mainland subplots (Rosenzweig, 1995). This means that the number of species on an

island increases more with area or is influenced more by area than on mainland plots. Z-

values are also influenced by the degree of isolation of an island and whether or not it is

part of an archipelago. Lomolino (1989, 2000) has shown that many of the assumptions

involving z-value comparisons are false and that only the broadest comparisons are valid.

Perhaps the most noteworthy and sometimes most controversial advance from

investigations of species-area relationships was the development of the Theory of Island

Biogeography by MacArthur and Wilson (1967). This theory states that there is a

dynamic equilibrium in the number of species established on an island according to the

area, distance from a mainland species pool, and the resulting rates of extinction and

immigration. The theory has been lauded at times for its unification of complex patterns;

at other times it has been criticized for the over-generalization or over-simplification of a

diverse array of processes and species involved in those processes (Lomolino, 2000,

2001).

Where these underlying influences start revealing themselves, the concept of

species-area relationships no longer seems so simple – more species in larger areas. The

underlying origins of the patterns are the result of complex processes, and investigations

48

into these processes continue today. Recently, Lomolino (2001) showed that the number

of species on small islands can vary independent of area, and the relationship can involve

widely different structuring processes depending on the size of the island. The island properties pertinent to this investigation are described further.

Habitat heterogeneity, also called spatial heterogeneity, strongly influences

biodiversity. As heterogeneity increases in an area, so typically does the number of species (Rosenzweig, 1995). This is because most species are limited by their evolutionary adaptations to utilizing a small variety of habitats, and habitats have limited resources. Thus, any given habitat can support only a subset of all the species in a region.

If the number of habitats in an area is high, then it would be expected that the number species should be high relative to an area of similar size that has a lower spatial heterogeneity. As the area increases on islands, typically so does spatial heterogeneity

(Rosenzweig, 1995; Lomolino, 2001), because a greater variety of environmental conditions typically exist in larger areas. Consequently, larger islands and larger areas usually have a greater capacity to hold more species. In areas where spatial heterogeneity is particularly high in a small area relative to other larger areas nearby, it might be possible that the species-area trend shows a contradictory pattern.

Robert MacArthur (1964) was among the first to publish on the idea of diversity and habitat heterogeneity, and the author followed with later publications on the subject

(MacArthur, 1965, 1969; MacArthur et al., 1966; MacArthur and Pianka, 1966).

Subsequent authors have examined heterogeneity as it relates to local biodiversity patterns, regional patterns, and island patterns (Bergen et al., 2007; Brown, 1995; Goetz et al., 2007; Hyde, et al., 2006; Maurer, 1999; Ricklefs, 1987; Rosenzweig, 1995).

49

Filter barriers also may affect appreciably the biodiversity of an area. Filter

barriers are strong barriers that limit the dispersal of some but not all organisms form one

area to another. The resulting species composition on the filtered side of a barrier should

be a biased subset of organisms from the regional total (Lomolino et al., 2005). The

subset of filtered species can favor certain functional groups or taxonomic groups over

others (Lomolino et al., 2005).

In one sense, a filter barrier is an isolating mechanism on island areas. Distance

alone is a type of filter; greater distances from a mainland source increasingly limit the

numbers and types of species that may disperse to more remote islands (Lomolino, 1996).

Other filters like salinity gradients, temperature gradients, or stream size in a watershed

act to limit organisms along a dispersal corridor or pathway (Blumenshine et al., 2000).

The xeric desert habitats of the American Southwest are a strong filter for transition zone

species of the southern Rocky Mountains and northern Sierra Madre Occidental (Davis,

1996; Lomolino and Davis, 1997). Thus, like with distance, where a filter barrier is

stronger, the isolation should be greater, and the species pool should be smaller in areas of similar size. If a filter barrier is stronger or isolates a larger area more than a smaller one, it may be possible to upset the typical trend of the species-area curve.

Body size relates to a great variety of ecological patterns and processes (Maurer and Brown, 1988; Maurer, 1999; Steele, 1991). The partitioning of resources within a community is influenced by the body sizes and foraging methods in the assemblage of species, and community structure develops, in part, according to the group of species best able to coexist and exploit the available resources (Bowers, 1982; Bowers and Brown,

1992; Brown; 1987; Brown and Haney, 1993; Brown and Liebman, 1973; Brown and

50

Maurer 1989). Within a given taxon, those species with intermediately-sized bodies tend

to be the most numerous instead of extremely large or extremely small ones (Hutchinson

and MacArthur, 1959; Dial and Martzluf, 1988; Elser et al., 1996; Rosenzweig, 1995).

Intermediately sized species also seem to occur with the highest population densities

(Brown and Maurer, 1987; Lawton, 1991).

The same seems to hold true for species in an assemblage. The most specious

group in an area tends to be of an intermediate body-size. This may be the result of an

exchange between allometric scaling laws for the number of individuals and the

speciation rate that decrease with greater body size and the scaling law for active

dispersal that increases with greater body size (Etienne and Olff, 2004).

Other ecological processes can affect body size relationships. Predation pressure

can alter the size classes of prey organisms (Blumenshine et al., 2000). Blumenshine et al. (2000) showed that predatory pressures on a fish population could alter natural body size along a gradient. A filter barrier that acts on body size could limit dispersal and the types of species that can inhabit an area. Given a regional species pool, it would be expected that species affected by the size-limiting filter would be a subset of smaller- bodied species on the gradient side of the filter in comparison to the region outside the filter.

This investigation was an outgrowth of observations made while conducting an inventory of the mammalian species in the Davis Mountains. The project included inventories at designated preserves or parks and numerous roadside localities. The two areas that are the focus of this paper are a state park property, Davis Mountains State

Park (DMSP), and a Nature Conservancy property, Davis Mountains Preserve (DMP).

51

The purpose of this investigation was fourfold. The first intent was to examine whether species diversity was significantly different or not between the two areas. The second goal was to identify and quantify any patterns among the species occurring at the two sites compared to the surrounding species pool. The third aspect of this study was to identify any filtering mechanism or barrier to the dispersal of species from low to higher elevations. The final part of this study was to examine an alternative explanation to the diversity pattern based on a difference in habitat heterogeneity between the two localities.

MATERIALS AND METHODS

Field Sampling and Data Collection

Field sampling began in April 1998 and concluded in June 2002 at Davis Mountains

Preserve (DMP), Davis Mountains State Park (DMSP), Balmorhea State Park (BSP),

Phantom Spring, Sandia Springs Preserve, and roadside rights-of-way. Ten pitfall cans were monitored at Sandia Springs Preserve until June 2003.

A standardized trapping protocol was used to sample terrestrial mammals.

Trapping procedures used 100 traps set in paired transects of 50 traps. The pairs were spaced about 50 meters apart, and traps in each half of the pair were set in two parallel rows spaced 25 meters apart. Traps along each row were set at 15 meter intervals. The number of transects totaled 175 at DMP, 111 at DMSP, 22 at BSP, 10 at Phantom Spring,

25 at Sandia Springs Preserve, and 15 on roadside rights-of-way. An assessment of trap effort using species accumulation curves appears in Appendix C, and seemed to have reached an asymptote at all areas.

Snap traps were used predominantly in the study and were set in combinations of three museum specials followed by a rat trap. This combination occasionally varied if

52 favorable sign of smaller or larger rodents was encountered. One Conibear trap also was set was set in each of the paired trap lines to capture carnivores, and Macabee traps were set at will, wherever fresh gopher sign was seen. Total trapping effort included 34,300 snap or box traps, 400 Conibear traps, and 257 Macabee traps.

In addition to sampling by traps, mammalian sign was collected or recorded by other means during field work. Scat, skulls, and antlers were collected, and the locality and habitat information were recorded. Photographs were taken of tracks of larger mammals in the field, and salvageable road-killed mammals also were kept as voucher specimens. Observations and localities were recorded in field notes.

For specimens and other mammalian sign, certain metrics were taken. A general descriptive locality and specific GPS locality were recorded at sites where specimens were acquired. GPS localities were recorded in UTM coordinates referenced to the WGS

1984 datum and were recorded broadly for trapping localities. Prior to the dissolution of selective availability, the precision of GPS data in the area was about 50 meters, but afterwards precision improved to 5 meters or less. Consequently, GPS localities of specimens for trap results were recorded at resolution of approximately 50 meters.

Additionally, historic records of mammals from the Davis Mountains were obtained from and verified at regional museums or literature sources (Schmidly, 1977; Stangl et al.,

1994). These data were tabulated with the field data into a master spreadsheet. The data were transferred for analysis into an electronic database and imported into PAST 1.73

(Hammer et al., 2001) or SPSS for statistical analysis and ArcGIS 9.2 for GIS analysis and mapping.

53

Other baseline GIS data were obtained from a number of sources. Digital elevation models of the region were obtained from the USGS National Elevation Dataset, from which hillshade, slope, and aspect models were calculated for further analysis. Digital orthophoto quarter quads were obtained from the Texas Natural Resources Information

Service, for use in local base maps, and Land Sat 7 imagery was obtained from Stephen

F. Austin University’s Forest Research Information Service for use in regional mapping and analysis. Park and Preserve boundaries originally were obtained from the Texas

Nature Conservancy and Texas Department of Wildlife and Parks, but these too were redrawn or edited to improve their precision. Other boundary and point data were obtained from the U.S. Census Bureau.

Data Analysis

The species diversity values of mammals occurring at DMP and DMSP were calculated and tested statistically to determine whether species diversity was significantly different or not between the two areas. A list of species and their relative abundances were tabulated for the two areas and analyzed in PAST (version 1.73) (Hammer et al.,

2001) using the compare diversities function. Species richness, number of individuals, dominance, the Shannon Diversity Index, and equitability values were calculated. The species richness values, Shannon Diversity Index numbers, and evenness values were evaluated in a bootstrap comparison of 1000 random samples of the dataset at a significance level of α=0.05.

The formulas used in the diversity comparison analysis are described further. The formula used for the Margalef Index, an alternative diversity index, was (S − 1)/ ln(n), where S is the number of taxa, and n is the number of individuals. The dominance

54

measurement used in the analysis equalled 1-Simpson index, which could range from 0

(all taxa are equally present) to 1 (one taxon dominates the community completely)

2 (Hammer et al., 2001). The formula used for dominance was D = ∑ (ni/n) where ni is

number of individuals of taxon i and n is the total number of taxa The Simpson index is

1-dominance, which measured ‘evenness’ of the community from 0 to 1 (Harper, 1999).

Buzas and Gibson's evenness index was another evenness measurement that was used in

the analysis, which used the formula = eH/S, where e is the exponential function, H is the

Shannon Diversity index, and S is the number of taxa. The equitability measurement was the Shannon diversity value divided by the logarithm of the number of taxa. The formula used was E = H / log(S) where H is the Shannon Diversity index and S is the number of taxa. This measured the evenness with which individuals are divided among the taxa present (Harper, 1999).

The second analysis identified and quantified patterns among the mammalian species occurring at DMP, DMSP, and the surrounding lowlands. Lists of species from the two study sites and surrounding lowlands were tabulated in a spreadsheet. It was evident that the distributions of bats and rodents showed site specific variability, which stimulated further investigation. Bats were treated in another investigation, and rodents

(and one insectivore) were examined at a guild level of burrow dwelling species in this investigation. The nestedness of the community from surrounding lowlands,

DMSP, and DMP were calculated with the tools developed by Atmar and Patterson

(1995). The nestedness of the entire rodent community was compared to that of the burrowing guild. The results suggested a stronger gradient existed in the attenuation of

55

species for the burrowing guild, which provided validity to further explore possible causes to the species diversity relationship.

The limitation of body size along this gradient was investigated as a possible explanation to the lower diversity at the larger, higher study site. The null hypotheses of no association was tested for a reduction of the body sizes in the assemblage of lowland burrowing rodent species that occur at successively higher elevations in the Davis

Mountains. Statistical comparisons with a Kruskal-Wallis test and Chi-square analysis

were used to test the null hypothesis of no association at a significance level of α=0.05.

Peromyscus leucopus was used as the standard to divide body size for this analysis. Species larger than P. leucopus were categorized as large-sized species.

Peromyscus leucopus and smaller species were categorized as small-sized species. Body size was measured by mass for the statistical comparison. The values from the actual specimens were used, which maintained independence among the observations.

The third aspect of this study quantified and tested a potential filter barrier that could affect body-size in the the dispersal of lowland rodent species to DMSP at mid- elevations through to DMP at high elevations. This was done by modeling soil series types of the SSURGO geodatabase for the Davis Mountains to slope and elevation and testing for an association with the substrate model and assemblages of burrowing species from the lowlands and crevice-dwelling species from the uplands. Associations were tested using a chi-square analysis to test the null hypothesis of no association at a significance level of α=0.05. A non-parametric method was used because the data were

nominal and frequencies did not fit a normal curve.

56

The final part of this study examined an alternative explanation to the species richness pattern by testing for a difference in habitat heterogeneity between the two localities. It was hypothesized from basic field observations that the smaller DMSP had a more heterogeneous assortment of habitats than the larger DMP. This analysis used a habitat study using point intercept transects on DOQQ imagery at 25 random locations at each study site. The physiognomic cover class was recorded at 20 points along a 200 meter transect. The dominant vegetation class and, where present, subordinate vegetation classes were calculated by percentage of cover. The total number of vegetation types and the number of times vegetation type changed on each transect were recorded as other measures of heterogeneity on each transect. The frequencies of dominant habitat types were tabulated and graphed as a percentage of total coverage for both study sites, and a

Kruskal-Wallis test for multiple comparisons was performed on the raw frequency data to test the null hypothesis that heterogeneity measures were no different between DMP and

DMSP. The test was performed with significance level set at α=0.05.

RESULTS

The outcomes of the surveys, documented 63 extant species of mammals belonging to 6 orders in the region including and surrounding the Davis Mountains

(Table 3.1). An additional 8 species and one additional order had been documented in previous studies of the region (Schmidly, 1977; Stangl et al., 1994). Sixty-one species have been recorded now or in the recent past in the lowlands surrounding the Davis

Mountains, and 48 species have been recorded from Davis Mountains State Park (DMSP) and 39 are known from recent records from Davis Mountains Preserve (DMP) (Table

3.1).

57

Table 3.1. Mammal taxa documented in the vicinity of the Davis Mountains. Taxa DMP DMSP Surrounding Lowlands Didelphimorphia Didelphis virginiana 0 0 1 Insectivora Notiosorex crawfordi 1 0 1 Chiroptera Mormoops megalophylla 0 2 0 Myotis ciliolabrum 3 0 0 Myotis thysanodes 35 13 0 Myotis velifer 0 239 29 Myotis volans 125 4 0 Myotis yumanensis 2 85 2 Lasiurus borealis 2 2 0 Lasiurus cinereus 27 62 17 Lasiurus xanthinus 0 1 0 Lasionycteris noctivagans 6 0 0 Pipistrellus hesperus 8 19 12 Eptesicus fuscus 56 1 2 Corynorhinus townsendii 7 6 5 Antrozous pallidus 58 34 28 Tadarida brasiliensis 66 292 53 Nyctinomops macrotis 2 26 0 Lagomorpha Sylvilagus audubonii 6 1 12 Sylvilagus robustus 11 6 7 Lepus californicus 11 1 8 Rodentia Ammospermophilus interpres 0 0 1 Spermophilus mexicanus 0 0 20 Spermophilus spilosoma 0 0 7 Spermophilus variegatus 7 7 9 Cynomys ludoviscianus 0 (1) 15 Thomomys bottae 25 1 7 Cratogeomys castanops 0 6 85 Perognathus flavus 0 2 32 Chaetodipus eremicus 0 0 20 Chaetodipus hispidus 0 1 6 Chaedodipus intermedius 0 0 1 Chaetodipus nelsoni 0 5 4 Dipodomys merriami 0 0 82 Dipodomys ordii 0 0 3 Dipodomys spectabilis 0 0 14 fulvescens 1 4 4 Reithrodontomys megalotis 15 10 27 Reithrodontomys montanus 4 2 3 Peromyscus boylii 432 39 4 Peromyscus eremicus 0 0 31 Peromyscus leucopus 3 16 32

58

Table 3.1 (cont.). Mammal taxa documented in the vicinity of the Davis Mountains. Taxa DMP DMSP Surrounding Lowlands Peromyscus maniculatus 0 18 29 Peromyscus nasutus 68 0 0 Peromyscus pectoralis 0 297 11 Onychomys arenicola 1 13 43 Sigmodon fulviventer 0 0 24 Sigmodon hispidus 0 1 47 Sigmodon ochrognathus 17 16 7 Neotoma leucodon 0 20 6 Neotoma mexicana 14 4 2 Neotoma micropus 0 0 75 Ondatra zibethicus 0 0 2 Erethizon dorsatum 1 5 6 Carnivora Canis latrans 1 0 13 Urocyon cinereoargenteus 4 5 6 Ursus americanus 2 0 1 Procyon lotor 3 5 2 Bassariscus astutus 2 5 5 Taxidea taxus 0 0 1 Spilogale gracilis 0 1 29 Mephitis macroura 0 1 8 Mephitis mephitis 0 4 49 Conepatus leucontus 0 2 15 Puma concolor 2 1 2 Lynx rufus 0 2 5 Artiodactyla Pecari tajacu 25 35 3 Cervus elaphus (introduced) 4 0 16 Odocoileus hemionus 4 4 1 Odocoileus virginianus 9 7 0 Antilocapra americana 0 0 15 Note: C. ludoviscianus historically ranged into the parklands of the Davis Mountains but did not occur at DMSP, its inclusion here is for the purpose of analysis.

Analysis of species diversity using the Shannon Diversity index indicated that species diversity was significantly higher at the smaller (1,096 ha) DMSP compared to that of the larger (7,102 ha) DMP, computed with 1,000 bootstrap simulations of the dataset. The calculated p-value (0.008) for the Shannon index was lower than the significance level (α=0.05); thus, the null hypothesis (H0) was rejected and the alternative hypothesis (Ha) was accepted that species diversity was higher at DMSP (table 3.2).

59

Species richness was significantly higher at DMSP where 9 more species were

documented and 263 more individuals were recorded (table 3.2). The calculated p-value

(0.012) for species richness was lower than the significance level (α=0.05); thus, the null

hypothesis (H0) was rejected and the alternative hypothesis (Ha) was accepted that

species richness was higher at DMSP. The Margalef index, an index of species richness,

(Harper, 1999), confirmed the results of the Shannon diversity comparison. The

calculated p-value (0.008) for the Margalef Index was lower than the significance level

(α=0.05); thus, the null hypothesis (H0) was rejected and the alternative hypothesis (Ha) was accepted that species richness was greater at DMSP.

Table 3.2. Diversity and area comparisons of DMSP and DMP. Diversity were comparsins calculated using bootstrap analysis.

DMSP DMP *Boot p(.05) Number of Species 48 39 0.012 Individuals 1333 1070 ---- Dominance 0.1400 0.1942 ---- Shannon H 2.51 2.37 0.008 Evenness eH/S 0.2564 0.2743 0.472 Simpson Index 0.8598 0.8062 ---- Margalef 6.532 5.448 0.008 Equitability J 0.6484 0.6469 0.916 Area (hectares) 1096 7102 * Calculated p-values from 1000 bootstrap simulations of the dataset, α=0.05

Evenness, dominance, and equatability measures indicated that each sample was

similar and not overly influenced by one or a few species (table 3.2). However, the

PAST program does not make statistical comparison for the Individuals, Dominance, and

Simpson Index values. There were no significant differences in the bootstrap

comparisons for the Evenness and Equitability values (table 3.2). The calculated p-value

(0.472) for evenness was greater than the significance level (α=0.05); thus, the null

60

hypothesis that evenness differed (H0) was not rejected. The calculated p-value (0.916) for equitability was greater than the significance level (α=0.05); thus, the null hypothesis

that there was no difference in how individuals were divided among the taxa (H0) was not rejected.

Comparisons of the species subsets from surrounding lowland areas that occur successively in the mid-elevation site (DMSP) and the high elevation site (DMP) indicated an overall reduction in the number of species that range from lowlands to highlands (table 3.1). There were 61 species overall that contributed to the mammalian fauna of the lowlands. Fifteen of these species did not range into the Davis Mountains, and 7 other species were limited at mid-elevations at DMSP. Twenty-four species occurred or likely occurred throughout the region from the lowlands to the highlands at

DMP. Of those 24 species, 14 were wide ranging carnivores or artiodactyls that are not specific to vegetation types in the region; also, the porcupine (Erethizon dorsatum), desert cottontail (Sylvilagus audubonii), and black-tailed jackrabbit (Lepus californicus) occurred throughout the region and in a wide variety of habitats. The remaining fifteen species occurring in the lowlands were mountain dwelling species that also partially ranged into the surrounding lowlands.

Thirty-two rodent species and one insectivore (Notiosorex crawfordi) were referenced in the remaining analyses. Among this group, 12 species did not range out of the lowlands, and 7 species occurred in both the lowlands and the mid-elevations of

DMSP (table 3.1). Six species were common between lowlands, DMSP, and the high elevations of DMP (table 3.1). Eight species of rodents from the mountainous region contributed to the species pool of the lowlands.

61

Nestedness was high for the full rodent community and the sub-group of

burrowing species. The nestedness temperature of the full rodent community was 5.47º

on the packed presence-absence matrix, and the Monte Carlo-derived (1,000 iterations) p-

value was less than 0.006. The nestedness temperature of the sub-group of burrowing rodents was 2.41º on the packed presence-absence matrix, and the Monte Carlo-derived

(1,000 iterations) p-value was less than 0.003. The values in each case indicated a highly

non-random pattern of nestedness. A temperature of 0º indicates perfect nestedness

(Atmar and Patterson, 1995). It was concluded that the lower temperature (higher degree

of nestedness) in the sub-group of burrowing rodents was indicative of a stronger

attenuation of species along the elevational gradient from surrounding lowlands to the

highlands, which could influence the pattern of higher species diversity at the mid-

elevation study site in comparison to the high elevation one.

Semi-fossorial rodents were the most prevalent group from the lowlands that did

not range into the Davis Mountains. The large-bodied burrowing rodents were the largest

group that was confined to the lowlands. This included three ground squirrels

(Ammospermophilus interpres, Spermophilus mexicanus, and Spermophilus spilosoma)

three kangaroo rats (Dipodomys merriami, Dipodomys ordii, and Dipodomys spectabilis).

Other large-sized rodents confined to the surrounding lowlands included the yellow-

bellied cotton rat (Sigmodon fulviventer), southern plains woodrat (Neotoma micropus),

and muskrat (Ondatra zibethicus). Ondatra zibethicus would be confined by the lack of

perennial water in the Davis Mountains. From the pattern it was hypothesized that

substrate confined larger species to lower elevations with deeper friable substrates that

were substantially free of rocks.

62

Medium to small-sized rodents that failed to range into the Davis Mountains

included the Chihuahuan Desert pocket mouse (Chaetodipus eremicus), the rock pocket

mouse (Chaetodipus intermedius), and cactus mouse (Peromyscus eremicus). A lack of

suitable substrates or a lack of adequate habitat likely contributed to the confinement of

these species to lowland areas. These species were replaced in the mountains by rock- dwelling counterparts in the same genera.

Species that ranged from the lowlands to the mid-elevation site (DMSP) tended to be smaller in size. Four large-sized species occurred in both the lowlands and mid-

elevation mountain areas. These included the black-tailed prairie dog (Cynomys

ludoviscianus), yellow-faced pocket gopher (Cratogeomys castanops), hispid pocket

mouse (Chaetodipus hispidus), and hispid cotton rat (Sigmodon hispidus). Small-bodied

rodents included the silky pocket mouse (Perognathus flavus), Nelson’s pocket mouse

(Chaetodipus nelsoni), fulvous harvest mouse (Reithrodontomys fulvescens), western

harvest mouse (Reithrodontomys megalotis), plains harvest mouse (Reithrodontomys montanus), white-footed mouse (Peromyscus leucopus), deer mouse (Peromyscus maniculatus), and Mearns’ (Onychomys arenicola). The desert shrew

(Notiosorex crawfordii), a small-sized species and insectivore, was not recorded at

DMSP but likely occurs there.

Species that occurred in both the lowlands and highlands groups included no large-bodied species, and six small-bodied species. The small-bodied species included R. fulvescens, R. megalotis, R. montanus, P. leucopus, O. arenicola, and N. crawfordii.

Statistical analysis utilized non-parametric methods because the frequencies of body size measurements among the sites were highly skewed. The Kruskal-Wallis test

63

for multi-comparison of the body-size values among sites calculated a p-value greater

than 0.05; thus, the null hypothesis of no association was not rejected. It was concluded

that the body sizes did not decrease from lower to higher elevation sites.

However, a trend in reduction of mean body size within this assemblage, in

progression from the surrounding lowlands to the mid-elevation site (DMSP) and the

high elevation site (DMP) was indicated in a Chi-square analysis of association (Table

3.3). Species the size of Peromyscus leucopus and smaller were categorized as small-

sized species, and those larger than P. leucopus were categorized as large-sized ones.

The result of this analysis indicated a marginal association. The calculated p-value

(0.0498) was was slightly lower than the significance level (α=0.05); thus, the null

hypothesis (H0) was rejected (with reservation) and the alternative hypothesis (Ha) was accepted that there was a potential association of smaller body size in the assemblage of lowland burrowing rodent species that occurred at successively higher study sites in the

Davis Mountains. This result suggests that a pattern exists, but it is not a strong one, particularly in light of the negative results from the Kruskal-Wallis test.

64

Table 3.3. Contingency table frequencies to test body size associations of lowland species that have dispersed into higher elevations of the Davis Mountains (p=0.0498). Small-sized species included Peromyscus leucopus and smaller species.

Large Body Small Body

DMP (High elevation) 0 6

DMSP (Mid-elevation) 4 9

Lowlands 13 12 DMP = Davis Mountains Preserve DMSP = Davis Mountains State Park

Modeling of SSURGO soil categories with deeper soil development and fewer

rocks corresponded to slopes of less than 10 percent, where the soil types typically

changed according to four elevation groups (figure 3.1). Elevations below 1,525 meters

are nearly free of stones and included deep soils in valleys and river bottoms. Elevations

ranging between 1,525 and 1,675 meters typically included Mainstay-Brewster soils that

are shallow, with about fifty percent pebbles, cobbles, and stones. Elevations between

1,675 and 1,830 meters also included Mainstay-Brewster soils that could be shallower

and rockier than those at a lower elevation. Finally, elevations above 1,830 meters

typically included Musquiz or Hurds soils that are deep with up to 40 percent gravels,

pebbles, cobbles, and stones (fig. 3.1).

65

Figure 3.1. Model of soil development on slopes less than 10 percent in the Davis Mountains and surrounding areas, with developed soils categorized by elevation.

Rodents from the lowland assemblage of species showed an association with

developed river bottom soils along Limpia Creek and Mainstay-Brewster soils on nearly level uplands at DMSP. Chi-square analysis calculated a p-value (0.003) that was lower

than the significance level (α=0.05); thus, the null hypothesis (H0) was rejected and the

alternative hypothesis (Ha) was accepted that the lowland assemblage of rodents

associated with developed soils at DMSP. These more widely distributed lowland species were limited at DMSP, the mid-elevation site, as substrate specialists.

66

Figure 3.2. Distribution of lowland species at DMSP relative to modeled substrates on shallow slopes and elevation classes. Chi-square analysis indicated an association. Colored areas represent developed soils, and a description appears in figure 3.1.

The same association test repeated for the lowland rodents occurring at DMP did not show an association to the model of developed soils. The calculated p-value (0.157) was higher than the significance level (α=0.05); thus, the null hypothesis (H0) was not

rejected. The three Reithrodontomys species in the sample occurred beyond the modeled

67

soils at DMP and likely were the cause of failure of the statistical test (figure 3.4).

Reasons for the failure will be discussed further.

Figure 3.3. Distribution of lowland species at DMP relative to modeled substrates on shallow slopes and elevation classes. Chi-square analysis indicated no association. Colored areas represent developed soils, and a description appears in figure 3.1.

Highland species from DMP that also occurred at DMSP, the mid-elevation site, were tested for an association to the modeled substrates as a comparison to the pattern of the lowland species. The three species included Botta’s pocket gopher (Thomomys bottae), the brush mouse (Peromyscus boylii), and the Mexican woodrat (Neotoma

68

Mexicana) (figure 3.4). The calculated p-value (0.178) was greater than the significance

level (α=0.05); thus, the null hypothesis (H0) was not rejected.

These highland species were habitat specialists at DMSP and likely were present

because of the microclimate or microhabitat characteristics created by the rocky hillsides

or rock outcrops on these slopes (figure 3.4). Neotoma mexicana, a typical inhabitant of

cliffs and outcrops with chapparal, piñon-juniper woodlands, and montane forests

(Fitzgerald et al., 1994), occurred at DMSP on only steep, north-facing slopes with

vertical cliff faces that provided a cool mesic microclimate. Peromyscus boylii occurred in dense stands of shrubs that provided nearly 100 percent canopy cover. Peomyscus boylii typically utilizes densely vegetated areas in woodlands, oak scrub, and wooded riparian areas with boulders and rough, broken terrain (Fitzgerald et al., 1994). At

DMSP, these habitats were found most often on hillsides with a wide range of aspects.

Thomomys bottae was found at DMSP where the bases of large rock outcrops provided shelter for dense vegetation growth and development of a friable, organic soil horizon

above an otherwise rocky matrix. This species’ use of these areas likely is in response to

interspecific competition from the larger yellow-faced pocket gopher (Cratogeomys

castanops) that dominates the deeper rock-free substrates along Limpia Creek (see

Williams and Baker (1976) for a discussion about the interspecific interactions of these

two species).

69

Figure 3.4. Distribution of highland species at DMSP relative to modeled substrates on shallow slopes and elevation classes. Chi-square analysis indicated no association. Colored areas represent developed soils, and a description appears in figure 3.1.

One further association test was run as a second comparison. This test measured whether or not there was an association of the modeled substrate to two widely distributed species adapted to mid-elevation, montane grasslands. The two species in this test were the white-ankled mouse (Peromyscus pectoralis) and the eastern white-throated woodrat (Neotoma leucodon) (figure 3.6). The calculated p-value (0.0678) was greater

70

than the significance level (α=0.05); thus, the null hypothesis (H0) was not rejected. It

was concluded that no association exists between these mid-elevation montane species

and the modeled substrate.

Figure 3.5. Distribution of common mid-elevation species at DMSP relative to modeled substrates. Chi-square analysis indicated no association. Colored areas represent developed soils, and a description appears in figure 3.1.

In the previous series of tests, it was not fully evident that the assemblage of lowland burrowing species was limited by substrate from lowlands to highlands. This

71

assemblage had become restricted to a specific subset of substrates in the mid-elevation

areas but was not fully restricted at high elevations. Although the microhabitat

association was not significant in the highlands, the number of lowland species and their

and average body size had a decreasing trend from lower elevation sites to higher

elevation ones. The body size trend appeared not to be significant though.

An alternative explanation as to why the larger DMP would have lower species

diversity than the smaller DMSP could be related to the existence of a smaller variety of

habitats at DMP. The vegetation survey results identified seven different dominant types

in the samples at DMSP but only two different dominant types at DMP (figure 3.7). Only

woodland vegetation types were common between the two areas.

Figure 3.6. Relative coverage of dominant habitat types sampled at DMSP and DMP.

72

Quantitative comparison of vegetation types indicated that the vegetation was

more heterogeneous at DMSP compared to DMP. The number of vegetation types

encountered, the number of times vegetation types changed, and the percentage of

secondary vegetation types were all significantly greater at DMSP (table 3.4). Chi-square

approximation values, and the associated p-values were lower than the significance level

(α=0.05) in all these measures; thus, the null hypotheses (H0) were rejected and the

alternative hypotheses (Ha) were accepted. From these results it can be concluded that

there was a significantly higher number of vegetation types and that these varied more across the landscape at DMSP compared to DMP. The percent coverage of the primary

vegetation type was significantly greater at DMP in comparison to DMSP (table 3.4).

The value of the chi-square approximation (9.038), and the associated p-value (0.003)

was lower than the significance level (α=0.05); thus, the null hypothesis (H0) was rejected and the alternative hypothesis (Ha) was accepted. From this result, it can be concluded

that the vegetation is dominated more by a single type at DMP in comparison to DMSP,

which also signifies that the vegetation is more heterogeneous at DMSP than DMP.

Table 3.4. Kruskal-Wallis results for multiple comparisons of vegetation heterogeneity.

Mann- Chi-square Rank Sum Habitat Variables p-value Whitney U Approx. DMP DMSP Number of Vegetation 157.0 10.474 0.001 482.0 793.0 Types Percent Coverage, Primary 448.5 9.038 0.003 783.5 491.5 Veg. Type Percent Coverage, 167.5 8.993 0.003 492.5 782.5 Secondary Veg. Type Percent Coverage, Tertiary 260.5 1.751 0.190 585.5 689.5 Veg. Type Number of Changes to 165.0 9.287 0.002 490.0 785.0 Vegetation

73

DISCUSSION

The results of this inquiry provide supporting evidence to document overall greater mid-elevation species diversity within a smaller area in comparison to a larger one at a higher elevation (table 3.2) and a strong gradient of nestedness from lowlands to highlands. Two alternative explanations were explored to offer reasons for these patterns in relation to the rodent community in the region.

The first explanation that a substrate-related filter prevented larger fossorial and semi-fossorial rodents from dispersing into the Davis Mountains from the surrounding lowlands was only marginally significant. Statistical examination of decreasing body size among subsets of the assemblage of lowland burrowing rodents occurring at a mid- elevation site and a higher elevation one failed to show a definitive association. Large- bodied rodent species dropped from 13 species to four between the surrounding lowlands at mid-elevations and then to zero in the highlands. Small-bodied rodent species dropped from 12 to 9 to 6 species along the same gradient, but these trends likely were not statistically significant.

Further analysis showed that among species of this same assemblage of rodents, those species that had ranged into the mountains from the surrounding lowlands typically associated with areas having developed soils. At the high elevation site, the association of the lowland assemblage of species to substrate was not significant, because the species remaining in this assemblage were dominated by the three Reithrodontomys species, which are not as closely tied to substrate for nest placement or foraging activities

(Spencer and Cameron, 1982; Webster, and Jones, 1982; Wilkins, 1986). These three species typically occurred on soil types other than the Musquiz and Hurds soils (the

74 modeled soil types) at higher elevations. This pattern also could have occurred from a failure of the analysis to capture all the relatively rock-free substrates in the upper elevation study site.

The montane rodents didn’t associate with the areas that had developed soils at the middle elevation site. Three highland species (Thomomys bottae, Peromyscus boylii, and Neotoma mexicana) that also occurred at the middle elevation site were located in areas with rock outcrops, mesic microclimates, or dense cover. The two most abundant mid-elevation species, Neotoma leucodon and Peromyscus pectoralis, were widespread and not associated with developed soils; instead, these two species occurred throughout the mid-elevation study site, wherever rocky substrates occurred. None of the rodents from DMSP that were adapted to the mid-elevation, montane grasslands ranged to DMP into the highlands, but a few middle elevation species had ranges that extended downward to the lowlands surrounding the Davis Mountains.

The alternative explanation that habitat diversity was the reason for the atypical differences in species diversity seemed like a better explanation to the pattern of species diversity. The smaller, more species rich area at a moderate elevation had more vegetation types that were heterogeneously spread across the landscape in comparison to the larger, less species rich area at a higher elevation. Additionally, woodlands were the only vegetation type that was common between the two areas. Thus, in comparison, the smaller, mid-elevation site likely had more of the overall novel habitats that could support a greater variety of species.

The species richness pattern documented in this study could be related to a broader pattern of elevational gradients of species richness, in which there is one or more

75

peaks in species richness at mid-elevations along an elevational transect (Brown, 1988;

Hawkins, 1999; Heaney, 2001; Lee et al., 2004; Lomolino, 2001; Rosenzweig, 1995;

Whittaker, 1960). The causal explanations for mid-elevation peaks in species richness

are numerous, likely multi-factorial, interdependent, and not easy to disassociate from

one another (Lomolino et al., 2006; Heaney, 2001). Examples of causal explanations for

patterns of a mid-elevation peak of species diversity include those related to peak

productivity and available precipitation, greater physiographic area at mid-elevations,

greater total abundance of individuals in the community, greater diversity of food

resources, reduced interspecific competiton, and higher rates of speciation (Heaney,

2001; Lomolino et al., 2006). One set of results in this investigation indicated that a

greater variety of habitats overall and a greater number of unique habitat types at mid-

elevations in comparison to higher elevations may account partially for the pattern.

This investigaton couldn’t completely resolve the importance of substrate as a

structuring mechanism of the mammalian communities in and near the Davis Mountains.

However, substrate is an important component of mammalian habitat requirements that

has been overlooked historically. A number of investigators have realized the importance

of substrate as it relates to distribution of habitats and associated vertebrate species in the

environment (DeBaca and Choate, 2002; Dice, 1923; Pianka, 1966; Rosenzweig and

Winakur, 1969).

The wider applicability of this study is that its methods and results applied

elsewhere could help land managers develop a deeper understanding of the dynamics that

influence biodiversity patterns in a montane environment. Such knowledge can help in

land use planning where managers must decide on acceptable human uses that have the

76

potential to fragment or degrade habitats. Thus, if a particular use were to reduce the

variability of habitats or increase a filter barrier in a mid-elevation montane ecosystem,

then there could be a cascade of effects that could occur in a much broader region. A

similar study applied elsewhere or in a modified form, likely could elucidate the definitive role of substrate in structuring dispersal of mammsls through a montane gradient.

77

CHAPTER 4

ECOLOGICAL EFFECTS ON SPATIAL AND TEMPORAL DISTRIBUTION OF

BATS IN THE DAVIS MOUNTAINS, TEXAS

INTRODUCTION

Bats, despite being the second-most diverse order of mammals, remain poorly understood overall. Declining populations, loss and fragmentation of foraging habitat, disturbance to roost sites, prevalent use of pesticides, and the increased intrusion of humans into previously undisturbed habitats have increased the awareness and need to know more about the biology of bats. Recently, a greater interest by federal agencies and advocacy by conservation organizations has spurred more researh into the ecological study of bats. The aim of this work often has been to improve management plans by governmental and non-governmental agencies.

The original purpose of this research was to provide the the Nature Conservancy and the Texas Parks and Wildlife Department with a general survey of the distribution, abundance, and species composition of bats that inhabit the Davis Mountains. The goal was to provide basic information to improve their own regional management plans for this group of mammals. The results of this basic survey have been re-examined for the purposes of investigating regional and local ecological patterns of bats in the Davis

Mountains.

The Davis Mountains are centrally located in the Trans-Pecos region of Texas, where the regional climate is a temperate desert. Abundant sources of surface water are unreliable or seasonally limited, and this can force bats to congregate at the few perennial

78

or semi-perennial sources of water to rehydrate and replenish water lost during roosting

periods.

Local, fine-grained analyses of resource partitioning by bats at sources of water

are limited. Adams and Thibault (2006) examined arrival times of bats to water holes in

a xeric environment and looked for a correspondence with emergence times of the local

species. Cockrum and Cross (1964) evaluated temporal data for differences in use at

water holes by seven species in the Sonoran Desert in Arizona. O’Farrell and Bradley

(1970) looked at differences between Pipistrellus hesperus and Myotis californicus regarding use of a spring in the Mojave Desert in Nevada. O’Farrell and Shanahan

(2006) sampled use of the Las Vegas Wash by bats in three different environmental

situations for an entire year and documented subtle differences in community structure in

these areas. These researchers also documented year-round use of the wash by one or

more of a 17 total species at the study sites. Ciechanowski (2002) explored how canopy

structure and the size of water bodies affected the local distribution of bats in Poland.

Other investigations have focused on local differences in prey species or foraging

localities by sympatric species.

Regional extent investigations have involved a number of topics. One topic,

environmental segregation by gender, had been described anecdotally by researchers

since the early 20th century (Allen, 1939). Recently, sexual segregation has been more

rigorously evaluated for a number of species during the breeding season. These modern investigations have been able to elucidate and precisely document differences related to

sexual segregation by elevation in some mountain ranges (Cryan et al., 2000; Encarnação

et al., 2005) or sexual segregation at a continental scale (Cryan, 2003). Other researchers

79

have examined the topic of species composition along elevational gradients to document

associations with macrohabitat characteristics (Graham, 1983; Grindal, 1999; Kaňuch and Krištín, 2006). Chung-MacCoubrey (2004) examined both macrohabitat differences and sexual segregation related to the bat community in New Mexico. Where knowledge

of distributions is limited or regional sampling is not possible, researchers have

extrapolated existing data to model the potential distribution of bat species within a

region (Jaberg and Guisan, 2001; Milne et al., 2006). These types of investigations

provide a broad-scoped and coarse-grained analysis of habitat use and partitioning of

resources at a sub-regional level.

The objectives of this investigation were twofold. The first objective was to

examine the patterns of macrohabitat use and sexual segregation of species at a broad

scale in the Davis Mountains. The second objective was to examine the local temporal

pattern of bats at a semi-perennial source water.

MATERIALS AND METHODS

Study Region

The study sites in this investigation were located in the Davis Mountains, Texas.

The Davis Mountains are found in the central third of the Trans-Pecos in the boot heel of

Texas. This mountain range occupies about two thirds of Jeff Davis County and

encompasses an area of about 2,400 km2 (fig. 1, fig. 2). Other mountain ranges with

intervening basins are located north, south, and east of the Davis Mountains, which

collectively form the southeastern limit of the Basin and Range physiographic province.

Although the Davis Mountains have a temperate desert climate, the mountains

themselves have an ameliorating effect on the local climate. The mountains of the region

80

exert a localized effect on surrounding atmospheric conditions through an orographic

effect (Marsh, 1987). Thus, precipitation varies from about 25 cm of in the low elevation

deserts in the rain shadow of the Davis Mountains, but the upper peaks average about 64

cm. Most precipitation in the area falls during the summer monsoon from May to

August, and droughts are common and can last several years. Outside the monsoon

season, bats have a tendency to congregate their drinking activities around a few reliable

sources of water.

Field Sampling

Field sampling began in April 1998 and concluded in October 2001 and included

sites in lowland desert scrub, mid-elevation montane grasslands, mid-elevation oak- juniper woodlands, high elevation woodlands, and mixed-conifer forest. Low elevation sampling occurred at Balmorhea State Park (BSP), Phantom Spring, and Sandia Springs

Preserve. Mid-elevation sampling sites were located at Davis Mountains State Park

(DMSP), and high elevation localities were located at Davis Mountains Preserve (DMP).

The range of elevations at lowland sites varied between 970 and 1,020 meters. Mid- elevation sites ranged between 1,490 and 1,706 meters, and high elevation localities varied from 1,798 to 2,042 meters.

Bats were sampled with mist nets or were shot. Netting effort at DMP included

135 net nights at 23 localities. Sampling at DMSP occurred at 17 localities and included

147 net nights. Sampling among lowland sites included 38 net nights at 13 localities at

BSP, 10 net nights at one locality at Phantom Spring, and 10 net nights at one locality at

Sandia Springs Preserve. Sampling efforts were complete based on the asymptotic

81 pattern of species accumulation curves for the three major areas – low, mid, and high elevation areas (Appendix C).

One net night was recorded for each net set per night at a sampling locality. The number of nets ranged from one to five nets set at a given locality. Nets were set over sources of water or in flyways, which included roadways, forest gaps, or clearings at ridgelines.

Sampling technique was standardized as much as possible. Nets were set and opened before sunset, and netting continued for five hours thereafter. Nets were closed earlier if activity appreciably dwindled for more than an hour, or if the weather appreciably deteriorated. The nets were two meters high and four-tiered, but lengths varied to accommodate the width of the site being sampled. Where possible, the anchoring points of nets were set at or into the borders of bounding vegetation. In linear sampling sites, two nets were set perpendicular to the site and spaced 20 meters apart. At smaller watering holes or livestock tanks, one net was set near the shore or edge of the feature, and another one was set through the water feature and perpendicular to the other net. Large earthen livestock tanks of an acre or more required a number of nets set at the most strategic points. Sampling occurred from about 7 March to 15 November each year of the study and was planned around the lunar cycle as much as possible. Sampling was avoided three days on either side of the full moon, unless the sky was obscured with clouds.

Data collected on each individual included identification to species, sex, age category (juvenile, sub-adult, or adult), and reproductive condition. Seven hundred eight individuals were kept as voucher specimens and were deposited in the mammal collection

82 of the Natural Sciences Research Laboratory at the Museum of Texas Tech University.

Animals that were released were marked by clipping a small amount of hair from between the shoulder blades to record any recaptured individuals. Ambient data also were recorded, which included, time of sunset, time of civil twilight, time of capture, air temperature, wind speed estimate, elevation, UTM position, and habitat type. Time of sunset and time of civil twilight were obtained from published tables for Alpine, Texas that are provided by the National Oceanic and Atmospheric Administration.

Data Analyses

Occurrence records of each species were tabulated and analyzed to test whether or not bat species in the Davis Mountains were limited by macrohabitat (physiognomic vegetation classes) using elevation as a surrogate variable. The same records were analyzed to measure for macrohabitat partitioning between males and females. These two patterns relative to elevation were analyzed using logistic regression analysis (SPSS version 11.0) to predict an association. The level of significance for p-values was 0.05.

Tests for temporal resource partitioning were performed at a semi-perennial pool at

DMSP (UTM 13 603632 3385791), the most productive mid-elevation site among all sampled sites. This site was sampled about every ten days to avoid adversely impacting bats using this resource. One period during mid-August was skipped, because the water had disappeared.

Capture times after sunset at this locality were grouped into hourly intervals by month, species and family, Vespertilionidae and Molossidae. Time was grouped because nightly captures tended to occur in waves of high activity and intervals of no activity. The fifth hour after sunset contained few observations and were pooled with the fourth hour

83

captures for the purpose of analysis. These frequency data were statistically analyzed in

a three-dimensional contingency table (ρ = 0.05) to test the null hypothesis that time of

capture, species, and month were mutually independent. Species composition at the same

site was analyzed by month with a contingency table analysis (ρ = 0.05) using capture

frequencies to test the null hypothesis that species composition was not influenced by the

month of capture through the season. In this analysis, rare species were pooled to

maintain the reliability of the test.

RESULTS

A sample of 1,266 bats, which included 16 species, was obtained from the study

areas (table 4.1). Davis Mountains State Park was the most species rich, with 14 species.

Davis Mountains Preserve followed with 13 species, and the surrounding lowlands

included just five species. These results indicate a slight mid-elevation peak in species

richness, which may be misleading, because the counts varied proportionately with the

sample sizes (table 4.1) and sampling effort. This pattern is common in survey studies,

because a greater sampling effort typically accounts for more of the total variation in an

ecological community. However, the smaller lowlands assemblage likely arose from the

shortage of places to adequately net bats and from the nature of the environment, which

had few places where bats could roost. Most adequate roost sites in that part of the region were located in human-made structures or trees at Balmorhea State Park.

84

Table 4.1. Frequencies of bat species captured at study sites associated with the Davis Mountains. Surrounding lowlands included Balmorhea State Park, Sandia Springs Preserve, and Phantom Spring. Surrounding Frequency Taxa DMP DMSP Lowlands Totals Mormoops megalophylla 0 2 0 2 Myotis ciliolabrum 3 0 0 3 Myotis thysanodes 35 13 0 48 Myotis velifer 0 239 20 259 Myotis volans 125 4 0 129 Myotis yumanensis 2 85 2 89 Lasiurus borealis 2 2 0 4 Lasiurus cinereus 27 62 3 92 Lasiurus xanthinus 0 1 0 1 Lasionycteris noctivagans 6 0 0 6 Pipistrellus hesperus 8 19 0 27 Eptesicus fuscus 56 1 0 57 Corynorhinus townsendii 6 6 0 12 Antrozous pallidus 58 34 11 103 Tadarida brasiliensis 66 292 48 406 Nyctinomops macrotis 2 27 0 29 Locality Totals 396 786 84 1,266 Net Nights 135 147 33 315

Five rare species occurred in the sample of bats (table 4.2). These were

represented by six or fewer individuals and did not exhibit enough variation in the range

of elevations and were dropped by the logistic regression analysis. Two species,

Mormoops megalophylla and Lasiurus xanthinus, occurred only at DMSP in the mid-

elevation zone (table 4.2). These two species were captured in a riparian habitat with

habitats in surrounding uplands forming a mosaic of montane grasslands, shrub lands,

and oak-juniper woodlands. Two species, Myotis ciliolabrum and Lasionycteris

noctivagans, occurred only at DMP in the high elevation zone (table 4.2, figure 4.1).

These two species were captured in high elevation bottomlands with a mixed-conifer

forest as the dominating vegetation type. One species, Lasiurus borealis, occurred in

85

both the mid-elevation and high elevation zones. This species occurred in the same

habitat as M. megalophylla and L. xanthinus at the mid-elevation site and in piñon- juniper oak woodland habitat that surrounded an earthen stock tank at the high-elevation study area. No rare species occurred in the low elevation zone.

Table 4.2. Elevational occurrences of rare bat species associated with the Davis Mountains. Species were dropped from logistic regression modeling. SD = standard deviation.

Elevation Zone of Species Number Mean SD Occurrence* Mormoops megalophylla 2 1,500 m 0 M Myotis ciliolabrum 3 1,931 m 7.54 H Lasiurus borealis 4 1,680 m 208.4 MH Lasiurus xanthinus 1 1,499 m 0 M Lasionycteris noctivagans 6 1,897 m 41.27 H * L = low elevations, M = mid-elevations, H = high elevations

The six species in table 4.3 typically were common and did not associate with a

particular range of elevations. Calculated p-values were all higher than the significance

level (α=0.05); thus, the null hypothesis (H0) was not rejected. These did not show a

significant relationship to presence and absence with elevation when tested using a

logistic regression, and these species were relatively equally common throughout all

elevations within the distribution of the species. Three species occurred throughout mid-

and high elevation areas (table 4.3, figure 4.1). Pipistrellus hesperus, Corynorhinus

townsendii, and Nyctinomops macrotis were common in small numbers from the montane

grassland andoak-juniper woodlands at mid-elevation sites through to piñon-juniper-oak

woodlands and mixed-conifer forests in highland areas.

86

2100

1900

1700 Elevation (meters) Elevation

1500

1300 s la s li s l es u u y d in sc h rum p no b orea fu o macrotisal sa rasiliensis hesperus y s eg townsendii rus b b u ps th s u a l o Myotis veliferMyotis volansrus xanth d tesicus m s m u asi p eris noctivagansyotis L Lasiurus Ecinereus op t asi Myotis ciliola o AntrozousM pallidus L Myotis yumanensis Tadari Pipistrel rm Nyctino o M Corynorhinu Lasionyc

Figure 4.1. Elevation occurrence of bats in and near the Davis Mountains. Data points show mean and one standard deviation.

The other three species in table 4.3 were relatively regularly distributed from the surrounding lowlands to the high elevation sampling sites (figure 4.1). Lasiurus cinereus was common wherever trees were available for roost sites. Antrozous pallidus and

Tadarida brasiliensis showed no habitat specificity, but T. brasiliensis almost never occurred in densely vegetated areas with reduced flyways.

87

Table 4.3. Elevational occurrences of widespread bat species associated with the Davis Mountains based on logistic model results. SD = standard deviation. Wald Elevation Zones of Species n Mean SD p-value Occurrence* Lasiurus cinereus 0.15 92 1,595 m 204.9 LMH

Pipistrellus hesperus 0.065 27 1,617 m 180.2 MH

Corynorhinus townsendii 0.582 12 1,672 m 187.7 MH

Antrozous pallidus 0.095 535 1,628 m 266.6 LMH

Tadarida brasiliensis 0.087 406 1,503 m 234.4 LMH

Nyctinomops macrotis 0.241 29 1,524 m 89.9 MH * L = Low elevations, M = mid-elevations, H = high elevations

Logistic regression identified five species that exhibited macrohbitat specificity based on the association with a subset of elevation values (table 4.4, figure 4.1). Myotis thysanodes, Myotis volans, and Eptesicus fuscus occurred most often in high elevation areas with piñon-juniper-oak woodlands and mixed-conifer forests. Myotis velifer and

Myotis yumanensis were most common in mid-elevation areas with montane grasslands, shrub lands, and oak-juniper woodlands. These two species likely were limited in their lower elevation distribution by the scarcity of roost sites, but the upper elevation limit likely resulted from lower ambient temperatures past which these two species could not adequately thermo-regulate. Jones (1965) documented ranges of functionally adequate temperatures that were rather high for M. velifer and M. yumanensis.

88

Table 4.4. Elevational occurrences of macrohabitat specific bat species associated in the Davis Mountains based on logistic regresson model. SD = standard deviation.

Elevation Zones Species Wald p-value n Mean SD of Occurrence* Myotis thysanodes < 0.0001 48 1,804 m 193.1 MH

Myotis velifer 0.047 259 1,469 m 120.2 LM

Myotis volans < 0.0001 129 1,910 m 87.8 MH

Myotis yumanensis 0.025 89 1,502 m 101.17 LMH

Eptesicus fuscus < 0.0001 57 1,924 m 80.1 MH * L = Low elevations, M = mid-elevations, H = high elevations (Bold highlight indicates zone of greatest abundance.)

Logistic regression analysis identified five species that displayed segregation of males and females along an elevational gradient, with males occurring higher than females (table 4.5, figure 4.2). Two species, Myotis thysanodes and Myotis volans, were macrohabitat specialists in highland woodlands or conifer forests. Three species,

Lasiurus cinereus, Pipistrellus hesperus, and Tadarida brasiliensis, were widespread habitat generalists.

Table 4.5. Bat species exhibiting macrohabitat segregation of sexes in the Davis Mountains based on logistic regression model with species x elevation effect. SD = standard deviation.

Species Mean (♂) SD Mean (♀) SD Z-score p-value

Myotis thysanodes 1,842 m 182.4 1,632 m 199.5 -3.597 < 0.0001

Myotis volans 1916 m 100.6 1910 m 100.6 -3.396 0.001

Lasiurus cinereus 1,691 m 227.1 1,510 m 149.2 -3.067 0.002

Pipistrellus hesperus 1,620 m 194.3 1,559 m 114.9 -3.371 0.001

Tadarida brasiliensis 1,524 m 206.9 1,349 m 234.4 -8.435 < 0.0001

89

2,000 Myotis thysanodes ♂ Myotis volans 1,900 Lasiurus cinereus ♀ Pipistrellus hesperus ♂ Tadarida brasiliensis

1,800 ♂ 1,700 ♀ ♂ 1,600

Elevation (meters) ♀ ♀ 1,500 ♂

1,400 ♀

1,300 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 Species

Figure 4.2. Species of bats in the Davis Mountains exhibiting segregation of the sexes by elevation. Graph shows 95-percent confidence limits around the mean elevation occurrence.

Analysis results of temporal segregation at a semi-perennial pool at DMSP

indicated significant relationships between the hourly visits of vespertilionids and

molossids analyzed by monthly aggregates. Frequency data for hourly capture data by

month appear in figure 4.3. Three dimensional contingency table analysis calculated a

p-value of < 0.0001 that was lower than the significance level (α=0.05). Thus, the null hypothesis that frequency of capture of molossids and vespertilionids is independent of

hour and month was rejected and the alternative that there was dependence was accepted.

Examination of frequencies in figure 4.1 indicate that vespertilionids typically visited the

pool in greatest numbers early in the evening and molossids utilized the pool later in the

evening; also, as vespertilionid visits decreased from mid-summer to early fall, molossid

visits increased proportionately during those months. Molossids also seemed to increase

90

the proportion of early evening visits in October when there were almost no vespertilionids utilizing the pool, which was opposite of the early summer situation.

Figure 4.3. Capture frequencies of bats at a mid-elevation pool grouped by hour, month, and family. Chi-square analysis indicated a significant relationship (ρ < 0.05) between hour of capture, month of capture, and taxa.

The overall species composition analyzed by monthly aggregates demonstrated a strong relationship between the two variables. Frequency data for species captured per month appear in figure 4.4, and two-way contingency table analysis calculated a p-value of < 0.0001 that was lower than the significance level (α=0.05). Thus, the null

hypothesis that species composition is not influenced by the month of capture through the

season was rejected and the alternative was accepted. Figure 4.4 shows that the major

contributing species were Myotis velifer, Myotis yumanensis, and Tadarida brasiliensis.

Nine additional species contributed to the species pool to a much lesser extent. Myotis

91

velifer and M. yumanensis dominated the sample in July, then decreased somewhat in

August, and finally dropped precipitously in September and October. The decrease in

these two species likely represented early migration from the area to warmer areas or

hibernacula. In response, the proportion of T. brasiliensis increased during the same

period. Another molossid, Nyctinomops macrotis, began occurring in the September

sample and increased greatly in the October sample.

Figure 4.4. Capture frequencies of bats at a mid-elevation pool grouped by month, and species. Chi-square analysis indicated a significant relationship (ρ < 0.05) between month capture and capture frequency by species.

DISCUSSION

In this investigation, the spatial partitioning of macrohabitats among bat species

and by males and females within a species was investigated by testing occurrence records

92

against an elevation gradient. The temporal partitioning of a specific site throughout a

season was evaluated by testing occurrence records against the timing of captures. The

results indicated that from 16 species, five were specific to a range of

elevations/macrohabitats, six species were widespread across all macrohabitats, and five species were too rare to evaluate. Myotis species were the most common species to segregate by macrohabitat. Myotis ciliolabrum, Myotis thysanodes, and Myotis volans associated most often with high elevation areas, and Myotis velifer and Myotis yumanensis associated most often with mid-elevation areas. Typically, related species that are would-be competitors, finely divide resources where they are locally sympatric, which prevents local displacement and allows for co-existence at a slightly larger scale

(DeBaca and Choate, 2002). Patterns of resource division have been studied well in rodents and bats overall, but this is the first study of its kind for Trans-Pecos, Texas and the Davis Mountains.

Five species exhibited segregation of the sexes along an elevation gradient, with females occurring at lower elevation sites more than males. Myotis thysanodes, Myotis

volans, Lasiurus cinereus, Pipistrellus hesperus, and Tadarida brasiliensis showed a statistically significant trend. This investigation relied on a sample from a general survey study, and a more structured study that focused on this topic likely would reveal this pattern for other species as well. These differences likely reflect the different physiological needs that males and females require, with females needing more mild environmental conditions for the development and rearing of young (Cryan et al., 2000).

Overall, the effect of elevation on sexual segregation seemed less than for the Black

Hills, South Dakota, which is a more northern mountain range (Cryan et al., 2000). This

93

would be expected for the more southern Davis Mountains where the temperate climate is milder and physiological stress from low temperatures would be expectedly less. The emergent pattern justifies further investigation into this topic, and a controlled investigation into the specifics of this pattern may show a more widespread pattern like that of the Black Hills study.

Site specific investigation of the temporal dynamics at a semi-permanent pool in

Limpia Creek indicated a nightly and seasonal pattern. The pool was dominated by vespertilionid species in the early evening and during mid-summer, the main species being

M. velifer and M. yumanensis. Later in the evening, use of the site shifted to a dominance by T. brasiliensis. As the season progressed, fewer verspertilionids and more molossids utilized the site, which likely reflected the migration of M. velifer and M. yumanensis from that part of the Davis Mountains and locally roosting T. brasiliensis shifting their use to this site. M. velifer and M. yumanensis are temperature sensitive species that tend to cease activity around 16ºC (60ºF) (Jones, 1965). Further investigation into temperature and these localized temporal patterns is necessary.

Bats are motivated to drink upon emergence from daily torpor in order to restore a

positive water balance from losses incurred while roosting (Adams and Thibault, 2006).

T. brasiliensis likely was repelled from the study site early in the evening and earlier in

the season and likely found more suitable drinking sites that had more dispersed activity.

Avoidance of this site by the swift flying, less maneuverable T. brasiliensis during times

of high activity likely was to avoid collision with the common, more maneuverable

Myotis species at the site during those periods. When numbers of Myotis dropped, T.

brasiliensis likely would be free to use the site at will.

94

Adams and Thibault (2006) were able to radio-track bats to calculate specific arrival times from roost sites to a pool that showed temporal division in its use. They found that there was no effect of distance and emergence times that affected the patterns they studied. This would be a worthy aspect to investigate in a follow-up study, but the pattern obsevered in this investigation is so strong and separated by hours rather than minutes that I suspect travel distance and arrival time to this pool would not have an effect in this area.

Adams and Thibault (2006) also noted an orderly flight path followed by bats drinking at a small pool in Colorado. These researchers equated this to the orderly landing patterns utilized by planes landing at an airfield. A similar pattern was observed while netting bats at this locality in the Davis Mountains. Tadarida brasiliensis was observed making single runs along the 50 meter length of the pool. Myotis velifer seemed to sweep the pool in long oval patterns at heights ranging from a half meter to two meters high. Myotis yumanensis typically flew only centimeters above the surface of the water and flew in tight spirals and circular patterns. The coordination on flight ways as described by Adams and Thibault (2006) and quantified by Adams and Simmons

(2002) deserve wider investigation for bats of temperate regions.

This investigation addresses distribution patterns of bats in the Davis Mountains at both a landscape scale and local, site specific scale. Integration of different scales and extents into investigations can provide a greater understanding of ecological phenomena in comparison to investigation ata single scale or extent (DeBaca and Choate, 2002). The results of more comprehensively-scaled studies can also provide land managers and decision-makers with a greater array of solutions to problems that affect wildlife habitat.

95

Widespread human activities that could affect landscape scale resources could have

drastic consequences by limiting dispersal or the distribution of wide-ranging species like

bats. Site-specific information can provide these same managers with knowledge of

critical resources that need protection for local populations of wildlife, including bats.

This investigation provided a first look at local and landscape patterns and site specifics of habitat use by bats in the Davis Mountains. Further investigation is warranted and necessary to more finely document the patterns that were observed in this analysis.

96

CHAPTER 5

CONCLUSION

The studies presented in this dissertation share a common conclusion: The

patterns related to the distribution and dispersal of mammals in the Davis Mountains take

on a variety of forms. Landscape level patterns can develop from existing

distributions as seen in chapters three and four. These can be related to macrohabitat

adaptations of given species or the presence of dispersal barriers related to the physical

structure or qualities of the environment itself. Landscape patterns also can be inherited from past distributions of species and habitat types in a larger region and larger time frames. These types of patterns were investigated in chapter two and likely were tied to the structural layout of provincial mountain ranges and past corridors that existed in the landscape and that bridged now isolated mountain ranges.

Unraveling the complexities of ecological patterns is difficult. Factors often are numerous and interrelated. Yet modern tools like powerful computer systems, multivariate statistical analyses, and geographic information systems allow us to develop sophisticated methods to approach these complex problems from extensive spatial and temporal scales.

The need for complex, integrative investigations continues to become more critical all the time. Human impacts on natural ecosystems seem to grow in number and scale and show no sign of abating. Our legacy will be in how well we act as stewards of the ecosystem today.

Applied research is immediately necessary to preserve and protect habitats and ecosystems. From this perspective, the research projects that are undertaken become

97 valuable only if these are directly applicable to more extensive areas and immediate problems. The site specific modeling of the 1970s to 1990s that cannot be utilized in other situations is of little use today. Investigations of broader-scaled biotic and abiotic factors and interrelationships can be transferred and widely applied. Even greater insight is possible where experimental manipulation is integrated into environmental studies.

However some spatial scales or legal issues may prevent experimental manipulation involving some large areas and large-scaled patterns in and ecosystem.

98

APPENDIX A

Tabular data of specimens obtained or animals examined during field collection phase of this project are presented in this appendix. Species are arranged alphabetically by order, family, and genus. The order field has been deleted to preserve space. The date format is year-month-day (YYYYMMDD), and locality data is reported in UTM coordinates using the WGS 1984 datum. Museum specimens and literature records from the Davis Mountains that are listed in Schmidly (1977) and Stangl et al. (1994) are not presented in this table. Please, refer to those publications for locality references.

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Cervidae Odocoileus hemionu s M 20000830 Jeff Davis 13 603632 3385791 Cervidae Odocoileus hemionu s F 20000514 Jeff Davis 13 603887 3385960 Suidae Sus scrofa M 20020307 Jeff Davis 13 582602 3394294 Tayassuidae Pecari tajacu F 19990406 Jeff Davis 13 602676 3385383 Tayassuidae Pecari tajacu F 20000513 Jeff Davis 13 602767 3385515 Tayassuidae Pecari tajacu F 20001011 Jeff Davis 13 603632 3385791 Tayassuidae Pecari tajacu F 20000512 Jeff Davis 13 603905 3385975 Tayassuidae Pecari tajacu U 20000301 Jeff Davis 13 602869 3386498 Tayassuidae Pecari tajacu M 20011013 Jeff Davis 13 610108 3389965 Canidae Canis latrans F 20000414 Jeff Davis 13 608515 3388622 Canidae Canis latrans M 20020308 Jeff Davis 13 582602 3394294 Canidae Canis latrans F 20011012 Jeff Davis 13 617957 3402101 Canidae Urocyon cinereoargenteus M 19990129 Brewster 13 623722 3369097 Canidae Urocyon cinereoargenteus M 20000308 Jeff Davis 13 618734 3376488 Canidae Urocyon cinereoargenteus U 20000705 Jeff Davis 13 600963 3384697 Canidae Urocyon cinereoargenteus U 20010908 Jeff Davis 13 603519 3385267 Canidae Urocyon cinereoargenteus M 20000819 Jeff Davis 13 602559 3385538 Canidae Urocyon cinereoargenteus F 20010817 Jeff Davis 13 603632 3385791 Canidae Urocyon cinereoargenteus U 20000819 Jeff Davis 13 603632 3385791 Canidae Urocyon cinereoargenteus M 20010317 Jeff Davis 13 579190 3389899 Canidae Urocyon cinereoargenteus M 20010520 Jeff Davis 13 578721 3390724 Canidae Urocyon cinereoargenteus M 20010928 Jeff Davis 13 592200 3393250 Canidae Urocyon cinereoargenteus F 19990315 Jeff Davis 13 583884 3394091 Canidae Urocyon cinereoargenteus M 20010701 Jeff Davis 13 584126 3394303 Canidae Urocyon cinereoargenteus M 19990717 Jeff Davis 13 616427 3398426 Canidae Urocyon cinereoargenteus U 20010517 Jeff Davis 13 609875 3423050 Canidae Urocyon cinereoargenteus M 19981202 Jeff Davis 13 610597 3424088 Molossidae Nyctinomops macrotis F 20001004 Jeff Davis 13 603632 3385791

99

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Molossidae Nyctinomops macrotis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis U 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis F 20000908 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis F 20000910 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Nyctinomops macrotis F 20010630 Jeff Davis 13 581365 3391718 Molossidae Nyctinomops macrotis F 19980714 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010927 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20000817 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791

100

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000923 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20000913 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000630 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000705 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000830 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000910 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000910 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20011004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20011004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20011004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20011004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20000705 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20000727 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20000727 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20000727 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20000727 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20000817 Jeff Davis 13 603632 3385791

101

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Molossidae Tadarida brasiliensis U 20000817 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20000830 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis U 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20000727 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20000817 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20000913 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20000913 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000727 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000727 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000727 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000727 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000727 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000727 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791

102

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000809 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000817 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000817 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000817 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000817 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000817 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000817 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000817 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000817 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000817 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000817 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000817 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000817 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000830 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000830 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000830 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000830 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000830 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000830 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000830 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000830 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000830 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000830 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791

103

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000908 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000910 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000910 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20000923 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001002 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791

104

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20001004 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis M 20010722 Jeff Davis 13 603632 3385791 Molossidae Tadarida brasiliensis F 20000725 Jeff Davis 13 602951 3385810 Molossidae Tadarida brasiliensis M 20000726 Jeff Davis 13 602977 3385913

105

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Molossidae Tadarida brasiliensis F 20001005 Jeff Davis 13 602977 3385913 Molossidae Tadarida brasiliensis F 20010510 Jeff Davis 13 603887 3385960 Molossidae Tadarida brasiliensis M 20000417 Jeff Davis 13 603905 3385975 Molossidae Tadarida brasiliensis M 20010811 Jeff Davis 13 603071 3388641 Molossidae Tadarida brasiliensis M 19980718 Jeff Davis 13 580253 3390273 Molossidae Tadarida brasiliensis M 19980718 Jeff Davis 13 580253 3390273 Molossidae Tadarida brasiliensis M 19980718 Jeff Davis 13 580253 3390273 Molossidae Tadarida brasiliensis M 19990722 Jeff Davis 13 580230 3390355 Molossidae Tadarida brasiliensis M 19990722 Jeff Davis 13 580230 3390355 Molossidae Tadarida brasiliensis M 19990722 Jeff Davis 13 580230 3390355 Molossidae Tadarida brasiliensis M 19990722 Jeff Davis 13 580230 3390355 Molossidae Tadarida brasiliensis M 19990723 Jeff Davis 13 580230 3390355 Molossidae Tadarida brasiliensis M 20010627 Jeff Davis 13 581365 3391718 Molossidae Tadarida brasiliensis M 20010627 Jeff Davis 13 581365 3391718 Molossidae Tadarida brasiliensis M 20010627 Jeff Davis 13 581365 3391718 Molossidae Tadarida brasiliensis M 19980717 Jeff Davis 13 580001 3392034 Molossidae Tadarida brasiliensis M 20010625 Jeff Davis 13 580174 3392163 Molossidae Tadarida brasiliensis M 20010625 Jeff Davis 13 580174 3392163 Molossidae Tadarida brasiliensis U 20011000 Jeff Davis 13 583492 3393510 Molossidae Tadarida brasiliensis M 19990722 Jeff Davis 13 582566 3394302 Molossidae Tadarida brasiliensis M 20010626 Jeff Davis 13 584126 3394303 Molossidae Tadarida brasiliensis M 20010626 Jeff Davis 13 584126 3394303 Molossidae Tadarida brasiliensis M 20010626 Jeff Davis 13 584126 3394303 Molossidae Tadarida brasiliensis M 20010701 Jeff Davis 13 584126 3394303 Molossidae Tadarida brasiliensis F 20010701 Jeff Davis 13 584126 3394303 Molossidae Tadarida brasiliensis M 19990316 Jeff Davis 13 584126 3394303 Molossidae Tadarida brasiliensis M 20010626 Reeves 13 584126 3394303 Molossidae Tadarida brasiliensis M 20010701 Jeff Davis 13 584126 3394303 Molossidae Tadarida brasiliensis M 20010701 Jeff Davis 13 584126 3394303 Molossidae Tadarida brasiliensis M 20010701 Jeff Davis 13 584126 3394303 Molossidae Tadarida brasiliensis M 20010701 Jeff Davis 13 584126 3394303 Molossidae Tadarida brasiliensis M 20010701 Jeff Davis 13 584126 3394303 Molossidae Tadarida brasiliensis M 20010626 Jeff Davis 13 581500 3394416 Molossidae Tadarida brasiliensis M 19980714 Jeff Davis 13 584637 3396356 Molossidae Tadarida brasiliensis M 19980715 Jeff Davis 13 584418 3396466 Molossidae Tadarida brasiliensis M 19980714 Jeff Davis 13 584418 3396466 Molossidae Tadarida brasiliensis M 19980715 Jeff Davis 13 584418 3396466 Molossidae Tadarida brasiliensis M 20010813 Jeff Davis 13 584475 3396545 Molossidae Tadarida brasiliensis M 20010813 Jeff Davis 13 584475 3396545 Molossidae Tadarida brasiliensis M 20010813 Jeff Davis 13 584475 3396545 Molossidae Tadarida brasiliensis M 20010813 Jeff Davis 13 584475 3396545 Molossidae Tadarida brasiliensis M 20010813 Jeff Davis 13 584475 3396545 Molossidae Tadarida brasiliensis M 20010813 Jeff Davis 13 584475 3396545 Molossidae Tadarida brasiliensis M 20010813 Jeff Davis 13 584475 3396545 Molossidae Tadarida brasiliensis M 20010813 Jeff Davis 13 584475 3396545 Molossidae Tadarida brasiliensis M 20010813 Jeff Davis 13 584475 3396545 Molossidae Tadarida brasiliensis M 20010813 Jeff Davis 13 584475 3396545 Molossidae Tadarida brasiliensis M 20010813 Jeff Davis 13 584475 3396545 Molossidae Tadarida brasiliensis M 20010813 Jeff Davis 13 584475 3396545 Molossidae Tadarida brasiliensis U 20010813 Jeff Davis 13 584475 3396545 Molossidae Tadarida brasiliensis U 20010813 Jeff Davis 13 584475 3396545 Molossidae Tadarida brasiliensis M 19980717 Jeff Davis 13 584513 3396669

106

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Molossidae Tadarida brasiliensis M 19980715 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 19980717 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 19980714 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 19980715 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis F 19980715 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 19980405 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 19980714 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 19980714 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 19980714 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 19980715 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 19980715 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 19980715 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 19980715 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 19980715 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 19980715 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 19980717 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 19980717 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 19980717 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 19980717 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 19980717 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 19980717 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 19980717 Jeff Davis 13 584513 3396669 Molossidae Tadarida brasiliensis M 20010426 Reeves 13 616011 3424048 Molossidae Tadarida brasiliensis F 20010427 Reeves 13 616011 3424084 Molossidae Tadarida brasiliensis F 20010427 Reeves 13 616011 3424084 Molossidae Tadarida brasiliensis M 20010427 Reeves 13 616011 3424084 Molossidae Tadarida brasiliensis F 20010427 Jeff Davis 13 616011 3424084 Molossidae Tadarida brasiliensis F 20010427 Jeff Davis 13 616011 3424084 Molossidae Tadarida brasiliensis F 20010427 Jeff Davis 13 616011 3424084 Molossidae Tadarida brasiliensis F 20010427 Jeff Davis 13 616011 3424084 Molossidae Tadarida brasiliensis M 19990619 Reeves 13 615581 3424121 Molossidae Tadarida brasiliensis M 19990711 Reeves 13 615581 3424121 Molossidae Tadarida brasiliensis M 19990712 Reeves 13 615581 3424121 Molossidae Tadarida brasiliensis F 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis F 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis F 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis M 20011013 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis M 20011013 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis M 20011013 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis M 20011013 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis M 20011013 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis M 20011013 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis M 20011013 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis M 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis M 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis M 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis M 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis M 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis M 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis M 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis M 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis M 20010612 Reeves 13 615680 3424135

107

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Molossidae Tadarida brasiliensis M 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis M 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis M 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis F 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis F 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis F 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis F 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis F 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis F 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis F 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis F 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis F 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis F 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis F 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis M 20010612 Reeves 13 615680 3424135 Molossidae Tadarida brasiliensis M 20020420 Reeves 13 621472 3428547 Mephitidae Conepatus leucontus M 20010124 Jeff Davis 13 619824 3374492 Mephitidae Conepatus leucontus F 20000821 Jeff Davis 13 619683 3375053 Mephitidae Conepatus leucontus U 20000819 Jeff Davis 13 603632 3385791 Mephitidae Conepatus leucontus U 20000512 Jeff Davis 13 603905 3385975 Mephitidae Mephitis macroura M 19990128 Jeff Davis 13 604627 3385906 Mephitidae Mephitis mephitis M 20010412 Jeff Davis 13 603905 3385975 Mephitidae Mephitis mephitis F 20000512 Jeff Davis 13 603905 3385975 Mephitidae Mephitis mephitis U 20010223 Jeff Davis 13 601738 3386098 Mephitidae Mephitis mephitis M 20000926 Jeff Davis 13 598074 3386412 Mephitidae Mephitis mephitis U 20000513 Jeff Davis 13 617957 3402101 Mephitidae Mephitis mephitis F 19981229 Jeff Davis 13 616091 3424073 Mephitidae Mephitis mephitis M 20010505 Reeves 13 615943 3424093 Mephitidae Mephitis mephitis M 20010616 Reeves 13 616210 3424312 Mephitidae Spilogale gracilis F 20010215 Jeff Davis 13 602615 3386665 Mephitidae Spilogale gracilis M 20000826 Jeff Davis 13 592727 3393814 Mormoopidae Mormoops megalop hylla F 20001004 Jeff Davis 13 603632 3385791 Mormoopidae Mormoops megalop hylla F 20001004 Jeff Davis 13 603632 3385791 Mustellidae Taxidea taxus F 20010906 Reeves 13 617042 3424530 Procyonidae Bassariscus astutus M 20000311 Jeff Davis 13 602386 3378261 Procyonidae Bassariscus astutus F 19990319 Jeff Davis 13 602610 3385520 Procyonidae Bassariscus astutus F 20010222 Jeff Davis 13 602625 3385713 Procyonidae Bassariscus astutus U 20010412 Jeff Davis 13 603887 3385960 Procyonidae Bassariscus astutu s M 20010301 Jeff Davis 13 605023 3386108 Procyonidae Bassariscus astutu s F 19981130 Jeff Davis 13 601979 3386448 Procyonidae Bassariscus astutu s M 20010929 Jeff Davis 13 599836 3386694 Procyonidae Bassariscus astutu s M 19991127 Jeff Davis 13 610200 3390208 Procyonidae Bassariscus astutu s F 19990722 Jeff Davis 13 580656 3392637 Procyonidae Bassariscus astutus F 19980714 Jeff Davis 13 584739 3396199 Procyonidae Bassariscus astutus M 19981120 Jeff Davis 13 610597 3424088 Procyonidae Procyon lotor U 20000705 Jeff Davis 13 600963 3384697 Procyonidae Procyon lotor M 20010710 Jeff Davis 13 603632 3385791 Procyonidae Procyon lotor F 20000512 Jeff Davis 13 603905 3385975 Procyonidae Procyon lotor M 20000205 Jeff Davis 13 615515 3393589 Procyonidae Procyon lotor M 19980718 Jeff Davis 13 585119 3396424 Vespertillionidae Antrozous pallidus F 20000729 Jeff Davis 13 600963 3384697 Vespertillionidae Antrozous pallidus M 20000722 Jeff Davis 13 603632 3385791

108

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Vespertillionidae Antrozous pallidus U 20000705 Jeff Davis 13 603632 3385791 Vespertillionidae Antrozous pallidus F 20000830 Jeff Davis 13 603632 3385791 Vespertillionidae Antrozous pallidus M 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Antrozous pallidus M 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Antrozous pallidus M 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Antrozous pallidus M 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Antrozous pallidus F 20000726 Jeff Davis 13 602977 3385913 Vespertillionidae Antrozous pallidus F 19980627 Jeff Davis 13 603887 3385960 Vespertillionidae Antrozous pallidus F 19990714 Jeff Davis 13 603887 3385960 Vespertillionidae Antrozous pallidus F 19990714 Jeff Davis 13 603887 3385960 Vespertillionidae Antrozous pallidus F 20000614 Jeff Davis 13 603887 3385960 Vespertillionidae Antrozous pallidus F 19990908 Jeff Davis 13 603887 3385960 Vespertillionidae Antrozous pallidus F 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Antrozous pallidus F 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Antrozous pallidus F 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Antrozous pallidus M 19980628 Jeff Davis 13 603887 3385960 Vespertillionidae Antrozous pallidus M 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Antrozous pallidus M 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Antrozous pallidus M 19990714 Jeff Davis 13 603887 3385960 Vespertillionidae Antrozous pallidus M 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Antrozous pallidus U 20000512 Jeff Davis 13 603887 3385960 Vespertillionidae Antrozous pallidus U 20010908 Jeff Davis 13 603887 3385960 Vespertillionidae Antrozous pallidus M 19980621 Jeff Davis 13 603905 3385975 Vespertillionidae Antrozous pallidus F 19980709 Jeff Davis 13 603905 3385975 Vespertillionidae Antrozous pallidus F 20010602 Jeff Davis 13 603905 3385975 Vespertillionidae Antrozous pallidus F 19980621 Jeff Davis 13 603905 3385975 Vespertillionidae Antrozous pallidus F 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Antrozous pallidus F 20000417 Jeff Davis 13 603905 3385975 Vespertillionidae Antrozous pallidus F 20000417 Jeff Davis 13 603905 3385975 Vespertillionidae Antrozous pallidus F 20000630 Jeff Davis 13 602299 3388612 Vespertillionidae Antrozous pallidus F 20000701 Jeff Davis 13 602299 3388612 Vespertillionidae Antrozous pallidus M 20010811 Jeff Davis 13 603071 3388641 Vespertillionidae Antrozous pallidus U 20010527 Jeff Davis 13 580121 3392063 Vespertillionidae Antrozous pallidus M 20010518 Jeff Davis 13 580174 3392163 Vespertillionidae Antrozous pallidus U 20011000 Jeff Davis 13 580680 3392685 Vespertillionidae Antrozous pallidus U 20011000 Jeff Davis 13 583492 3393510 Vespertillionidae Antrozous pallidus F 19990720 Jeff Davis 13 582636 3393965 Vespertillionidae Antrozous pallidus M 20010629 Jeff Davis 13 581446 3394411 Vespertillionidae Antrozous pallidus M 20010626 Jeff Davis 13 581500 3394416 Vespertillionidae Antrozous pallidus M 20010629 Jeff Davis 13 581500 3394416 Vespertillionidae Antrozous pallidus F 19980714 Jeff Davis 13 583878 3396100 Vespertillionidae Antrozous pallidus F 19980714 Jeff Davis 13 583878 3396100 Vespertillionidae Antrozous pallidus F 19980715 Jeff Davis 13 583878 3396100 Vespertillionidae Antrozous pallidus F 19980713 Jeff Davis 13 584418 3396466 Vespertillionidae Antrozous pallidus F 19980713 Jeff Davis 13 584418 3396466 Vespertillionidae Antrozous pallidus F 19980713 Jeff Davis 13 584418 3396466 Vespertillionidae Antrozous pallidus F 19980713 Jeff Davis 13 584418 3396466 Vespertillionidae Antrozous pallidus F 19980713 Jeff Davis 13 584418 3396466 Vespertillionidae Antrozous pallidus F 19980715 Jeff Davis 13 584418 3396466 Vespertillionidae Antrozous pallidus M 19980716 Jeff Davis 13 584418 3396466 Vespertillionidae Antrozous pallidus M 19980719 Jeff Davis 13 584459 3396474 Vespertillionidae Antrozous pallidus F 20010623 Jeff Davis 13 584353 3396508

109

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Vespertillionidae Antrozous pallidus F 19990720 Jeff Davis 13 584596 3396540 Vespertillionidae Antrozous pallidus M 19990720 Jeff Davis 13 584596 3396540 Vespertillionidae Antrozous pallidus F 19990720 Jeff Davis 13 584596 3396540 Vespertillionidae Antrozous pallidus F 19990720 Jeff Davis 13 584596 3396540 Vespertillionidae Antrozous pallidus F 19990720 Jeff Davis 13 584596 3396540 Vespertillionidae Antrozous pallidus F 20010813 Jeff Davis 13 584475 3396545 Vespertillionidae Antrozous pallidus U 20010813 Jeff Davis 13 584475 3396545 Vespertillionidae Antrozous pallidus U 20010813 Jeff Davis 13 584475 3396545 Vespertillionidae Antrozous pallidus U 20010813 Jeff Davis 13 584475 3396545 Vespertillionidae Antrozous pallidus U 20010813 Jeff Davis 13 584475 3396545 Vespertillionidae Antrozous pallidus U 20010819 Jeff Davis 13 584475 3396545 Vespertillionidae Antrozous pallidus M 20010813 Jeff Davis 13 584475 3396545 Vespertillionidae Antrozous pallidus M 20010813 Jeff Davis 13 584475 3396545 Vespertillionidae Antrozous pallidus F 19980713 Jeff Davis 13 584839 3396625 Vespertillionidae Antrozous pallidus F 19980715 Jeff Davis 13 584513 3396669 Vespertillionidae Antrozous pallidus F 19980714 Jeff Davis 13 584513 3396669 Vespertillionidae Antrozous pallidus F 19980714 Jeff Davis 13 584513 3396669 Vespertillionidae Antrozous pallidus F 19980715 Jeff Davis 13 584513 3396669 Vespertillionidae Antrozous pallidus F 19980715 Jeff Davis 13 584513 3396669 Vespertillionidae Antrozous pallidus M 19980714 Jeff Davis 13 584513 3396669 Vespertillionidae Antrozous pallidus M 19980714 Jeff Davis 13 584513 3396669 Vespertillionidae Antrozous pallidus M 19980714 Jeff Davis 13 584513 3396669 Vespertillionidae Antrozous pallidus M 19980715 Jeff Davis 13 584513 3396669 Vespertillionidae Antrozous pallidus M 19981028 Jeff Davis 13 584513 3396669 Vespertillionidae Antrozous pallidus F 19980714 Jeff Davis 13 584513 3396669 Vespertillionidae Antrozous pallidus F 19980715 Jeff Davis 13 584513 3396669 Vespertillionidae Antrozous pallidus F 19980714 Jeff Davis 13 584513 3396669 Vespertillionidae Antrozous pallidus F 19980714 Jeff Davis 13 584513 3396669 Vespertillionidae Antrozous pallidus F 19980715 Jeff Davis 13 584513 3396669 Vespertillionidae Antrozous pallidus F 19980715 Jeff Davis 13 584513 3396669 Vespertillionidae Antrozous pallidus F 19980715 Jeff Davis 13 584513 3396669 Vespertillionidae Antrozous pallidus M 19980715 Jeff Davis 13 584513 3396669 Vespertillionidae Antrozous pallidus M 19980715 Jeff Davis 13 584513 3396669 Vespertillionidae Antrozous pallidus F 19980717 Jeff Davis 13 584513 3396669 Vespertillionidae Antrozous pallidus M 19980715 Jeff Davis 13 584583 3396669 Vespertillionidae Antrozous pallidus M 19980714 Jeff Davis 13 584583 3396669 Vespertillionidae Antrozous pallidus F 19980712 Jeff Davis 13 585229 3397641 Vespertillionidae Antrozous pallidus M 19980712 Jeff Davis 13 585229 3397641 Vespertillionidae Antrozous pallidus F 20010514 Reeves 13 616011 3424084 Vespertillionidae Antrozous pallidus M 19990712 Reeves 13 615581 3424121 Vespertillionidae Antrozous pallidus F 19990712 Reeves 13 615581 3424121 Vespertillionidae Antrozous pallidus F 20010612 Reeves 13 615680 3424135 Vespertillionidae Antrozous pallidus F 20010612 Reeves 13 615680 3424135 Vespertillionidae Antrozous pallidus F 20010612 Reeves 13 615680 3424135 Vespertillionidae Antrozous pallidus F 20010612 Reeves 13 615680 3424135 Vespertillionidae Antrozous pallidus F 20010612 Reeves 13 615680 3424135 Vespertillionidae Antrozous pallidus F 20011013 Reeves 13 615680 3424135 Vespertillionidae Antrozous pallidus M 20011013 Reeves 13 615680 3424135 Vespertillionidae Antrozous pallidus F 20010612 Reeves 13 615680 3424135 Vespertillionidae Corynorhinus townsendii F 20001002 Jeff Davis 13 603632 3385791 Vespertillionidae Corynorhinus townsendii M 20001002 Jeff Davis 13 603632 3385791 Vespertillionidae Corynorhinus townsendii M 20001016 Jeff Davis 13 603632 3385791

110

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Vespertillionidae Corynorhinus townsendii M 20001016 Jeff Davis 13 603632 3385791 Vespertillionidae Corynorhinus townsendii F 20000614 Jeff Davis 13 603887 3385960 Vespertillionidae Corynorhinus townsendii M 19980627 Jeff Davis 13 603887 3385960 Vespertillionidae Corynorhinus townsendii U 19990723 Jeff Davis 13 580230 3390355 Vespertillionidae Corynorhinus townsendii U 20011000 Jeff Davis 13 580169 3392116 Vespertillionidae Corynorhinus townsendii U 20011000 Jeff Davis 13 584562 3396523 Vespertillionidae Corynorhinus townsendii U 20011000 Jeff Davis 13 584562 3396523 Vespertillionidae Corynorhinus townsendii F 20000926 Jeff Davis 13 584575 3396575 Vespertillionidae Corynorhinus townsendii M 20001402 Jeff Davis 13 584575 3396575 Vespertillionidae Eptesicus fuscus F 20000908 Jeff Davis 13 603632 3385791 Vespertillionidae Eptesicus fuscus M 19980718 Jeff Davis 13 580253 3390273 Vespertillionidae Eptesicus fuscus F 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus F 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus F 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus F 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus F 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus F 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus F 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus F 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus F 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus M 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus M 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus M 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus M 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus M 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus M 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus U 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus F 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus F 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus F 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus M 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus M 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus M 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus M 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Eptesicus fuscus F 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Eptesicus fuscus F 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Eptesicus fuscus F 19980718 Jeff Davis 13 580001 3392034 Vespertillionidae Eptesicus fuscus F 19980715 Jeff Davis 13 580001 3392034 Vespertillionidae Eptesicus fuscus F 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Eptesicus fuscus F 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Eptesicus fuscus F 20010625 Jeff Davis 13 580121 3392063 Vespertillionidae Eptesicus fuscus M 20010527 Jeff Davis 13 580121 3392063 Vespertillionidae Eptesicus fuscus M 20010625 Jeff Davis 13 580121 3392063 Vespertillionidae Eptesicus fuscus U 20011000 Jeff Davis 13 580169 3392116 Vespertillionidae Eptesicus fuscus M 20010518 Jeff Davis 13 580174 3392163 Vespertillionidae Eptesicus fuscus M 20010625 Jeff Davis 13 580174 3392163 Vespertillionidae Eptesicus fuscus F 19980715 Jeff Davis 13 580697 3392220 Vespertillionidae Eptesicus fuscus F 19980715 Jeff Davis 13 580697 3392220 Vespertillionidae Eptesicus fuscus F 19980716 Jeff Davis 13 580697 3392220 Vespertillionidae Eptesicus fuscus F 19980716 Jeff Davis 13 580697 3392220 Vespertillionidae Eptesicus fuscus F 19980716 Jeff Davis 13 580697 3392220 Vespertillionidae Eptesicus fuscus F 19980716 Jeff Davis 13 580697 3392220

111

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Vespertillionidae Eptesicus fuscus M 19980715 Jeff Davis 13 580697 3392220 Vespertillionidae Eptesicus fuscus M 19980716 Jeff Davis 13 580697 3392220 Vespertillionidae Eptesicus fuscus U 20011000 Jeff Davis 13 580680 3392685 Vespertillionidae Eptesicus fuscus F 20010809 Jeff Davis 13 579831 3394277 Vespertillionidae Eptesicus fuscus M 20010701 Jeff Davis 13 584126 3394303 Vespertillionidae Eptesicus fuscus F 20010626 Jeff Davis 13 581446 3394411 Vespertillionidae Eptesicus fuscus F 20010626 Jeff Davis 13 581446 3394411 Vespertillionidae Eptesicus fuscus F 20010629 Jeff Davis 13 581446 3394411 Vespertillionidae Eptesicus fuscus F 20010629 Jeff Davis 13 581446 3394411 Vespertillionidae Eptesicus fuscus F 20010626 Jeff Davis 13 581500 3394416 Vespertillionidae Eptesicus fuscus F 20010629 Jeff Davis 13 581500 3394416 Vespertillionidae Eptesicus fuscus M 19990721 Jeff Davis 13 584596 3396540 Vespertillionidae Eptesicus fuscus F 20010813 Jeff Davis 13 584475 3396545 Vespertillionidae Eptesicus fuscus M 19980715 Jeff Davis 13 584513 3396669 Vespertillionidae Lasionycteris noctivaga ns M 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Lasionycteris noctivaga ns M 20010527 Jeff Davis 13 580121 3392063 Vespertillionidae Lasionycteris noctivaga ns M 20010625 Jeff Davis 13 580121 3392063 Vespertillionidae Lasionycteris noctivaga ns F 19990316 Jeff Davis 13 584126 3394303 Vespertillionidae Lasionycteris noctivaga ns F 19990316 Jeff Davis 13 584126 3394303 Vespertillionidae Lasionycteris noctivaga ns M 19990316 Jeff Davis 13 584126 3394303 Vespertillionidae Lasiurus borealis F 19980627 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus borealis F 19980620 Jeff Davis 13 603905 3385975 Vespertillionidae Lasiurus borealis M 19990316 Jeff Davis 13 584126 3394303 Vespertillionidae Lasiurus borealis M 19990316 Jeff Davis 13 584126 3394303 Vespertillionidae Lasiurus cinereus F 20001002 Jeff Davis 13 603632 3385791 Vespertillionidae Lasiurus cinereus F 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Lasiurus cinereus M 20000630 Jeff Davis 13 603632 3385791 Vespertillionidae Lasiurus cinereus M 20000910 Jeff Davis 13 603632 3385791 Vespertillionidae Lasiurus cinereus M 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Lasiurus cinereus U 20000727 Jeff Davis 13 603632 3385791 Vespertillionidae Lasiurus cinereus F 20000630 Jeff Davis 13 603632 3385791 Vespertillionidae Lasiurus cinereus F 20000727 Jeff Davis 13 603632 3385791 Vespertillionidae Lasiurus cinereus F 20001004 Jeff Davis 13 603632 3385791 Vespertillionidae Lasiurus cinereus F 20001016 Jeff Davis 13 603632 3385791 Vespertillionidae Lasiurus cinereus M 20000630 Jeff Davis 13 603632 3385791 Vespertillionidae Lasiurus cinereus M 20000727 Jeff Davis 13 603632 3385791 Vespertillionidae Lasiurus cinereus M 20000817 Jeff Davis 13 603632 3385791 Vespertillionidae Lasiurus cinereus M 20000830 Jeff Davis 13 603632 3385791 Vespertillionidae Lasiurus cinereus M 20001002 Jeff Davis 13 603632 3385791 Vespertillionidae Lasiurus cinereus M 20001002 Jeff Davis 13 603632 3385791 Vespertillionidae Lasiurus cinereus M 20001005 Jeff Davis 13 602977 3385913 Vespertillionidae Lasiurus cinereus U 20001005 Jeff Davis 13 602977 3385913 Vespertillionidae Lasiurus cinereus M 20000726 Jeff Davis 13 602977 3385913 Vespertillionidae Lasiurus cinereus F 20000726 Jeff Davis 13 602977 3385913 Vespertillionidae Lasiurus cinereus F 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 19990515 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 19990506 Jeff Davis 13 603887 3385960

112

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Vespertillionidae Lasiurus cinereus F 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 19990515 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus M 20010915 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus M 20000721 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus M 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus M 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus M 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus M 19990515 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus M 19990515 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus M 19990515 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus M 19990515 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus M 19990522 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus M 19990808 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus M 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 20000615 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus M 20000615 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus M 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Lasiurus cinereus F 20010405 Jeff Davis 13 603905 3385975 Vespertillionidae Lasiurus cinereus M 20010602 Jeff Davis 13 603905 3385975 Vespertillionidae Lasiurus cinereus M 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Lasiurus cinereus M 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Lasiurus cinereus M 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Lasiurus cinereus M 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Lasiurus cinereus M 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Lasiurus cinereus M 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Lasiurus cinereus U 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Lasiurus cinereus U 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Lasiurus cinereus M 20010527 Jeff Davis 13 580121 3392063 Vespertillionidae Lasiurus cinereus M 20010527 Jeff Davis 13 580121 3392063 Vespertillionidae Lasiurus cinereus M 20010528 Jeff Davis 13 580121 3392063 Vespertillionidae Lasiurus cinereus U 20011000 Jeff Davis 13 580169 3392116 Vespertillionidae Lasiurus cinereus F 20010518 Jeff Davis 13 580174 3392163 Vespertillionidae Lasiurus cinereus M 20010518 Jeff Davis 13 580174 3392163 Vespertillionidae Lasiurus cinereus U 20011000 Jeff Davis 13 580174 3392163 Vespertillionidae Lasiurus cinereus M 19980717 Jeff Davis 13 580697 3392220 Vespertillionidae Lasiurus cinereus M 20010626 Jeff Davis 13 584126 3394303 Vespertillionidae Lasiurus cinereus M 20010626 Jeff Davis 13 584126 3394303

113

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Vespertillionidae Lasiurus cinereus M 20010626 Jeff Davis 13 584126 3394303 Vespertillionidae Lasiurus cinereus M 20010701 Jeff Davis 13 584126 3394303 Vespertillionidae Lasiurus cinereus F 20010701 Jeff Davis 13 584126 3394303 Vespertillionidae Lasiurus cinereus M 19990316 Jeff Davis 13 584126 3394303 Vespertillionidae Lasiurus cinereus M 20010626 Jeff Davis 13 584126 3394303 Vespertillionidae Lasiurus cinereus M 20010626 Jeff Davis 13 581500 3394416 Vespertillionidae Lasiurus cinereus F 20010813 Jeff Davis 13 584475 3396545 Vespertillionidae Lasiurus cinereus M 20010813 Jeff Davis 13 584475 3396545 Vespertillionidae Lasiurus cinereus M 20010813 Jeff Davis 13 584475 3396545 Vespertillionidae Lasiurus cinereus F 20010427 Reeves 13 616011 3424084 Vespertillionidae Lasiurus cinereus M 20010929 Reeves 13 615680 3424135 Vespertillionidae Lasiurus xanthinus F 19980627 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis ciliolabru M 20010527 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis ciliolabru M 19990316 Jeff Davis 13 584126 3394303 Vespertillionidae Myotis ciliolabru M 20010626 Jeff Davis 13 581500 3394416 Vespertillionidae Myotis thysanodes F 20000729 Jeff Davis 13 600963 3384697 Vespertillionidae Myotis thysanodes M 20000726 Jeff Davis 13 602977 3385913 Vespertillionidae Myotis thysanodes F 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis thysanodes F 19990507 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis thysanodes F 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis thysanodes F 20000615 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis thysanodes F 20000628 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis thysanodes M 19990515 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis thysanodes F 20000615 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis thysanodes F 20010602 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis thysanodes F 20010602 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis thysanodes F 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis thysanodes M 20000831 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis thysanodes F 19980717 Jeff Davis 13 580253 3390273 Vespertillionidae Myotis thysanodes M 19980716 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis thysanodes M 19980718 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis thysanodes M 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis thysanodes M 19980718 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis thysanodes F 20010625 Jeff Davis 13 580078 3392049 Vespertillionidae Myotis thysanodes F 20010527 Jeff Davis 13 580078 3392049 Vespertillionidae Myotis thysanodes M 20010527 Jeff Davis 13 580078 3392049 Vespertillionidae Myotis thysanodes M 20010527 Jeff Davis 13 580078 3392049 Vespertillionidae Myotis thysanodes U 20011000 Jeff Davis 13 580078 3392049 Vespertillionidae Myotis thysanodes U 20011000 Jeff Davis 13 580078 3392049 Vespertillionidae Myotis thysanodes M 20010527 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis thysanodes F 20010625 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis thysanodes M 20010527 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis thysanodes M 20010527 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis thysanodes M 20010528 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis thysanodes M 20010528 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis thysanodes M 20010625 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis thysanodes M 20010625 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis thysanodes U 20011000 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis thysanodes U 20011000 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis thysanodes M 20010518 Jeff Davis 13 580174 3392163 Vespertillionidae Myotis thysanodes M 20010629 Jeff Davis 13 581500 3394416 Vespertillionidae Myotis thysanodes M 19980713 Jeff Davis 13 584418 3396466

114

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Vespertillionidae Myotis thysanodes F 19980715 Jeff Davis 13 584415 3396474 Vespertillionidae Myotis thysanodes M 20010623 Jeff Davis 13 584353 3396508 Vespertillionidae Myotis thysanodes M 20010623 Jeff Davis 13 584353 3396508 Vespertillionidae Myotis thysanodes M 19980712 Jeff Davis 13 584839 3396625 Vespertillionidae Myotis thysanodes M 19980712 Jeff Davis 13 584839 3396625 Vespertillionidae Myotis thysanodes M 19980717 Jeff Davis 13 584513 3396669 Vespertillionidae Myotis thysanodes M 19980717 Jeff Davis 13 584513 3396669 Vespertillionidae Myotis thysanodes M 19980712 Jeff Davis 13 585229 3397641 Vespertillionidae Myotis thysanodes M 19980712 Jeff Davis 13 585229 3397641 Vespertillionidae Myotis thysanodes M 19980712 Jeff Davis 13 585229 3397641 Vespertillionidae Myotis thysanodes M 19980713 Jeff Davis 13 585229 3397641 Vespertillionidae Myotis velifer U 20000705 Jeff Davis 13 600963 3384697 Vespertillionidae Myotis velifer M 20000727 Jeff Davis 13 600963 3384697 Vespertillionidae Myotis velifer M 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20000705 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20000705 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20000809 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20000705 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20000705 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20000705 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20000705 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20000705 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20000705 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20000705 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20000705 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20000727 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20000727 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20000727 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20000630 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20000910 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20010810 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20000727 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20000809 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20000817 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20001004 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20000727 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20000809 Jeff Davis 13 603632 3385791

115

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Vespertillionidae Myotis velifer M 20000809 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20000809 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20000817 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20001002 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20010810 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20010810 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20010927 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20000727 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20000727 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20000727 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer U 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20000630 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20000727 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20000809 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20000809 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20000809 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20000727 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20000727 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20000809 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20000809 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20000809 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20000809 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20000809 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20000908 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer M 20000910 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis velifer F 20000616 Jeff Davis 13 602951 3385810 Vespertillionidae Myotis velifer U 20000616 Jeff Davis 13 602951 3385810 Vespertillionidae Myotis velifer M 20000726 Jeff Davis 13 602977 3385913 Vespertillionidae Myotis velifer F 20000726 Jeff Davis 13 602977 3385913 Vespertillionidae Myotis velifer M 20000726 Jeff Davis 13 602977 3385913 Vespertillionidae Myotis velifer F 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990515 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990515 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990515 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990515 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990515 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990515 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990515 Jeff Davis 13 603887 3385960

116

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Vespertillionidae Myotis velifer F 19990515 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990522 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990522 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990522 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990522 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20000512 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980521 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980521 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980521 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980521 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980521 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980521 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980523 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980602 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980602 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980604 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 19980602 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 19980602 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 19980602 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 19980620 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 19980628 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 19980521 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 19980602 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 19980621 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 19980627 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20000721 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980521 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980627 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980627 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980627 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980627 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980627 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980628 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980628 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980628 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980628 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20000512 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20000615 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20000615 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20000615 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20000615 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20000615 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer U 20000512 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980602 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980602 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19980814 Jeff Davis 13 603887 3385960

117

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Vespertillionidae Myotis velifer F 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990706 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990706 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990714 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990723 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990723 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990808 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990808 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 19990809 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20000512 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20000615 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer U 20000512 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer U 20000615 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 19980627 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 19980627 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 19980814 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 19980814 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 19990809 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 20000610 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 20000615 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer U 20000721 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer U 20000512 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer U 20000512 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer U 20000512 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer U 20000512 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer U 20000512 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer U 20000512 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer U 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20000721 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20000721 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 19980405 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 19980710 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 20000615 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 20000615 Jeff Davis 13 603887 3385960

118

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Vespertillionidae Myotis velifer M 20000615 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer M 20000615 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis velifer F 20010602 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20010602 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20010602 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20010602 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20010602 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20010602 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20010602 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20010602 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20010602 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20000417 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20000417 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 19980709 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 19980709 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 19980709 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer M 19980627 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20010602 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer M 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer M 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer M 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer M 20010405 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer M 20010602 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer M 20010602 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer M 20010602 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer U 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer U 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer F 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis velifer M 20010811 Jeff Davis 13 603071 3388641 Vespertillionidae Myotis velifer F 20000418 Jeff Davis 13 619392 3405145 Vespertillionidae Myotis velifer M 20010617 Jeff Davis 13 609872 3422935 Vespertillionidae Myotis velifer M 19980802 Jeff Davis 13 609871 3422961 Vespertillionidae Myotis velifer F 20010427 Reeves 13 616011 3424084 Vespertillionidae Myotis velifer M 20010514 Reeves 13 616011 3424084 Vespertillionidae Myotis velifer M 20011013 Reeves 13 615680 3424135 Vespertillionidae Myotis velifer M 20011013 Reeves 13 615680 3424135 Vespertillionidae Myotis velifer M 20011013 Reeves 13 615680 3424135 Vespertillionidae Myotis velifer M 20011013 Reeves 13 615680 3424135 Vespertillionidae Myotis velifer F 20010612 Reeves 13 615680 3424135

119

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Vespertillionidae Myotis velifer F 20010612 Reeves 13 615680 3424135 Vespertillionidae Myotis velifer F 20010612 Reeves 13 615680 3424135 Vespertillionidae Myotis velifer F 20010612 Reeves 13 615680 3424135 Vespertillionidae Myotis velifer F 20010612 Reeves 13 615680 3424135 Vespertillionidae Myotis velifer M 20010612 Reeves 13 615680 3424135 Vespertillionidae Myotis velifer M 20010612 Reeves 13 615680 3424135 Vespertillionidae Myotis velifer M 20010612 Reeves 13 615680 3424135 Vespertillionidae Myotis velifer M 20010612 Reeves 13 615680 3424135 Vespertillionidae Myotis volans M 20000908 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis volans F 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis volans F 20000417 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis volans U 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis volans F 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans F 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans F 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans F 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans F 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans M 20010701 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans M 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans M 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans F 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans F 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans F 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans M 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans M 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans M 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans M 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans M 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans M 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans M 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans M 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans M 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans M 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Myotis volans M 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980716 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans F 19980716 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans F 19980716 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans F 19980716 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans F 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans F 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans F 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans F 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans F 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans F 19980719 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans F 19980719 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans F 19980716 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans F 19980714 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans F 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans F 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans F 19980719 Jeff Davis 13 580001 3392034

120

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Vespertillionidae Myotis volans M 19980714 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980715 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980716 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980716 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980716 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980716 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980716 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980716 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980716 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980716 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980719 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980719 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980719 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans F 19980717 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans M 19980715 Jeff Davis 13 580001 3392034 Vespertillionidae Myotis volans F 20010527 Jeff Davis 13 580078 3392049 Vespertillionidae Myotis volans F 20010527 Jeff Davis 13 580078 3392049 Vespertillionidae Myotis volans F 20010527 Jeff Davis 13 580078 3392049 Vespertillionidae Myotis volans M 20010527 Jeff Davis 13 580078 3392049 Vespertillionidae Myotis volans M 20010527 Jeff Davis 13 580078 3392049 Vespertillionidae Myotis volans M 20010527 Jeff Davis 13 580078 3392049 Vespertillionidae Myotis volans M 20010527 Jeff Davis 13 580078 3392049 Vespertillionidae Myotis volans M 20010527 Jeff Davis 13 580078 3392049 Vespertillionidae Myotis volans M 20010527 Jeff Davis 13 580078 3392049 Vespertillionidae Myotis volans F 20010527 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis volans F 20010527 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis volans F 20010527 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis volans F 20010527 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis volans F 20010527 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis volans F 20010527 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis volans F 20010528 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis volans F 20010625 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis volans F 20010625 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis volans F 20010625 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis volans F 20010625 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis volans F 20010625 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis volans M 20010527 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis volans M 20010527 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis volans M 20010527 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis volans M 20010625 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis volans M 20010625 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis volans M 20010819 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis volans F 20010612 Jeff Davis 13 580121 3392063 Vespertillionidae Myotis volans M 19980716 Jeff Davis 13 580697 3392220 Vespertillionidae Myotis volans F 19980715 Jeff Davis 13 580697 3392220 Vespertillionidae Myotis volans F 19980716 Jeff Davis 13 580697 3392220

121

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Vespertillionidae Myotis volans M 19980715 Jeff Davis 13 580697 3392220 Vespertillionidae Myotis volans M 19980716 Jeff Davis 13 580697 3392220 Vespertillionidae Myotis volans U 20011000 Jeff Davis 13 580680 3392685 Vespertillionidae Myotis volans F 20010630 Jeff Davis 13 584126 3394303 Vespertillionidae Myotis volans M 19990723 Jeff Davis 13 584245 3394313 Vespertillionidae Myotis volans M 19990723 Jeff Davis 13 584245 3394313 Vespertillionidae Myotis volans M 19990723 Jeff Davis 13 584245 3394313 Vespertillionidae Myotis volans U 19990723 Jeff Davis 13 584245 3394313 Vespertillionidae Myotis volans M 20010626 Jeff Davis 13 581446 3394411 Vespertillionidae Myotis volans F 20010626 Jeff Davis 13 581500 3394416 Vespertillionidae Myotis volans F 20010629 Jeff Davis 13 581500 3394416 Vespertillionidae Myotis volans U 20010626 Jeff Davis 13 581500 3394416 Vespertillionidae Myotis volans M 20010626 Jeff Davis 13 581500 3394416 Vespertillionidae Myotis volans F 19980716 Jeff Davis 13 584418 3396466 Vespertillionidae Myotis volans M 19980602 Jeff Davis 13 584418 3396466 Vespertillionidae Myotis volans F 19980715 Jeff Davis 13 584418 3396466 Vespertillionidae Myotis volans U 19980716 Jeff Davis 13 584415 3396474 Vespertillionidae Myotis volans M 19980715 Jeff Davis 13 584415 3396474 Vespertillionidae Myotis volans M 19980715 Jeff Davis 13 584415 3396474 Vespertillionidae Myotis volans M 19980715 Jeff Davis 13 584415 3396474 Vespertillionidae Myotis volans M 19980715 Jeff Davis 13 584415 3396474 Vespertillionidae Myotis volans M 19980715 Jeff Davis 13 584415 3396474 Vespertillionidae Myotis volans F 20010623 Jeff Davis 13 584353 3396508 Vespertillionidae Myotis volans M 20010616 Jeff Davis 13 584353 3396508 Vespertillionidae Myotis volans M 19980717 Jeff Davis 13 584513 3396669 Vespertillionidae Myotis volans F 19980715 Jeff Davis 13 584513 3396669 Vespertillionidae Myotis volans F 19980715 Jeff Davis 13 584513 3396669 Vespertillionidae Myotis volans F 19980717 Jeff Davis 13 584513 3396669 Vespertillionidae Myotis volans M 19980717 Jeff Davis 13 584513 3396669 Vespertillionidae Myotis volans M 19980717 Jeff Davis 13 584513 3396669 Vespertillionidae Myotis volans M 19980715 Jeff Davis 13 584513 3396669 Vespertillionidae Myotis volans M 19980716 Jeff Davis 13 584513 3396669 Vespertillionidae Myotis volans M 19980717 Jeff Davis 13 584513 3396669 Vespertillionidae Myotis yumanensis M 20000630 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis M 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis M 20000705 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis F 20000705 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis F 20000705 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis F 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis F 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis M 20000630 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis M 20000630 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis F 20000705 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis F 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis F 20000830 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis F 20010810 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis F 20010810 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis F 20010810 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis F 20010908 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis F 20010908 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis F 20010908 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis F 20000817 Jeff Davis 13 603632 3385791

122

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Vespertillionidae Myotis yumanensis F 20000817 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis M 20000705 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis M 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis M 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis M 20000809 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis M 20000817 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis U 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis M 20000830 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis M 20000913 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis M 20001002 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis M 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis M 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis U 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis U 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis U 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis F 20000630 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis F 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis F 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis F 20010813 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis M 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis M 20000809 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis M 20000908 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis M 20000923 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis M 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Myotis yumanensis F 20000726 Jeff Davis 13 602977 3385913 Vespertillionidae Myotis yumanensis M 20000726 Jeff Davis 13 602977 3385913 Vespertillionidae Myotis yumanensis F 19990515 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 19990515 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 19990523 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 19990523 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 20010510 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis M 19980620 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis M 19980521 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis M 19980521 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 19980521 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 19980521 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 19980521 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 19980521 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 19980602 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 19980602 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis M 19980620 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 19980627 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 20000615 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis M 20000721 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 19980620 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 19990506 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 20010412 Jeff Davis 13 603887 3385960

123

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Vespertillionidae Myotis yumanensis U 20000615 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis M 19980627 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis U 20010908 Jeff Davis 13 603887 3385960 Vespertillionidae Myotis yumanensis F 20010602 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis yumanensis M 19980621 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis yumanensis F 19980627 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis yumanensis F 19980627 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis yumanensis F 19980801 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis yumanensis F 20000512 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis yumanensis M 20010602 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis yumanensis M 20010908 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis yumanensis M 20010908 Jeff Davis 13 603905 3385975 Vespertillionidae Myotis yumanensis F 20000701 Jeff Davis 13 602299 3388612 Vespertillionidae Myotis yumanensis M 19990316 Jeff Davis 13 584126 3394303 Vespertillionidae Myotis yumanensis F 19980715 Jeff Davis 13 584692 3396504 Vespertillionidae Myotis yumanensis M 20010426 Reeves 13 616011 3424048 Vespertillionidae Myotis yumanensis F 20010427 Jeff Davis 13 616011 3424084 Vespertillionidae Myotis yumanensis M 20010505 Reeves 13 615943 3424093 Vespertillionidae Pipistrellus hesperus F 20000830 Jeff Davis 13 600963 3384697 Vespertillionidae Pipistrellus hesperus F 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Pipistrellus hesperus F 20000817 Jeff Davis 13 603632 3385791 Vespertillionidae Pipistrellus hesperus M 20000722 Jeff Davis 13 603632 3385791 Vespertillionidae Pipistrellus hesperus M 20000910 Jeff Davis 13 603632 3385791 Vespertillionidae Pipistrellus hesperus M 20000727 Jeff Davis 13 603632 3385791 Vespertillionidae Pipistrellus hesperus M 20000830 Jeff Davis 13 603632 3385791 Vespertillionidae Pipistrellus hesperus M 20001002 Jeff Davis 13 603632 3385791 Vespertillionidae Pipistrellus hesperus M 20010722 Jeff Davis 13 603632 3385791 Vespertillionidae Pipistrellus hesperus M 20010927 Jeff Davis 13 603632 3385791 Vespertillionidae Pipistrellus hesperus M 20011004 Jeff Davis 13 603632 3385791 Vespertillionidae Pipistrellus hesperus M 20000727 Jeff Davis 13 603632 3385791 Vespertillionidae Pipistrellus hesperus M 20000923 Jeff Davis 13 603632 3385791 Vespertillionidae Pipistrellus hesperus M 20000923 Jeff Davis 13 603632 3385791 Vespertillionidae Pipistrellus hesperus F 20000512 Jeff Davis 13 603887 3385960 Vespertillionidae Pipistrellus hesperus F 19980521 Jeff Davis 13 603887 3385960 Vespertillionidae Pipistrellus hesperus M 19990505 Jeff Davis 13 603887 3385960 Vespertillionidae Pipistrellus hesperus M 20010412 Jeff Davis 13 603887 3385960 Vespertillionidae Pipistrellus hesperus F 19980627 Jeff Davis 13 603905 3385975 Vespertillionidae Pipistrellus hesperus M 20010627 Jeff Davis 13 581365 3391718 Vespertillionidae Pipistrellus hesperus M 20010630 Jeff Davis 13 581365 3391718 Vespertillionidae Pipistrellus hesperus M 20010527 Jeff Davis 13 580078 3392049 Vespertillionidae Pipistrellus hesperus M 20010527 Jeff Davis 13 580121 3392063 Vespertillionidae Pipistrellus hesperus U 20011000 Jeff Davis 13 580680 3392685 Vespertillionidae Pipistrellus hesperus M 19980714 Jeff Davis 13 584418 3396466 Vespertillionidae Pipistrellus hesperus M 19990722 Jeff Davis 13 584596 3396540 Vespertillionidae Pipistrellus hesperus F 20010813 Jeff Davis 13 584475 3396545 Vespertillionidae Tadarida brasiliens M 20011013 Reeves 13 615680 3424135 Soricidae Notiosorex crawfordi F Unknown Jeff Davis 13 605953 3382843 Soricidae Notiosorex crawfordi U Unknown Jeff Davis 13 584576 3396417 Soricidae Notiosorex crawfordi U Unknown Reeves 13 615924 3424054 Leporidae Lepus californicus M 20010210 Jeff Davis 13 602300 3387268 Leporidae Lepus californicus M 19990723 Jeff Davis 13 580230 3390355 Leporidae Lepus californicus M 19990723 Jeff Davis 13 580230 3390355

124

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Leporidae Lepus californicus M 19980718 Jeff Davis 13 582686 3394293 Leporidae Lepus californicus M 19980718 Jeff Davis 13 582686 3394293 Leporidae Lepus californicus F 19981108 Jeff Davis 13 582686 3394293 Leporidae Lepus californicus M 19981108 Jeff Davis 13 582686 3394293 Leporidae Lepus californicus M 20010626 Jeff Davis 13 583759 3396096 Leporidae Lepus californicus M 19980715 Jeff Davis 13 584027 3396224 Leporidae Lepus californicus M 19980713 Jeff Davis 13 584623 3396594 Leporidae Lepus californicus F 19981107 Jeff Davis 13 584789 3396610 Leporidae Lepus californicus M 20010625 Jeff Davis 13 584609 3396710 Leporidae Lepus californicus M 20010519 Reeves 13 615829 3424031 Leporidae Sylvilagus audubonii M 20000529 Jeff Davis 13 603640 3385723 Leporidae Sylvilagus audubonii M 19980713 Jeff Davis 13 584126 3394303 Leporidae Sylvilagus audubonii F 20000928 Jeff Davis 13 583778 3396180 Leporidae Sylvilagus audubonii F 19980715 Jeff Davis 13 584637 3396356 Leporidae Sylvilagus audubonii M 19980712 Jeff Davis 13 585119 3396424 Leporidae Sylvilagus audubonii F 20010623 Jeff Davis 13 584353 3396508 Leporidae Sylvilagus audubonii F 19980715 Jeff Davis 13 584513 3396669 Leporidae Sylvilagus audubonii M 19980801 Jeff Davis 13 609994 3422952 Leporidae Sylvilagus audubonii M 20010516 Jeff Davis 13 616312 3424169 Leporidae Sylvilagus audubonii F 20010512 Reeves 13 616190 3424268 Leporidae Sylvilagus audubonii F 19981229 Reeves 13 621691 3428625 Leporidae Sylvilagus robustus F 19980618 Jeff Davis 13 601053 3384633 Leporidae Sylvilagus robustus F 20000915 Jeff Davis 13 603519 3385267 Leporidae Sylvilagus robustus M 19980405 Jeff Davis 13 604368 3385800 Leporidae Sylvilagus robustus M 19980801 Jeff Davis 13 604368 3385800 Leporidae Sylvilagus robustus M 19980619 Jeff Davis 13 604368 3385800 Leporidae Sylvilagus robustus M 19980712 Jeff Davis 13 602902 3385822 Leporidae Sylvilagus robustus M 19980710 Jeff Davis 13 602866 3385919 Leporidae Sylvilagus robustus F 19990323 Jeff Davis 13 601076 3385967 Leporidae Sylvilagus robustus F 19990723 Jeff Davis 13 580230 3390355 Leporidae Sylvilagus robustus F 19990723 Jeff Davis 13 580230 3390355 Leporidae Sylvilagus robustus F 19990723 Jeff Davis 13 580230 3390355 Leporidae Sylvilagus robustus M 19980718 Jeff Davis 13 580697 3392220 Leporidae Sylvilagus robustus M 19970816 Jeff Davis 13 592673 3394903 Leporidae Sylvilagus robustus F 19981108 Jeff Davis 13 584027 3396224 Leporidae Sylvilagus robustus M 19980709 Jeff Davis 13 584027 3396224 Leporidae Sylvilagus robustus F 19981108 Jeff Davis 13 584027 3396224 Leporidae Sylvilagus robustus F 19980717 Jeff Davis 13 584027 3396224 Leporidae Sylvilagus robustus F 19990317 Jeff Davis 13 584680 3396664 Leporidae Sylvilagus robustus F 19990317 Jeff Davis 13 584680 3396664 Leporidae Sylvilagus robustus F 19981108 Jeff Davis 13 584850 3396752 Leporidae Sylvilagus robustus M 20010817 Jeff Davis 13 586425 3396935 Erethizonidae Erethizon dorsatum U Unknown Jeff Davis 13 601157 3385144 Erethizonidae Erethizon dorsatum U Unknown Jeff Davis 13 602717 3385505 Erethizonidae Erethizon dorsatum U Unknown Jeff Davis 13 602513 3387654 Erethizonidae Erethizon dorsatum U Unknown Jeff Davis 13 601599 3388390 Erethizonidae Erethizon dorsatum U Unknown Jeff Davis 13 583966 3397230 Erethizonidae Erethizon dorsatum F 20010517 Jeff Davis 13 609875 3423050 Erethizonidae Erithozon dorsatum M 20010203 Jeff Davis 13 601551 3388644 Geomyidae Cratogeomys castanops U 20000320 Jeff Davis 13 585500 3379290 Geomyidae Cratogeomys castano ps F 20010312 Jeff Davis 13 603280 3384881 Geomyidae Cratogeomys castano ps F 19990205 Jeff Davis 13 604332 3385292

125

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Geomyidae Cratogeomys castano ps F 19981111 Jeff Davis 13 602463 3385763 Geomyidae Cratogeomys castano ps F 19990201 Jeff Davis 13 603004 3385835 Geomyidae Cratogeomys castano ps F 19990201 Jeff Davis 13 603004 3385835 Geomyidae Cratogeomys castano ps F 20000208 Jeff Davis 13 604145 3385948 Geomyidae Cratogeomys castano ps F 20000225 Jeff Davis 13 609315 3388028 Geomyidae Thomomys bottae U 20010908 Jeff Davis 13 603887 3385960 Geomyidae Thomomys bottae U 20000214 Jeff Davis 13 603628 3386082 Geomyidae Thomomys bottae U 20020125 Jeff Davis 13 603290 3386370 Geomyidae Thomomys bottae F 20020312 Jeff Davis 13 578883 3390192 Geomyidae Thomomys bottae F 20020312 Jeff Davis 13 578882 3390251 Geomyidae Thomomys bottae F 20020309 Jeff Davis 13 578949 3390251 Geomyidae Thomomys bottae M 19980716 Jeff Davis 13 580253 3390273 Geomyidae Thomomys bottae F 19980718 Jeff Davis 13 580253 3390273 Geomyidae Thomomys bottae F 19980719 Jeff Davis 13 580253 3390273 Geomyidae Thomomys bottae M 19990722 Jeff Davis 13 580230 3390355 Geomyidae Thomomys bottae F 19990722 Jeff Davis 13 580230 3390355 Geomyidae Thomomys bottae F 19990722 Jeff Davis 13 580230 3390355 Geomyidae Thomomys bottae F 19990722 Jeff Davis 13 580230 3390355 Geomyidae Thomomys bottae M 20010322 Jeff Davis 13 581315 3391864 Geomyidae Thomomys bottae M 19980717 Jeff Davis 13 579852 3391926 Geomyidae Thomomys bottae M 19980717 Jeff Davis 13 580697 3392220 Geomyidae Thomomys bottae M 19980717 Jeff Davis 13 580697 3392220 Geomyidae Thomomys bottae F 19980716 Jeff Davis 13 580697 3392220 Geomyidae Thomomys bottae F 19980717 Jeff Davis 13 580697 3392220 Geomyidae Thomomys bottae M 19980718 Jeff Davis 13 580697 3392220 Geomyidae Thomomys bottae F 19980714 Jeff Davis 13 580697 3392220 Geomyidae Thomomys bottae M 19981107 Jeff Davis 13 580965 3392241 Geomyidae Thomomys bottae F 19981107 Jeff Davis 13 580288 3392272 Geomyidae Thomomys bottae F 19981107 Jeff Davis 13 580549 3392553 Geomyidae Thomomys bottae M 19980717 Jeff Davis 13 580634 3392612 Geomyidae Thomomys bottae F 20000213 Jeff Davis 13 582128 3393469 Geomyidae Thomomys bottae U Unknown Jeff Davis 13 580220 3394015 Geomyidae Thomomys bottae F 20010818 Jeff Davis 13 579781 3395048 Heteromyidae Chaetodipus eremicus M 19981228 Reeves 13 616250 3424184 Heteromyidae Chaetodipus eremicus F 20020417 Reeves 13 621472 3428547 Heteromyidae Chaetodipus eremicus F 20020417 Reeves 13 621472 3428547 Heteromyidae Chaetodipus eremicus M 20020417 Reeves 13 621472 3428547 Heteromyidae Chaetodipus eremicus M 20020415 Reeves 13 621527 3428568 Heteromyidae Chaetodipus eremicus F 20020415 Reeves 13 621350 3428570 Heteromyidae Chaetodipus eremicus F 20020415 Reeves 13 621350 3428570 Heteromyidae Chaetodipus eremicus M 20020415 Reeves 13 621333 3428618 Heteromyidae Chaetodipus eremicus F 20020415 Reeves 13 621504 3428625 Heteromyidae Chaetodipus eremicus F 20020415 Reeves 13 621504 3428625 Heteromyidae Chaetodipus eremicus M 20020415 Reeves 13 621504 3428625 Heteromyidae Chaetodipus eremicus M 20020414 Reeves 13 621452 3428631 Heteromyidae Chaetodipus eremicus F 20020414 Reeves 13 621345 3428634 Heteromyidae Chaetodipus eremicus M 20020415 Reeves 13 621253 3428681 Heteromyidae Chaetodipus eremicus M 20020415 Reeves 13 621253 3428681 Heteromyidae Chaetodipus eremicus M 20020415 Reeves 13 621458 3428681 Heteromyidae Chaetodipus eremicus F 20020420 Reeves 13 621374 3428707 Heteromyidae Chaetodipus eremicus M 20020414 Reeves 13 621374 3428707 Heteromyidae Chaetodipus eremicus M 20020420 Reeves 13 621374 3428707

126

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Heteromyidae Chaetodipus hispidus M 20000321 Jeff Davis 13 585850 3379290 Heteromyidae Chaetodipus hispidus F 19980602 Jeff Davis 13 602747 3385564 Heteromyidae Chaetodipus nelsoni F 20010226 Jeff Davis 13 603399 3386120 Heteromyidae Chaetodipus nelsoni M 20000205 Jeff Davis 13 602971 3386134 Heteromyidae Chaetodipus nelsoni F 20000205 Jeff Davis 13 603049 3386350 Heteromyidae Chaetodipus nelsoni M 20010224 Jeff Davis 13 601920 3386369 Heteromyidae Chaetodipus nelsoni M 20010214 Jeff Davis 13 603442 3386453 Heteromyidae Dipodomys merriami M 20010518 Jeff Davis 13 609836 3422829 Heteromyidae Dipodomys merriami F 20010514 Reeves 13 615983 3423790 Heteromyidae Dipodomys merriami M 20010513 Reeves 13 615983 3423790 Heteromyidae Dipodomys merriami M 20010513 Reeves 13 615983 3423790 Heteromyidae Dipodomys merriami M 20010513 Reeves 13 615983 3423790 Heteromyidae Dipodomys merriami F 20020414 Reeves 13 621705 3428543 Heteromyidae Dipodomys merriami M 20020414 Reeves 13 621462 3428585 Heteromyidae Dipodomys merriami M 20020415 Reeves 13 621584 3428586 Heteromyidae Dipodomys merriami F 20020414 Reeves 13 621562 3428591 Heteromyidae Dipodomys merriami M 20020414 Reeves 13 621562 3428591 Heteromyidae Dipodomys merriami M 20020415 Reeves 13 621333 3428618 Heteromyidae Dipodomys merriami F 20020415 Reeves 13 621504 3428625 Heteromyidae Dipodomys merriami F 20020414 Reeves 13 621504 3428625 Heteromyidae Dipodomys merriami F 20020415 Reeves 13 621504 3428625 Heteromyidae Dipodomys merriami F 20020415 Reeves 13 621504 3428625 Heteromyidae Dipodomys merriami M 20020414 Reeves 13 621504 3428625 Heteromyidae Dipodomys merriami M 20020414 Reeves 13 621504 3428625 Heteromyidae Dipodomys merriami M 20020415 Reeves 13 621504 3428625 Heteromyidae Dipodomys merriami F 20020414 Reeves 13 621345 3428634 Heteromyidae Dipodomys merriami M 20020414 Reeves 13 621370 3428661 Heteromyidae Dipodomys merriami M 20020414 Reeves 13 621253 3428681 Heteromyidae Dipodomys merriami M 20020414 Reeves 13 621253 3428681 Heteromyidae Dipodomys merriami M 20020414 Reeves 13 621374 3428707 Heteromyidae Dipodomys merriami F 20020421 Reeves 13 621361 3428752 Heteromyidae Dipodomys merriami M 20020420 Reeves 13 621361 3428752 Heteromyidae Dipodomys merriami M 20020420 Reeves 13 621361 3428752 Heteromyidae Dipodomys merriami M 20020421 Reeves 13 621424 3428765 Heteromyidae Dipodomys merriami F 20020421 Reeves 13 621390 3428805 Heteromyidae Dipodomys merriami M 20020420 Reeves 13 621390 3428805 Heteromyidae Dipodomys merriami M 20020420 Reeves 13 621390 3428805 Heteromyidae Perog nathus flavus U 20010924 Jeff Davis 13 603616 3385048 Heteromyidae Perog nathus flavus M 20010201 Jeff Davis 13 602200 3388568 Heteromyidae Perog nathus flavus M 20010518 Jeff Davis 13 609872 3422935 Heteromyidae Perog nathus flavus F 20020414 Reeves 13 621594 3428560 Heteromyidae Perog nathus flavus M 20020415 Reeves 13 621584 3428586 Muridae Mus musculus M 19980621 Jeff Davis 13 602996 3385843 Muridae Mus musculus F 20010222 Jeff Davis 13 601287 3386556 Muridae Mus musculus M 20010222 Jeff Davis 13 601674 3386635 Muridae Mus musculus M 19981227 Reeves 13 616040 3423983 Muridae Mus musculus M 19981227 Reeves 13 616040 3423983 Muridae Mus musculus F 20001113 Reeves 13 616009 3424014 Muridae Mus musculus F 20001113 Reeves 13 616009 3424014 Muridae Mus musculus F 20001113 Reeves 13 616009 3424014 Muridae Mus musculus F 20001113 Reeves 13 616009 3424014 Muridae Mus musculus F 20001113 Reeves 13 616009 3424014

127

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Mus musculus M 20001113 Reeves 13 616009 3424014 Muridae Mus musculus M 19981228 Reeves 13 616250 3424184 Muridae Neotoma leucodon F 20001012 Jeff Davis 13 601160 3384336 Muridae Neotoma leucodon F 20010307 Jeff Davis 13 602454 3384814 Muridae Neotoma leucodon F 20010311 Jeff Davis 13 603424 3384839 Muridae Neotoma leucodon F 20000229 Jeff Davis 13 602076 3384850 Muridae Neotoma leucodon F 20001012 Jeff Davis 13 601093 3384871 Muridae Neotoma leucodon M 20010310 Jeff Davis 13 604061 3385336 Muridae Neotoma leucodon M 19980523 Jeff Davis 13 603346 3385378 Muridae Neotoma leucodon F 20010311 Jeff Davis 13 602090 3385522 Muridae Neotoma leucodon F 20010228 Jeff Davis 13 603370 3385535 Muridae Neotoma leucodon F 19980602 Jeff Davis 13 602747 3385564 Muridae Neotoma leucodon M 20010309 Jeff Davis 13 604596 3385671 Muridae Neotoma leucodon M 20000205 Jeff Davis 13 602946 3386011 Muridae Neotoma leucodon M 20000206 Jeff Davis 13 602890 3386226 Muridae Neotoma leucodon F 20000228 Jeff Davis 13 604113 3386331 Muridae Neotoma leucodon M 20010214 Jeff Davis 13 603422 3386453 Muridae Neotoma leucodon F 20010122 Jeff Davis 13 602282 3387786 Muridae Neotoma leucodon F 20010125 Jeff Davis 13 602953 3387851 Muridae Neotoma leucodon F 20010124 Jeff Davis 13 602565 3387949 Muridae Neotoma leucodon F 20010127 Jeff Davis 13 602999 3388203 Muridae Neotoma leucodon F 20010127 Jeff Davis 13 602511 3388333 Muridae Neotoma mexicana M 20010227 Jeff Davis 13 603704 3385489 Muridae Neotoma mexicana F 20010224 Jeff Davis 13 601734 3385633 Muridae Neotoma mexicana M 19980718 Jeff Davis 13 604878 3385656 Muridae Neotoma mexicana F 20010209 Jeff Davis 13 601843 3387625 Muridae Neotoma mexicana M 19990316 Jeff Davis 13 579953 3389871 Muridae Neotoma mexicana M 20020317 Jeff Davis 13 578969 3389891 Muridae Neotoma mexicana M 20020317 Jeff Davis 13 578971 3389991 Muridae Neotoma mexicana U 20020317 Jeff Davis 13 579120 3390150 Muridae Neotoma mexicana M 19981107 Jeff Davis 13 580285 3390250 Muridae Neotoma mexicana F 19980719 Jeff Davis 13 580253 3390273 Muridae Neotoma mexicana F 19980715 Jeff Davis 13 580253 3390273 Muridae Neotoma mexicana M 19980715 Jeff Davis 13 580253 3390273 Muridae Neotoma mexicana F 20010323 Jeff Davis 13 580504 3391606 Muridae Neotoma mexicana M 20010322 Jeff Davis 13 580643 3391935 Muridae Neotoma mexicana M 19980717 Jeff Davis 13 584027 3396224 Muridae Neotoma mexicana F 19980713 Jeff Davis 13 583765 3396289 Muridae Neotoma mexicana M 19980716 Jeff Davis 13 584519 3396419 Muridae Neotoma mexicana M 19980715 Jeff Davis 13 585013 3396600 Muridae Neotoma mexicana M 20000215 Jeff Davis 13 583960 3397680 Muridae Neotoma micropus F 19980802 Jeff Davis 13 609924 3422930 Muridae Neotoma micropus M 19980802 Jeff Davis 13 609924 3422930 Muridae Neotoma micropus F 20010518 Jeff Davis 13 609890 3422933 Muridae Neotoma micropus F 20010617 Jeff Davis 13 609872 3422935 Muridae Neotoma micropus M 19980802 Jeff Davis 13 609917 3422967 Muridae Neotoma micropus M 19981009 Jeff Davis 13 609917 3422967 Muridae Neotoma micropus F 19981009 Jeff Davis 13 609917 3422967 Muridae Neotoma micropus F 19980801 Jeff Davis 13 609917 3422967 Muridae Neotoma micropus F 19980802 Jeff Davis 13 609917 3422967 Muridae Neotoma micropus F 19980802 Jeff Davis 13 609917 3422967 Muridae Neotoma micropus F 19981009 Jeff Davis 13 609917 3422967

128

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Neotoma micropus F 19981009 Jeff Davis 13 609917 3422967 Muridae Neotoma micropus M 19980801 Jeff Davis 13 609917 3422967 Muridae Neotoma micropus M 19980802 Jeff Davis 13 609917 3422967 Muridae Neotoma micropus M 20010617 Jeff Davis 13 609896 3423000 Muridae Neotoma micropus F 20010514 Reeves 13 616323 3423938 Muridae Neotoma micropus F 19990712 Reeves 13 615956 3424020 Muridae Neotoma micropus M 20010517 Jeff Davis 13 616234 3424180 Muridae Neotoma micropus M 19981228 Reeves 13 616250 3424184 Muridae Neotoma micropus M 19981228 Reeves 13 616250 3424184 Muridae Neotoma micropus F 19981229 Reeves 13 616016 3424198 Muridae Neotoma micropus F 19981229 Reeves 13 616016 3424198 Muridae Neotoma micropus M 19981229 Reeves 13 616016 3424198 Muridae Neotoma micropus M 20010517 Jeff Davis 13 616292 3424200 Muridae Neotoma micropus F 20010504 Jeff Davis 13 616235 3424217 Muridae Neotoma micropus F 20010516 Reeves 13 616277 3424217 Muridae Neotoma micropus F 20010506 Reeves 13 616085 3424256 Muridae Neotoma micropus M 20010505 Reeves 13 616091 3424261 Muridae Neotoma micropus M 20010504 Reeves 13 616097 3424264 Muridae Neotoma micropus M 20010504 Reeves 13 616152 3424287 Muridae Neotoma micropus M 20010513 Reeves 13 616219 3424309 Muridae Neotoma micropus F 20010513 Reeves 13 616219 3424309 Muridae Neotoma micropus F 20010516 Reeves 13 616210 3424312 Muridae Neotoma micropus M 20010513 Reeves 13 616255 3424312 Muridae Neotoma micropus F 20010513 Reeves 13 616255 3424312 Muridae Neotoma micropus F 20010515 Reeves 13 616255 3424312 Muridae Neotoma micropus F 20010515 Reeves 13 616210 3424319 Muridae Neotoma micropus M 20020415 Reeves 13 621435 3428595 Muridae Neotoma micropus M 20020415 Reeves 13 621435 3428595 Muridae Neotoma micropus M 20020415 Reeves 13 621691 3428625 Muridae Neotoma micropus F 20020415 Reeves 13 621779 3428629 Muridae Neotoma micropus F 20020414 Reeves 13 621458 3428705 Muridae Neotoma micropus F 20020420 Reeves 13 621361 3428752 Muridae Neotoma micropus F 20020422 Reeves 13 621717 3428788 Muridae Neotoma micropus M 20020422 Reeves 13 621589 3428955 Muridae Neotoma micropus M 20020422 Reeves 13 621191 3429170 Muridae Onychomys arenicola F 20000321 Jeff Davis 13 585500 3379290 Muridae Onychomys arenicola M 20000321 Jeff Davis 13 585500 3379290 Muridae Onychomys arenicola M 20000321 Jeff Davis 13 585500 3379290 Muridae Onychomys arenicola F 20000320 Jeff Davis 13 602507 3385309 Muridae Onychomys arenicola F 20000320 Jeff Davis 13 602507 3385309 Muridae Onychomys arenicola M 20000316 Jeff Davis 13 602507 3385309 Muridae Onychomys arenicola M 20000320 Jeff Davis 13 602507 3385309 Muridae Onychomys arenicola M 19980619 Jeff Davis 13 602622 3385346 Muridae Onychomys arenicola M 19980619 Jeff Davis 13 603034 3385869 Muridae Onychomys arenicola F 19990117 Jeff Davis 13 603004 3385935 Muridae Onychomys arenicola F 19990117 Jeff Davis 13 603004 3385935 Muridae Onychomys arenicola M 20010225 Jeff Davis 13 602386 3385946 Muridae Onychomys arenicola M 20010225 Jeff Davis 13 602386 3385946 Muridae Onychomys arenicola F 20010223 Jeff Davis 13 601738 3386098 Muridae Onychomys arenicola M 20010223 Jeff Davis 13 601738 3386098 Muridae Onychomys arenicola F 20010225 Jeff Davis 13 602211 3386161 Muridae Onychomys arenicola F 20010225 Jeff Davis 13 601597 3386623

129

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Onychomys arenicola F 20010225 Jeff Davis 13 601597 3386623 Muridae Onychomys arenicola F 20010209 Jeff Davis 13 602165 3387135 Muridae Onychomys arenicola F 20010201 Jeff Davis 13 602360 3388738 Muridae Onychomys arenicola F 19980716 Jeff Davis 13 580697 3392220 Muridae Peromyscus boylii M 19990116 Jeff Davis 13 600849 3384623 Muridae Peromyscus boylii M 19990116 Jeff Davis 13 600849 3384623 Muridae Peromyscus boylii F 19990116 Jeff Davis 13 600849 3384623 Muridae Peromyscus boylii F 19990116 Jeff Davis 13 600849 3384623 Muridae Peromyscus boylii F 19990116 Jeff Davis 13 600849 3384623 Muridae Peromyscus boylii F 19990116 Jeff Davis 13 600849 3384623 Muridae Peromyscus boylii F 19980618 Jeff Davis 13 601053 3384633 Muridae Peromyscus boylii F 19980712 Jeff Davis 13 600949 3384636 Muridae Peromyscus boylii M 19980618 Jeff Davis 13 600822 3384642 Muridae Peromyscus boylii M 19980619 Jeff Davis 13 600822 3384642 Muridae Peromyscus boylii F 19980618 Jeff Davis 13 600822 3384642 Muridae Peromyscus boylii F 19980618 Jeff Davis 13 600822 3384642 Muridae Peromyscus boylii F 20010311 Jeff Davis 13 603290 3384713 Muridae Peromyscus boylii F 20000229 Jeff Davis 13 602047 3384820 Muridae Peromyscus boylii M 20000229 Jeff Davis 13 602047 3384820 Muridae Peromyscus boylii F 20010228 Jeff Davis 13 603370 3385535 Muridae Peromyscus boylii M 19980602 Jeff Davis 13 602747 3385564 Muridae Peromyscus boylii M 19980709 Jeff Davis 13 603697 3385632 Muridae Peromyscus boylii M 20010224 Jeff Davis 13 601740 3385762 Muridae Peromyscus boylii M 20000208 Jeff Davis 13 602602 3385792 Muridae Peromyscus boylii F 20010228 Jeff Davis 13 604316 3385839 Muridae Peromyscus boylii M 20010224 Jeff Davis 13 601806 3385840 Muridae Peromyscus boylii F 19991125 Jeff Davis 13 604039 3385867 Muridae Peromyscus boylii M 19991125 Jeff Davis 13 604039 3385867 Muridae Peromyscus boylii M 20010228 Jeff Davis 13 604260 3385937 Muridae Peromyscus boylii F 20010228 Jeff Davis 13 604260 3385937 Muridae Peromyscus boylii M 20010228 Jeff Davis 13 604260 3385937 Muridae Peromyscus boylii M 19980621 Jeff Davis 13 603940 3385999 Muridae Peromyscus boylii F 20010226 Jeff Davis 13 603399 3386120 Muridae Peromyscus boylii F 20000206 Jeff Davis 13 602971 3386134 Muridae Peromyscus boylii M 20000227 Jeff Davis 13 604385 3386284 Muridae Peromyscus boylii M 20000301 Jeff Davis 13 602901 3386540 Muridae Peromyscus boylii M 20010203 Jeff Davis 13 601666 3387768 Muridae Peromyscus boylii M 20010122 Jeff Davis 13 601842 3387793 Muridae Peromyscus boylii M 20010122 Jeff Davis 13 601825 3387865 Muridae Peromyscus boylii F 20010122 Jeff Davis 13 601674 3387922 Muridae Peromyscus boylii M 20010122 Jeff Davis 13 601828 3387930 Muridae Peromyscus boylii F 20010122 Jeff Davis 13 601828 3387930 Muridae Peromyscus boylii M 20010202 Jeff Davis 13 602394 3388368 Muridae Peromyscus boylii M 20010519 Jeff Davis 13 578876 3389751 Muridae Peromyscus boylii M 20010519 Jeff Davis 13 578738 3389844 Muridae Peromyscus boylii F 19981107 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii M 19981107 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii F 19981107 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii F 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii F 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii F 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii F 19990316 Jeff Davis 13 579953 3389871

130

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Peromyscus boylii F 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii F 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii F 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii F 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii M 19981107 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii M 19981107 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii M 19981107 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii M 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii M 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii M 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii M 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii M 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii M 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii M 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii M 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii M 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii M 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii M 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii M 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus boylii M 20020317 Jeff Davis 13 578937 3389893 Muridae Peromyscus boylii F 20020317 Jeff Davis 13 578912 3389907 Muridae Peromyscus boylii F 20010424 Jeff Davis 13 578630 3389928 Muridae Peromyscus boylii F 20010424 Jeff Davis 13 578630 3389928 Muridae Peromyscus boylii M 20010424 Jeff Davis 13 578630 3389928 Muridae Peromyscus boylii M 20020317 Jeff Davis 13 578911 3389945 Muridae Peromyscus boylii F 20020311 Jeff Davis 13 579010 3389960 Muridae Peromyscus boylii F 20020317 Jeff Davis 13 578900 3389976 Muridae Peromyscus boylii M 20020317 Jeff Davis 13 579211 3389983 Muridae Peromyscus boylii F 20010519 Jeff Davis 13 578820 3390010 Muridae Peromyscus boylii F 20010424 Jeff Davis 13 578540 3390015 Muridae Peromyscus boylii M 20010424 Jeff Davis 13 578540 3390015 Muridae Peromyscus boylii M 20020317 Jeff Davis 13 578972 3390017 Muridae Peromyscus boylii M 20020309 Jeff Davis 13 578972 3390018 Muridae Peromyscus boylii F 20020309 Jeff Davis 13 578972 3390018 Muridae Peromyscus boylii M 20020309 Jeff Davis 13 579012 3390018 Muridae Peromyscus boylii M 20010519 Jeff Davis 13 578547 3390058 Muridae Peromyscus boylii M 20020309 Jeff Davis 13 578969 3390088 Muridae Peromyscus boylii F 20020309 Jeff Davis 13 578969 3390088 Muridae Peromyscus boylii M 20020317 Jeff Davis 13 579183 3390094 Muridae Peromyscus boylii F 20010424 Jeff Davis 13 578500 3390123 Muridae Peromyscus boylii F 20020312 Jeff Davis 13 578958 3390143 Muridae Peromyscus boylii F 20020312 Jeff Davis 13 578958 3390143 Muridae Peromyscus boylii M 20020309 Jeff Davis 13 578960 3390146 Muridae Peromyscus boylii M 20020309 Jeff Davis 13 578960 3390146 Muridae Peromyscus boylii M 20020317 Jeff Davis 13 579120 3390150 Muridae Peromyscus boylii M 20020317 Jeff Davis 13 579120 3390150 Muridae Peromyscus boylii U 20020317 Jeff Davis 13 579120 3390150 Muridae Peromyscus boylii M 20020309 Jeff Davis 13 578891 3390197 Muridae Peromyscus boylii M 20020312 Jeff Davis 13 579131 3390206 Muridae Peromyscus boylii M 20020309 Jeff Davis 13 579020 3390230 Muridae Peromyscus boylii F 19981107 Jeff Davis 13 580295 3390241 Muridae Peromyscus boylii M 20020312 Jeff Davis 13 579004 3390245

131

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Peromyscus boylii F 19981107 Jeff Davis 13 580285 3390250 Muridae Peromyscus boylii F 19981107 Jeff Davis 13 580285 3390250 Muridae Peromyscus boylii M 19981107 Jeff Davis 13 580285 3390250 Muridae Peromyscus boylii F 19981107 Jeff Davis 13 580285 3390250 Muridae Peromyscus boylii F 19981107 Jeff Davis 13 580285 3390250 Muridae Peromyscus boylii F 19981107 Jeff Davis 13 580285 3390250 Muridae Peromyscus boylii F 19981107 Jeff Davis 13 580285 3390250 Muridae Peromyscus boylii F 19981107 Jeff Davis 13 580285 3390250 Muridae Peromyscus boylii M 19981107 Jeff Davis 13 580285 3390250 Muridae Peromyscus boylii F 20010424 Jeff Davis 13 578553 3390261 Muridae Peromyscus boylii M 20010424 Jeff Davis 13 578553 3390261 Muridae Peromyscus boylii M 20010424 Jeff Davis 13 578553 3390261 Muridae Peromyscus boylii F 19980714 Jeff Davis 13 580253 3390273 Muridae Peromyscus boylii M 19980714 Jeff Davis 13 580253 3390273 Muridae Peromyscus boylii M 19980719 Jeff Davis 13 580253 3390273 Muridae Peromyscus boylii M 19980719 Jeff Davis 13 580253 3390273 Muridae Peromyscus boylii F 19980715 Jeff Davis 13 580253 3390273 Muridae Peromyscus boylii F 19980719 Jeff Davis 13 580253 3390273 Muridae Peromyscus boylii F 19980719 Jeff Davis 13 580253 3390273 Muridae Peromyscus boylii M 19980714 Jeff Davis 13 580253 3390273 Muridae Peromyscus boylii M 19980715 Jeff Davis 13 580253 3390273 Muridae Peromyscus boylii M 19980719 Jeff Davis 13 580253 3390273 Muridae Peromyscus boylii M 19980719 Jeff Davis 13 580253 3390273 Muridae Peromyscus boylii M 19980719 Jeff Davis 13 580253 3390273 Muridae Peromyscus boylii M 19980719 Jeff Davis 13 580253 3390273 Muridae Peromyscus boylii M 19981105 Jeff Davis 13 580253 3390273 Muridae Peromyscus boylii M 19981106 Jeff Davis 13 580253 3390273 Muridae Peromyscus boylii M 20020316 Jeff Davis 13 578900 3390276 Muridae Peromyscus boylii F 20020309 Jeff Davis 13 578859 3390298 Muridae Peromyscus boylii F 20020309 Jeff Davis 15 578859 3390298 Muridae Peromyscus boylii F 20010424 Jeff Davis 13 578760 3390322 Muridae Peromyscus boylii F 20010424 Jeff Davis 13 578760 3390322 Muridae Peromyscus boylii M 20010405 Jeff Davis 13 578411 3390325 Muridae Peromyscus boylii M 20010405 Jeff Davis 13 578411 3390325 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355

132

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355

133

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus boylii M 20010424 Jeff Davis 13 578695 3390405 Muridae Peromyscus boylii F 20010405 Jeff Davis 13 578375 3390458 Muridae Peromyscus boylii M 20010405 Jeff Davis 13 578375 3390458 Muridae Peromyscus boylii F 20010424 Jeff Davis 13 578663 3390479 Muridae Peromyscus boylii M 20010424 Jeff Davis 13 578663 3390479 Muridae Peromyscus boylii M 20010424 Jeff Davis 13 578663 3390479 Muridae Peromyscus boylii M 20010325 Jeff Davis 13 578487 3390530 Muridae Peromyscus boylii F 19980714 Jeff Davis 13 578487 3390530 Muridae Peromyscus boylii M 20010424 Jeff Davis 13 578533 3390589 Muridae Peromyscus boylii M 20010325 Jeff Davis 13 578545 3390590 Muridae Peromyscus boylii F 20010325 Jeff Davis 13 578545 3390590 Muridae Peromyscus boylii M 20020309 Jeff Davis 13 578692 3390621 Muridae Peromyscus boylii F 20010325 Jeff Davis 13 578653 3390684 Muridae Peromyscus boylii F 20010325 Jeff Davis 13 578653 3390684 Muridae Peromyscus boylii M 20010325 Jeff Davis 13 578653 3390684 Muridae Peromyscus boylii F 19980718 Jeff Davis 13 579162 3390779 Muridae Peromyscus boylii F 19980718 Jeff Davis 13 579162 3390779 Muridae Peromyscus boylii M 19980719 Jeff Davis 13 579162 3390779 Muridae Peromyscus boylii M 19980719 Jeff Davis 13 579162 3390779 Muridae Peromyscus boylii F 19980718 Jeff Davis 13 579162 3390779 Muridae Peromyscus boylii M 19980719 Jeff Davis 13 579162 3390779 Muridae Peromyscus boylii M 20010323 Jeff Davis 13 581310 3390917 Muridae Peromyscus boylii M 20010323 Jeff Davis 13 581376 3391078 Muridae Peromyscus boylii M 20010323 Jeff Davis 13 581376 3391078 Muridae Peromyscus boylii F 19980718 Jeff Davis 13 579859 3391131 Muridae Peromyscus boylii F 19980718 Jeff Davis 13 579859 3391131 Muridae Peromyscus boylii F 19980718 Jeff Davis 13 579859 3391131 Muridae Peromyscus boylii M 20010323 Jeff Davis 13 581449 3391200 Muridae Peromyscus boylii F 19980718 Jeff Davis 13 579019 3391209

134

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Peromyscus boylii M 20010323 Jeff Davis 13 581480 3391249 Muridae Peromyscus boylii M 19980718 Jeff Davis 13 579222 3391324 Muridae Peromyscus boylii F 19980718 Jeff Davis 13 579222 3391324 Muridae Peromyscus boylii M 20010325 Jeff Davis 13 579387 3391345 Muridae Peromyscus boylii F 20010325 Jeff Davis 13 579387 3391345 Muridae Peromyscus boylii M 20010325 Jeff Davis 13 579387 3391345 Muridae Peromyscus boylii U 20010325 Jeff Davis 13 579387 3391345 Muridae Peromyscus boylii M 20010323 Jeff Davis 13 581664 3391403 Muridae Peromyscus boylii M 20010323 Jeff Davis 13 581664 3391403 Muridae Peromyscus boylii U 20010324 Jeff Davis 13 581664 3391403 Muridae Peromyscus boylii M 20010322 Jeff Davis 13 581482 3391410 Muridae Peromyscus boylii F 20010325 Jeff Davis 13 579321 3391506 Muridae Peromyscus boylii M 20010325 Jeff Davis 13 579321 3391506 Muridae Peromyscus boylii M 19980718 Jeff Davis 13 579361 3391568 Muridae Peromyscus boylii M 19980718 Jeff Davis 13 579361 3391568 Muridae Peromyscus boylii F 20010322 Jeff Davis 13 581183 3391587 Muridae Peromyscus boylii M 20010323 Jeff Davis 13 580504 3391606 Muridae Peromyscus boylii U 20010323 Jeff Davis 13 580504 3391606 Muridae Peromyscus boylii F 20010323 Jeff Davis 13 580577 3391700 Muridae Peromyscus boylii M 20010323 Jeff Davis 13 580577 3391700 Muridae Peromyscus boylii U 20010323 Jeff Davis 13 580577 3391700 Muridae Peromyscus boylii F 20010323 Jeff Davis 13 580575 3391767 Muridae Peromyscus boylii M 20010323 Jeff Davis 13 580575 3391767 Muridae Peromyscus boylii M 20010322 Jeff Davis 13 581255 3391767 Muridae Peromyscus boylii F 20010317 Jeff Davis 13 580777 3391770 Muridae Peromyscus boylii M 19980716 Jeff Davis 13 579627 3391776 Muridae Peromyscus boylii M 19980717 Jeff Davis 13 579627 3391776 Muridae Peromyscus boylii M 19980719 Jeff Davis 13 579627 3391776 Muridae Peromyscus boylii F 19980715 Jeff Davis 13 579788 3391776 Muridae Peromyscus boylii M 19980716 Jeff Davis 13 579788 3391776 Muridae Peromyscus boylii M 19980716 Jeff Davis 13 579788 3391776 Muridae Peromyscus boylii F 20010322 Jeff Davis 13 580643 3391935 Muridae Peromyscus boylii F 20010322 Jeff Davis 13 580643 3391935 Muridae Peromyscus boylii F 20010322 Jeff Davis 13 580904 3391945 Muridae Peromyscus boylii M 19980716 Jeff Davis 13 579788 3392029 Muridae Peromyscus boylii M 19980715 Jeff Davis 13 579788 3392029 Muridae Peromyscus boylii M 19980716 Jeff Davis 13 579788 3392029 Muridae Peromyscus boylii F 19980717 Jeff Davis 13 580001 3392034 Muridae Peromyscus boylii F 19980717 Jeff Davis 13 580001 3392034 Muridae Peromyscus boylii F 19980717 Jeff Davis 13 580001 3392034 Muridae Peromyscus boylii M 19980717 Jeff Davis 13 580001 3392034 Muridae Peromyscus boylii M 19980717 Jeff Davis 13 580001 3392034 Muridae Peromyscus boylii F 19980717 Jeff Davis 13 579772 3392041 Muridae Peromyscus boylii F 19980717 Jeff Davis 13 579772 3392041 Muridae Peromyscus boylii M 19980717 Jeff Davis 13 579772 3392041 Muridae Peromyscus boylii M 19980715 Jeff Davis 13 579772 3392041 Muridae Peromyscus boylii M 19980715 Jeff Davis 13 579772 3392041 Muridae Peromyscus boylii F 20010317 Jeff Davis 13 580864 3392042 Muridae Peromyscus boylii M 20010317 Jeff Davis 13 580864 3392042 Muridae Peromyscus boylii F 20010323 Jeff Davis 13 580732 3392089 Muridae Peromyscus boylii F 20010626 Jeff Davis 13 580174 3392163 Muridae Peromyscus boylii M 19980716 Jeff Davis 13 580697 3392220

135

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Peromyscus boylii F 19990318 Jeff Davis 13 580965 3392241 Muridae Peromyscus boylii M 19990318 Jeff Davis 13 580965 3392241 Muridae Peromyscus boylii M 19981108 Jeff Davis 13 580970 3392241 Muridae Peromyscus boylii M 19981108 Jeff Davis 13 580970 3392241 Muridae Peromyscus boylii M 19980716 Jeff Davis 13 580141 3392333 Muridae Peromyscus boylii M 20010322 Jeff Davis 13 580966 3392420 Muridae Peromyscus boylii M 19980716 Jeff Davis 13 579990 3392481 Muridae Peromyscus boylii M 19980716 Jeff Davis 13 579990 3392481 Muridae Peromyscus boylii F 19990318 Jeff Davis 13 580634 3392612 Muridae Peromyscus boylii M 19990318 Jeff Davis 13 580634 3392612 Muridae Peromyscus boylii M 19990318 Jeff Davis 13 580634 3392612 Muridae Peromyscus boylii M 19990318 Jeff Davis 13 580634 3392612 Muridae Peromyscus boylii M 19990318 Jeff Davis 13 580634 3392612 Muridae Peromyscus boylii M 19990318 Jeff Davis 13 580634 3392612 Muridae Peromyscus boylii M 19990318 Jeff Davis 13 580634 3392612 Muridae Peromyscus boylii M 19990722 Jeff Davis 13 580656 3392637 Muridae Peromyscus boylii M 19990722 Jeff Davis 13 580656 3392637 Muridae Peromyscus boylii M 19990722 Jeff Davis 13 580656 3392637 Muridae Peromyscus boylii M 19990722 Jeff Davis 13 580656 3392637 Muridae Peromyscus boylii F 19990722 Jeff Davis 13 580656 3392637 Muridae Peromyscus boylii F 19990722 Jeff Davis 13 580656 3392637 Muridae Peromyscus boylii F 19990722 Jeff Davis 13 580656 3392637 Muridae Peromyscus boylii F 19990722 Jeff Davis 13 580656 3392637 Muridae Peromyscus boylii F 19990722 Jeff Davis 13 580656 3392637 Muridae Peromyscus boylii F 19990722 Jeff Davis 13 580656 3392637 Muridae Peromyscus boylii F 20010316 Jeff Davis 13 583724 3392726 Muridae Peromyscus boylii M 20010316 Jeff Davis 13 583724 3392726 Muridae Peromyscus boylii F 20010315 Jeff Davis 13 583731 3392824 Muridae Peromyscus boylii M 20010316 Jeff Davis 13 583731 3392824 Muridae Peromyscus boylii F 20010315 Jeff Davis 13 584004 3392864 Muridae Peromyscus boylii M 19980715 Jeff Davis 13 581234 3392927 Muridae Peromyscus boylii F 19980714 Jeff Davis 13 581234 3392927 Muridae Peromyscus boylii M 19980713 Jeff Davis 13 581234 3392927 Muridae Peromyscus boylii M 19980715 Jeff Davis 13 581234 3392927 Muridae Peromyscus boylii M 20010324 Jeff Davis 13 581757 3392969 Muridae Peromyscus boylii F 20010315 Jeff Davis 13 583933 3393012 Muridae Peromyscus boylii M 20010315 Jeff Davis 13 583933 3393012 Muridae Peromyscus boylii M 20010324 Jeff Davis 13 581584 3393056 Muridae Peromyscus boylii M 19990722 Jeff Davis 13 581557 3393136 Muridae Peromyscus boylii M 19990722 Jeff Davis 13 581557 3393136 Muridae Peromyscus boylii M 19990722 Jeff Davis 13 581557 3393136 Muridae Peromyscus boylii M 19990722 Jeff Davis 13 581557 3393136 Muridae Peromyscus boylii M 19990722 Jeff Davis 13 581557 3393136 Muridae Peromyscus boylii F 19990722 Jeff Davis 13 581557 3393136 Muridae Peromyscus boylii F 19990722 Jeff Davis 13 581557 3393136 Muridae Peromyscus boylii F 19990722 Jeff Davis 13 581557 3393136 Muridae Peromyscus boylii M 19990722 Jeff Davis 13 581796 3393238 Muridae Peromyscus boylii M 20000922 Jeff Davis 13 584171 3393435 Muridae Peromyscus boylii M 20000922 Jeff Davis 13 584108 3393466 Muridae Peromyscus boylii F 20000922 Jeff Davis 13 584130 3393486 Muridae Peromyscus boylii F 19980715 Jeff Davis 13 582083 3393511 Muridae Peromyscus boylii F 19990715 Jeff Davis 13 582083 3393511

136

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Peromyscus boylii M 19980715 Jeff Davis 13 582083 3393511 Muridae Peromyscus boylii M 19980715 Jeff Davis 13 582083 3393511 Muridae Peromyscus boylii M 19990715 Jeff Davis 13 582083 3393511 Muridae Peromyscus boylii M 19990715 Jeff Davis 13 582083 3393511 Muridae Peromyscus boylii M 20000922 Jeff Davis 13 584095 3393526 Muridae Peromyscus boylii M 20000922 Jeff Davis 13 584095 3393526 Muridae Peromyscus boylii F 20000920 Jeff Davis 13 584269 3393610 Muridae Peromyscus boylii M 19990722 Jeff Davis 13 582273 3393650 Muridae Peromyscus boylii F 19990722 Jeff Davis 13 582273 3393650 Muridae Peromyscus boylii F 19990722 Jeff Davis 13 582273 3393650 Muridae Peromyscus boylii F 20000920 Jeff Davis 13 583792 3393657 Muridae Peromyscus boylii F 20000922 Jeff Davis 13 584129 3393672 Muridae Peromyscus boylii M 19980715 Jeff Davis 13 582570 3393690 Muridae Peromyscus boylii M 19980715 Jeff Davis 13 582272 3393696 Muridae Peromyscus boylii M 20000920 Jeff Davis 13 584341 3393736 Muridae Peromyscus boylii F 20000920 Jeff Davis 13 584341 3393736 Muridae Peromyscus boylii F 20000920 Jeff Davis 13 584090 3393758 Muridae Peromyscus boylii F 20010810 Jeff Davis 13 580245 3393900 Muridae Peromyscus boylii M 19990722 Jeff Davis 13 582636 3393965 Muridae Peromyscus boylii M 19990722 Jeff Davis 13 582636 3393965 Muridae Peromyscus boylii M 19990722 Jeff Davis 13 582636 3393965 Muridae Peromyscus boylii F 19990722 Jeff Davis 13 582636 3393965 Muridae Peromyscus boylii F 19990722 Jeff Davis 13 582636 3393965 Muridae Peromyscus boylii M 19981108 Jeff Davis 13 583865 3394042 Muridae Peromyscus boylii F 19990316 Jeff Davis 13 580285 3394091 Muridae Peromyscus boylii F 19990316 Jeff Davis 13 580285 3394091 Muridae Peromyscus boylii M 19990316 Jeff Davis 13 580285 3394091 Muridae Peromyscus boylii M 19981108 Jeff Davis 13 583884 3394091 Muridae Peromyscus boylii F 19981108 Jeff Davis 13 583884 3394091 Muridae Peromyscus boylii M 20010810 Jeff Davis 13 580995 3394300 Muridae Peromyscus boylii F 19990722 Jeff Davis 13 582566 3394302 Muridae Peromyscus boylii M 19990721 Jeff Davis 13 584245 3394313 Muridae Peromyscus boylii M 19990723 Jeff Davis 13 584245 3394313 Muridae Peromyscus boylii M 19990724 Jeff Davis 13 584245 3394313 Muridae Peromyscus boylii M 19990724 Jeff Davis 13 584245 3394313 Muridae Peromyscus boylii M 19990724 Jeff Davis 13 584245 3394313 Muridae Peromyscus boylii F 19990724 Jeff Davis 13 584245 3394313 Muridae Peromyscus boylii F 19990724 Jeff Davis 13 584245 3394313 Muridae Peromyscus boylii M 20010810 Jeff Davis 13 581390 3394421 Muridae Peromyscus boylii M 19990724 Jeff Davis 13 584070 3394556 Muridae Peromyscus boylii M 19990724 Jeff Davis 13 584070 3394556 Muridae Peromyscus boylii F 20000920 Jeff Davis 13 584143 3394741 Muridae Peromyscus boylii M 19990724 Jeff Davis 13 583971 3394746 Muridae Peromyscus boylii F 19990724 Jeff Davis 13 583971 3394746 Muridae Peromyscus boylii F 19990724 Jeff Davis 13 583971 3394746 Muridae Peromyscus boylii F 19990724 Jeff Davis 13 583971 3394746 Muridae Peromyscus boylii M 19990724 Jeff Davis 13 584012 3394811 Muridae Peromyscus boylii M 19990724 Jeff Davis 13 584012 3394811 Muridae Peromyscus boylii F 19990724 Jeff Davis 13 584012 3394811 Muridae Peromyscus boylii M 19990724 Jeff Davis 13 583923 3394960 Muridae Peromyscus boylii M 19990724 Jeff Davis 13 583923 3394960 Muridae Peromyscus boylii F 19990724 Jeff Davis 13 583923 3394960

137

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Peromyscus boylii F 19980714 Jeff Davis 13 583967 3395092 Muridae Peromyscus boylii M 19980715 Jeff Davis 13 583967 3395092 Muridae Peromyscus boylii M 19980717 Jeff Davis 13 583967 3395092 Muridae Peromyscus boylii M 20000213 Jeff Davis 13 584335 3396144 Muridae Peromyscus boylii M 20000213 Jeff Davis 13 584335 3396144 Muridae Peromyscus boylii M 20000213 Jeff Davis 13 584335 3396144 Muridae Peromyscus boylii M 20000213 Jeff Davis 13 584335 3396144 Muridae Peromyscus boylii M 20000213 Jeff Davis 13 584335 3396144 Muridae Peromyscus boylii M 20000213 Jeff Davis 13 584335 3396144 Muridae Peromyscus boylii M 20000213 Jeff Davis 13 584335 3396144 Muridae Peromyscus boylii M 20000213 Jeff Davis 13 584335 3396144 Muridae Peromyscus boylii M 20000214 Jeff Davis 13 584335 3396144 Muridae Peromyscus boylii F 20000213 Jeff Davis 13 584335 3396144 Muridae Peromyscus boylii F 20000213 Jeff Davis 13 584335 3396144 Muridae Peromyscus boylii F 20000213 Jeff Davis 13 584335 3396144 Muridae Peromyscus boylii F 20000213 Jeff Davis 13 584335 3396144 Muridae Peromyscus boylii M 20000927 Jeff Davis 13 583778 3396180 Muridae Peromyscus boylii F 20000927 Jeff Davis 13 583778 3396180 Muridae Peromyscus boylii M 20000216 Jeff Davis 13 584739 3396199 Muridae Peromyscus boylii M 20000216 Jeff Davis 13 584739 3396199 Muridae Peromyscus boylii F 19980713 Jeff Davis 13 583765 3396289 Muridae Peromyscus boylii F 19980714 Jeff Davis 13 583765 3396289 Muridae Peromyscus boylii F 19980715 Jeff Davis 13 583765 3396289 Muridae Peromyscus boylii M 19980714 Jeff Davis 13 583765 3396289 Muridae Peromyscus boylii F 19980714 Jeff Davis 13 584614 3396400 Muridae Peromyscus boylii F 19980715 Jeff Davis 13 584614 3396400 Muridae Peromyscus boylii F 19980716 Jeff Davis 13 584614 3396400 Muridae Peromyscus boylii M 19980715 Jeff Davis 13 584519 3396419 Muridae Peromyscus boylii M 19980713 Jeff Davis 13 584519 3396419 Muridae Peromyscus boylii M 19980715 Jeff Davis 13 584519 3396419 Muridae Peromyscus boylii M 19980715 Jeff Davis 13 584519 3396419 Muridae Peromyscus boylii M 19980715 Jeff Davis 13 584519 3396419 Muridae Peromyscus boylii M 19980715 Jeff Davis 13 584519 3396419 Muridae Peromyscus boylii M 19980713 Jeff Davis 13 585119 3396424 Muridae Peromyscus boylii F 20010315 Jeff Davis 13 584579 3396435 Muridae Peromyscus boylii F 19980713 Jeff Davis 13 584684 3396503 Muridae Peromyscus boylii M 19980714 Jeff Davis 13 584692 3396504 Muridae Peromyscus boylii F 19980714 Jeff Davis 13 584692 3396504 Muridae Peromyscus boylii M 19980714 Jeff Davis 13 584692 3396504 Muridae Peromyscus boylii M 19980714 Jeff Davis 13 584128 3396517 Muridae Peromyscus boylii F 19980714 Jeff Davis 13 584128 3396517 Muridae Peromyscus boylii M 19980713 Jeff Davis 13 584128 3396517 Muridae Peromyscus boylii M 19980713 Jeff Davis 13 584128 3396517 Muridae Peromyscus boylii M 19990721 Jeff Davis 13 584596 3396540 Muridae Peromyscus boylii F 19990722 Jeff Davis 13 584596 3396540 Muridae Peromyscus boylii F 19990722 Jeff Davis 13 584596 3396540 Muridae Peromyscus boylii F 19990722 Jeff Davis 13 584596 3396540 Muridae Peromyscus boylii F 20000215 Jeff Davis 13 584754 3396568 Muridae Peromyscus boylii M 20000215 Jeff Davis 13 584754 3396568 Muridae Peromyscus boylii M 20000215 Jeff Davis 13 584754 3396568 Muridae Peromyscus boylii M 20000215 Jeff Davis 13 584754 3396568 Muridae Peromyscus boylii M 20000216 Jeff Davis 13 584754 3396568

138

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Peromyscus boylii M 20000216 Jeff Davis 13 584754 3396568 Muridae Peromyscus boylii F 20000215 Jeff Davis 13 584754 3396568 Muridae Peromyscus boylii F 20000216 Jeff Davis 13 584754 3396568 Muridae Peromyscus boylii F 19990316 Jeff Davis 13 584680 3396664 Muridae Peromyscus boylii M 19990317 Jeff Davis 13 584680 3396664 Muridae Peromyscus boylii M 19990317 Jeff Davis 13 584680 3396664 Muridae Peromyscus boylii M 19980713 Jeff Davis 13 584033 3396685 Muridae Peromyscus boylii F 20000929 Jeff Davis 13 583502 3396816 Muridae Peromyscus boylii F 20000929 Jeff Davis 13 583502 3396816 Muridae Peromyscus boylii F 20000929 Jeff Davis 13 583422 3396869 Muridae Peromyscus boylii M 20000929 Jeff Davis 13 583422 3396869 Muridae Peromyscus boylii F 20000929 Jeff Davis 13 583530 3396895 Muridae Peromyscus boylii M 20000214 Jeff Davis 13 584204 3397373 Muridae Peromyscus boylii M 20000214 Jeff Davis 13 583960 3397680 Muridae Peromyscus boylii F 20000214 Jeff Davis 13 583960 3397680 Muridae Peromyscus boylii F 20000214 Jeff Davis 13 583960 3397680 Muridae Peromyscus boylii M 20000214 Jeff Davis 13 583960 3397680 Muridae Peromyscus eremicus F 20010518 Jeff Davis 13 609836 3422829 Muridae Peromyscus eremicus M 20010515 Reeves 13 616077 3423729 Muridae Peromyscus eremicus F 20010514 Reeves 13 616077 3423729 Muridae Peromyscus eremicus M 20010513 Reeves 13 615983 3423790 Muridae Peromyscus eremicus M 20010514 Reeves 13 616323 3423938 Muridae Peromyscus eremicus M 20001113 Reeves 13 616009 3424014 Muridae Peromyscus eremicus F 19981228 Reeves 13 616250 3424184 Muridae Peromyscus eremicus F 20020415 Reeves 13 621691 3428625 Muridae Peromyscus eremicus F 20020415 Reeves 13 621779 3428629 Muridae Peromyscus eremicus M 20020415 Reeves 13 621530 3428693 Muridae Peromyscus eremicus M 20020421 Reeves 13 621778 3428820 Muridae Peromyscus eremicus F 20020422 Reeves 13 621450 3428956 Muridae Peromyscus leucopus M 19980528 Jeff Davis 13 602622 3385346 Muridae Peromyscus leucopus F 19980627 Jeff Davis 13 602691 3385557 Muridae Peromyscus leucopus M 19980801 Jeff Davis 13 603697 3385632 Muridae Peromyscus leucopus M 19980619 Jeff Davis 13 602966 3385843 Muridae Peromyscus leucopus M 19980620 Jeff Davis 13 602966 3385843 Muridae Peromyscus leucopus F 19980619 Jeff Davis 13 602966 3385843 Muridae Peromyscus leucopus F 19980619 Jeff Davis 13 602966 3385843 Muridae Peromyscus leucopus F 19980619 Jeff Davis 13 602914 3385868 Muridae Peromyscus leucopus F 19990117 Jeff Davis 13 603004 3385935 Muridae Peromyscus leucopus F 19990117 Jeff Davis 13 603004 3385935 Muridae Peromyscus leucopus M 19990117 Jeff Davis 13 603004 3385935 Muridae Peromyscus leucopus M 19980620 Jeff Davis 13 604047 3385954 Muridae Peromyscus leucopus F 19980621 Jeff Davis 13 604047 3385954 Muridae Peromyscus leucopus M 20010223 Jeff Davis 13 601803 3386074 Muridae Peromyscus leucopus F 20000227 Jeff Davis 13 604385 3386234 Muridae Peromyscus leucopus M 19991126 Jeff Davis 13 603050 3386258 Muridae Peromyscus leucopus M 20010223 Jeff Davis 13 601745 3386378 Muridae Peromyscus leucopus M 19980713 Jeff Davis 13 585119 3396424 Muridae Peromyscus leucopus M 19980713 Jeff Davis 13 585119 3396424 Muridae Peromyscus leucopus F 19980714 Jeff Davis 13 584692 3396504 Muridae Peromyscus leucopus F 20001113 Reeves 13 616009 3424014 Muridae Peromyscus maniculatus M 20010226 Jeff Davis 13 603176 3385792 Muridae Peromyscus maniculatus F 19990117 Jeff Davis 13 603004 3385935

139

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Peromyscus maniculatus M 19990117 Jeff Davis 13 603004 3385935 Muridae Peromyscus maniculatus M 19990117 Jeff Davis 13 603004 3385935 Muridae Peromyscus maniculatus M 19990117 Jeff Davis 13 603004 3385935 Muridae Peromyscus maniculatus F 19990117 Jeff Davis 13 603004 3385935 Muridae Peromyscus maniculatus F 19990117 Jeff Davis 13 603004 3385935 Muridae Peromyscus maniculatus F 19990117 Jeff Davis 13 603004 3385935 Muridae Peromyscus maniculatus M 19990117 Jeff Davis 13 603004 3385935 Muridae Peromyscus maniculatus M 19990117 Jeff Davis 13 603004 3385935 Muridae Peromyscus maniculatus F 20010225 Jeff Davis 13 602211 3386161 Muridae Peromyscus maniculatus M 20010225 Jeff Davis 13 602211 3386161 Muridae Peromyscus maniculatus F 20010208 Jeff Davis 13 602421 3386971 Muridae Peromyscus maniculatus M 20010208 Jeff Davis 13 602421 3386971 Muridae Peromyscus maniculatus M 20010208 Jeff Davis 13 602421 3386971 Muridae Peromyscus maniculatus M 20010122 Jeff Davis 13 601931 3388086 Muridae Peromyscus maniculatus M 20010201 Jeff Davis 13 602327 3388700 Muridae Peromyscus maniculatus M 20010201 Jeff Davis 13 602277 3388799 Muridae Peromyscus nasutus F 20010528 Jeff Davis 13 578925 3389698 Muridae Peromyscus nasutus M 20010516 Jeff Davis 13 578880 3389701 Muridae Peromyscus nasutus F 19981107 Jeff Davis 13 579953 3389871 Muridae Peromyscus nasutus F 19981108 Jeff Davis 13 579953 3389871 Muridae Peromyscus nasutus F 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus nasutus F 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus nasutus F 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus nasutus F 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus nasutus F 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus nasutus F 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus nasutus F 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus nasutus M 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus nasutus M 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus nasutus M 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus nasutus M 19990316 Jeff Davis 13 579953 3389871 Muridae Peromyscus nasutus M 20020317 Jeff Davis 13 579244 3389888 Muridae Peromyscus nasutus M 20020317 Jeff Davis 13 579244 3389888 Muridae Peromyscus nasutus M 20020317 Jeff Davis 13 578969 3389891 Muridae Peromyscus nasutus M 20020317 Jeff Davis 13 578937 3389893 Muridae Peromyscus nasutus F 20020317 Jeff Davis 13 579190 3389899 Muridae Peromyscus nasutus F 20020317 Jeff Davis 13 579190 3389899 Muridae Peromyscus nasutus M 20020317 Jeff Davis 13 579190 3389899 Muridae Peromyscus nasutus M 20020317 Jeff Davis 13 579190 3389899 Muridae Peromyscus nasutus M 20020317 Jeff Davis 13 578950 3389900 Muridae Peromyscus nasutus M 20020317 Jeff Davis 13 578950 3389900 Muridae Peromyscus nasutus F 20020317 Jeff Davis 13 578912 3389907 Muridae Peromyscus nasutus M 20020311 Jeff Davis 13 579284 3389927 Muridae Peromyscus nasutus M 20020317 Jeff Davis 13 579284 3389927 Muridae Peromyscus nasutus M 20020317 Jeff Davis 13 578945 3389929 Muridae Peromyscus nasutus F 20020309 Jeff Davis 13 578988 3389972 Muridae Peromyscus nasutus M 20020309 Jeff Davis 13 578988 3389972 Muridae Peromyscus nasutus M 20020309 Jeff Davis 13 578988 3389972 Muridae Peromyscus nasutus F 20020317 Jeff Davis 13 578971 3389991 Muridae Peromyscus nasutus M 20020309 Jeff Davis 13 578972 3390018 Muridae Peromyscus nasutus M 20020312 Jeff Davis 13 578883 3390192 Muridae Peromyscus nasutus F 20020309 Jeff Davis 13 578891 3390197

140

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Peromyscus nasutus M 20020309 Jeff Davis 13 578891 3390197 Muridae Peromyscus nasutus M 20020309 Jeff Davis 14 579020 3390230 Muridae Peromyscus nasutus M 20020309 Jeff Davis 13 578854 3390234 Muridae Peromyscus nasutus M 20010405 Jeff Davis 13 578242 3390239 Muridae Peromyscus nasutus M 19981107 Jeff Davis 13 580285 3390250 Muridae Peromyscus nasutus F 19980717 Jeff Davis 13 580253 3390273 Muridae Peromyscus nasutus M 20010405 Jeff Davis 13 578379 3390285 Muridae Peromyscus nasutus M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus nasutus F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus nasutus M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus nasutus M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus nasutus M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus nasutus M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus nasutus F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus nasutus F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus nasutus F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus nasutus F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus nasutus F 20010201 Jeff Davis 13 578261 3390366 Muridae Peromyscus nasutus F 20010323 Jeff Davis 13 580526 3391601 Muridae Peromyscus nasutus F 20010323 Jeff Davis 13 580526 3391601 Muridae Peromyscus nasutus F 20010323 Jeff Davis 13 580526 3391601 Muridae Peromyscus nasutus M 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus nasutus F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus nasutus F 19990723 Jeff Davis 13 580230 3390355 Muridae Peromyscus pectoralis M 20001012 Jeff Davis 13 601255 3384250 Muridae Peromyscus pectoralis M 20010307 Jeff Davis 13 601376 3384350 Muridae Peromyscus pectoralis F 20010307 Jeff Davis 13 601376 3384350 Muridae Peromyscus pectoralis F 20010309 Jeff Davis 13 602819 3384409 Muridae Peromyscus pectoralis M 20010308 Jeff Davis 13 602296 3384423 Muridae Peromyscus pectoralis M 20010308 Jeff Davis 13 602296 3384423 Muridae Peromyscus pectoralis M 20010308 Jeff Davis 13 602414 3384447 Muridae Peromyscus pectoralis M 20010308 Jeff Davis 13 602414 3384447 Muridae Peromyscus pectoralis M 20010308 Jeff Davis 13 602414 3384447 Muridae Peromyscus pectoralis F 20010307 Jeff Davis 13 601292 3384449 Muridae Peromyscus pectoralis F 20010309 Jeff Davis 13 602912 3384458 Muridae Peromyscus pectoralis F 20010309 Jeff Davis 13 602912 3384458 Muridae Peromyscus pectoralis M 20010309 Jeff Davis 13 602912 3384458 Muridae Peromyscus pectoralis M 20010308 Jeff Davis 13 602547 3384576 Muridae Peromyscus pectoralis F 20001012 Jeff Davis 13 601006 3384609 Muridae Peromyscus pectoralis M 20001012 Jeff Davis 13 601006 3384609 Muridae Peromyscus pectoralis M 19980618 Jeff Davis 13 601053 3384633 Muridae Peromyscus pectoralis F 19980618 Jeff Davis 13 601053 3384633 Muridae Peromyscus pectoralis M 19980713 Jeff Davis 13 600949 3384636 Muridae Peromyscus pectoralis M 20010311 Jeff Davis 13 603290 3384713 Muridae Peromyscus pectoralis F 20000229 Jeff Davis 13 602180 3384770 Muridae Peromyscus pectoralis M 20000229 Jeff Davis 13 602180 3384770 Muridae Peromyscus pectoralis M 20010307 Jeff Davis 13 602454 3384814 Muridae Peromyscus pectoralis M 20010311 Jeff Davis 13 603424 3384839 Muridae Peromyscus pectoralis M 20000229 Jeff Davis 13 602172 3384895 Muridae Peromyscus pectoralis M 20000229 Jeff Davis 13 602172 3384895 Muridae Peromyscus pectoralis M 20010310 Jeff Davis 13 603505 3384926 Muridae Peromyscus pectoralis F 20010310 Jeff Davis 13 603442 3384927

141

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Peromyscus pectoralis M 20010307 Jeff Davis 13 602453 3384931 Muridae Peromyscus pectoralis F 20010307 Jeff Davis 13 602453 3384931 Muridae Peromyscus pectoralis F 20010308 Jeff Davis 13 602665 3384943 Muridae Peromyscus pectoralis M 20010308 Jeff Davis 13 602639 3384994 Muridae Peromyscus pectoralis F 20010310 Jeff Davis 13 603463 3385089 Muridae Peromyscus pectoralis M 19980801 Jeff Davis 13 602610 3385113 Muridae Peromyscus pectoralis M 19980710 Jeff Davis 13 602610 3385113 Muridae Peromyscus pectoralis F 19980528 Jeff Davis 13 602610 3385113 Muridae Peromyscus pectoralis M 19980618 Jeff Davis 13 601079 3385192 Muridae Peromyscus pectoralis M 19980618 Jeff Davis 13 601079 3385192 Muridae Peromyscus pectoralis F 19980618 Jeff Davis 13 601079 3385192 Muridae Peromyscus pectoralis F 19980618 Jeff Davis 13 601079 3385192 Muridae Peromyscus pectoralis F 19980618 Jeff Davis 13 601079 3385192 Muridae Peromyscus pectoralis M 20000208 Jeff Davis 13 602327 3385273 Muridae Peromyscus pectoralis M 20000225 Jeff Davis 13 602327 3385273 Muridae Peromyscus pectoralis M 20000225 Jeff Davis 13 602327 3385273 Muridae Peromyscus pectoralis M 20000225 Jeff Davis 13 602327 3385273 Muridae Peromyscus pectoralis M 20000225 Jeff Davis 13 602327 3385273 Muridae Peromyscus pectoralis F 20000208 Jeff Davis 13 602327 3385273 Muridae Peromyscus pectoralis F 20000225 Jeff Davis 13 602327 3385273 Muridae Peromyscus pectoralis F 19991121 Jeff Davis 13 601408 3385319 Muridae Peromyscus pectoralis F 19991122 Jeff Davis 13 601408 3385319 Muridae Peromyscus pectoralis M 19991121 Jeff Davis 13 601408 3385319 Muridae Peromyscus pectoralis M 19991121 Jeff Davis 13 601408 3385319 Muridae Peromyscus pectoralis M 20010307 Jeff Davis 13 601691 3385329 Muridae Peromyscus pectoralis M 20010310 Jeff Davis 13 603979 3385335 Muridae Peromyscus pectoralis M 20010310 Jeff Davis 13 603979 3385335 Muridae Peromyscus pectoralis F 20010310 Jeff Davis 13 603979 3385335 Muridae Peromyscus pectoralis M 20010310 Jeff Davis 13 604061 3385336 Muridae Peromyscus pectoralis M 20010310 Jeff Davis 13 604061 3385336 Muridae Peromyscus pectoralis M 19980617 Jeff Davis 13 602622 3385346 Muridae Peromyscus pectoralis M 20010307 Jeff Davis 13 601731 3385357 Muridae Peromyscus pectoralis U 20010307 Jeff Davis 13 601731 3385357 Muridae Peromyscus pectoralis F 20010307 Jeff Davis 13 601683 3385370 Muridae Peromyscus pectoralis F 20010307 Jeff Davis 13 601683 3385370 Muridae Peromyscus pectoralis M 20010307 Jeff Davis 13 601683 3385370 Muridae Peromyscus pectoralis M 19980523 Jeff Davis 13 603346 3385378 Muridae Peromyscus pectoralis M 19980523 Jeff Davis 13 603346 3385378 Muridae Peromyscus pectoralis M 19980523 Jeff Davis 13 603346 3385378 Muridae Peromyscus pectoralis M 19980523 Jeff Davis 13 603346 3385378 Muridae Peromyscus pectoralis M 19980523 Jeff Davis 13 603346 3385378 Muridae Peromyscus pectoralis F 19980523 Jeff Davis 13 603346 3385378 Muridae Peromyscus pectoralis F 19980523 Jeff Davis 13 603346 3385378 Muridae Peromyscus pectoralis F 19980523 Jeff Davis 13 603346 3385378 Muridae Peromyscus pectoralis F 19980523 Jeff Davis 13 603346 3385378 Muridae Peromyscus pectoralis F 19980523 Jeff Davis 13 603346 3385378 Muridae Peromyscus pectoralis M 20010310 Jeff Davis 13 604004 3385400 Muridae Peromyscus pectoralis F 20010311 Jeff Davis 13 602130 3385438 Muridae Peromyscus pectoralis M 19980627 Jeff Davis 13 602914 3385463 Muridae Peromyscus pectoralis M 19980627 Jeff Davis 13 602914 3385463 Muridae Peromyscus pectoralis F 19980627 Jeff Davis 13 602914 3385463 Muridae Peromyscus pectoralis F 19980627 Jeff Davis 13 602914 3385463

142

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Peromyscus pectoralis M 20010227 Jeff Davis 13 603684 3385483 Muridae Peromyscus pectoralis M 20010227 Jeff Davis 13 603704 3385489 Muridae Peromyscus pectoralis F 20010228 Jeff Davis 13 603114 3385522 Muridae Peromyscus pectoralis M 20010310 Jeff Davis 13 604340 3385542 Muridae Peromyscus pectoralis M 20010310 Jeff Davis 13 604340 3385542 Muridae Peromyscus pectoralis M 20010228 Jeff Davis 13 603326 3385544 Muridae Peromyscus pectoralis M 19980627 Jeff Davis 13 602691 3385557 Muridae Peromyscus pectoralis M 20010228 Jeff Davis 13 603116 3385572 Muridae Peromyscus pectoralis M 20010309 Jeff Davis 13 604704 3385577 Muridae Peromyscus pectoralis F 20010309 Jeff Davis 13 604930 3385614 Muridae Peromyscus pectoralis M 20010228 Jeff Davis 13 603307 3385616 Muridae Peromyscus pectoralis M 19980527 Jeff Davis 13 604326 3385645 Muridae Peromyscus pectoralis F 20010227 Jeff Davis 13 603660 3385663 Muridae Peromyscus pectoralis M 20010227 Jeff Davis 13 603660 3385663 Muridae Peromyscus pectoralis F 20010309 Jeff Davis 13 604596 3385671 Muridae Peromyscus pectoralis M 20010309 Jeff Davis 13 604596 3385671 Muridae Peromyscus pectoralis M 20010228 Jeff Davis 13 603097 3385686 Muridae Peromyscus pectoralis M 20001005 Jeff Davis 13 603632 3385791 Muridae Peromyscus pectoralis F 20001005 Jeff Davis 13 603632 3385791 Muridae Peromyscus pectoralis F 20001005 Jeff Davis 13 603632 3385791 Muridae Peromyscus pectoralis M 20001005 Jeff Davis 13 603632 3385791 Muridae Peromyscus pectoralis F 20010226 Jeff Davis 13 603109 3385792 Muridae Peromyscus pectoralis F 20010226 Jeff Davis 13 603176 3385792 Muridae Peromyscus pectoralis M 20010226 Jeff Davis 13 603176 3385792 Muridae Peromyscus pectoralis M 20010226 Jeff Davis 13 603713 3385792 Muridae Peromyscus pectoralis M 20000207 Jeff Davis 13 602948 3385795 Muridae Peromyscus pectoralis M 20010225 Jeff Davis 13 602371 3385799 Muridae Peromyscus pectoralis F 20010225 Jeff Davis 13 602371 3385799 Muridae Peromyscus pectoralis M 20010228 Jeff Davis 13 604261 3385812 Muridae Peromyscus pectoralis F 19981009 Jeff Davis 13 603848 3385816 Muridae Peromyscus pectoralis M 20010225 Jeff Davis 13 602336 3385831 Muridae Peromyscus pectoralis F 20010225 Jeff Davis 13 602336 3385831 Muridae Peromyscus pectoralis M 20010225 Jeff Davis 13 602336 3385831 Muridae Peromyscus pectoralis F 20010228 Jeff Davis 13 604316 3385839 Muridae Peromyscus pectoralis M 19991125 Jeff Davis 13 604039 3385867 Muridae Peromyscus pectoralis M 19991125 Jeff Davis 13 604039 3385867 Muridae Peromyscus pectoralis M 20010311 Jeff Davis 13 602076 3385869 Muridae Peromyscus pectoralis U 20010311 Jeff Davis 13 602076 3385869 Muridae Peromyscus pectoralis F 20010226 Jeff Davis 13 603450 3385883 Muridae Peromyscus pectoralis M 20010226 Jeff Davis 13 603450 3385883 Muridae Peromyscus pectoralis M 20010224 Jeff Davis 13 601855 3385890 Muridae Peromyscus pectoralis M 20010224 Jeff Davis 13 601843 3385949 Muridae Peromyscus pectoralis M 20010224 Jeff Davis 13 601843 3385949 Muridae Peromyscus pectoralis M 19990516 Jeff Davis 13 603887 3385960 Muridae Peromyscus pectoralis F 20000205 Jeff Davis 13 602946 3386011 Muridae Peromyscus pectoralis M 20000205 Jeff Davis 13 602946 3386011 Muridae Peromyscus pectoralis M 20000207 Jeff Davis 13 602946 3386011 Muridae Peromyscus pectoralis M 20010226 Jeff Davis 13 603397 3386067 Muridae Peromyscus pectoralis F 20010224 Jeff Davis 13 601564 3386069 Muridae Peromyscus pectoralis M 20010224 Jeff Davis 13 601564 3386069 Muridae Peromyscus pectoralis M 20010227 Jeff Davis 13 604737 3386101 Muridae Peromyscus pectoralis M 20000205 Jeff Davis 13 602971 3386134

143

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Peromyscus pectoralis F 20010224 Jeff Davis 13 601561 3386152 Muridae Peromyscus pectoralis M 20010224 Jeff Davis 13 601561 3386152 Muridae Peromyscus pectoralis M 20010224 Jeff Davis 13 601561 3386152 Muridae Peromyscus pectoralis M 20010202 Jeff Davis 13 602281 3386210 Muridae Peromyscus pectoralis M 20010224 Jeff Davis 13 601677 3386259 Muridae Peromyscus pectoralis F 20010224 Jeff Davis 13 601677 3386259 Muridae Peromyscus pectoralis F 20010224 Jeff Davis 13 601677 3386259 Muridae Peromyscus pectoralis M 20000227 Jeff Davis 13 604385 3386284 Muridae Peromyscus pectoralis F 20000228 Jeff Davis 13 604425 3386304 Muridae Peromyscus pectoralis F 20000227 Jeff Davis 13 603870 3386321 Muridae Peromyscus pectoralis M 20000227 Jeff Davis 13 603870 3386321 Muridae Peromyscus pectoralis M 20000228 Jeff Davis 13 603870 3386321 Muridae Peromyscus pectoralis M 20000227 Jeff Davis 13 604113 3386331 Muridae Peromyscus pectoralis F 20010214 Jeff Davis 13 603087 3386384 Muridae Peromyscus pectoralis M 20010214 Jeff Davis 13 603087 3386384 Muridae Peromyscus pectoralis F 20010211 Jeff Davis 13 603075 3386389 Muridae Peromyscus pectoralis M 20010211 Jeff Davis 13 603121 3386393 Muridae Peromyscus pectoralis F 20010224 Jeff Davis 13 601864 3386407 Muridae Peromyscus pectoralis M 20010224 Jeff Davis 13 601864 3386407 Muridae Peromyscus pectoralis F 20010223 Jeff Davis 13 601774 3386438 Muridae Peromyscus pectoralis M 20010223 Jeff Davis 13 601774 3386438 Muridae Peromyscus pectoralis F 20010222 Jeff Davis 13 601376 3386445 Muridae Peromyscus pectoralis M 20010222 Jeff Davis 13 601376 3386445 Muridae Peromyscus pectoralis F 20010214 Jeff Davis 13 603422 3386453 Muridae Peromyscus pectoralis F 20010214 Jeff Davis 13 603422 3386453 Muridae Peromyscus pectoralis M 20010214 Jeff Davis 13 603469 3386454 Muridae Peromyscus pectoralis M 20010222 Jeff Davis 13 601439 3386485 Muridae Peromyscus pectoralis F 20010222 Jeff Davis 13 601439 3386485 Muridae Peromyscus pectoralis M 20000301 Jeff Davis 13 602869 3386498 Muridae Peromyscus pectoralis F 20000301 Jeff Davis 13 602869 3386498 Muridae Peromyscus pectoralis M 20010211 Jeff Davis 13 603095 3386507 Muridae Peromyscus pectoralis F 20010223 Jeff Davis 13 601694 3386523 Muridae Peromyscus pectoralis F 20010222 Jeff Davis 13 601355 3386527 Muridae Peromyscus pectoralis F 20010223 Jeff Davis 13 601737 3386527 Muridae Peromyscus pectoralis M 20000301 Jeff Davis 13 602901 3386540 Muridae Peromyscus pectoralis F 20010211 Jeff Davis 13 603427 3386553 Muridae Peromyscus pectoralis F 20010211 Jeff Davis 13 603427 3386553 Muridae Peromyscus pectoralis F 20010211 Jeff Davis 13 603427 3386553 Muridae Peromyscus pectoralis M 20010211 Jeff Davis 13 603427 3386553 Muridae Peromyscus pectoralis M 20010211 Jeff Davis 13 603427 3386553 Muridae Peromyscus pectoralis M 20010211 Jeff Davis 13 603427 3386553 Muridae Peromyscus pectoralis F 20010222 Jeff Davis 13 601287 3386556 Muridae Peromyscus pectoralis F 20010211 Jeff Davis 13 603184 3386562 Muridae Peromyscus pectoralis F 20010213 Jeff Davis 13 603207 3386571 Muridae Peromyscus pectoralis F 20010213 Jeff Davis 13 603207 3386571 Muridae Peromyscus pectoralis M 20010213 Jeff Davis 13 603207 3386571 Muridae Peromyscus pectoralis M 20010213 Jeff Davis 13 603207 3386571 Muridae Peromyscus pectoralis M 20010213 Jeff Davis 13 603207 3386571 Muridae Peromyscus pectoralis M 20010221 Jeff Davis 13 602207 3386574 Muridae Peromyscus pectoralis M 20010221 Jeff Davis 13 602207 3386574 Muridae Peromyscus pectoralis M 20010221 Jeff Davis 13 602191 3386604 Muridae Peromyscus pectoralis M 20010215 Jeff Davis 13 602619 3386665

144

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Peromyscus pectoralis F 20010223 Jeff Davis 13 601716 3386685 Muridae Peromyscus pectoralis M 20010215 Jeff Davis 13 602590 3386699 Muridae Peromyscus pectoralis M 20010215 Jeff Davis 13 602590 3386699 Muridae Peromyscus pectoralis M 20010223 Jeff Davis 13 601705 3386756 Muridae Peromyscus pectoralis F 20010215 Jeff Davis 13 602642 3386759 Muridae Peromyscus pectoralis M 20010215 Jeff Davis 13 602567 3386777 Muridae Peromyscus pectoralis F 20010215 Jeff Davis 13 602567 3386777 Muridae Peromyscus pectoralis F 20010215 Jeff Davis 13 602119 3386792 Muridae Peromyscus pectoralis F 20010215 Jeff Davis 13 602641 3386812 Muridae Peromyscus pectoralis M 20010215 Jeff Davis 13 602641 3386812 Muridae Peromyscus pectoralis M 20010215 Jeff Davis 13 602111 3386820 Muridae Peromyscus pectoralis F 20000704 Jeff Davis 13 603041 3386831 Muridae Peromyscus pectoralis M 20000704 Jeff Davis 13 603018 3386851 Muridae Peromyscus pectoralis M 20010215 Jeff Davis 13 602188 3386863 Muridae Peromyscus pectoralis F 20010215 Jeff Davis 13 602169 3386901 Muridae Peromyscus pectoralis M 20010208 Jeff Davis 13 602367 3386903 Muridae Peromyscus pectoralis M 20010208 Jeff Davis 13 602367 3386903 Muridae Peromyscus pectoralis M 20010208 Jeff Davis 13 602367 3386903 Muridae Peromyscus pectoralis M 20010207 Jeff Davis 13 602064 3386954 Muridae Peromyscus pectoralis F 20010208 Jeff Davis 13 602421 3386971 Muridae Peromyscus pectoralis F 20010215 Jeff Davis 13 601888 3387002 Muridae Peromyscus pectoralis M 20010208 Jeff Davis 13 602374 3387029 Muridae Peromyscus pectoralis M 20010209 Jeff Davis 13 602365 3387091 Muridae Peromyscus pectoralis F 20010209 Jeff Davis 13 602365 3387091 Muridae Peromyscus pectoralis F 20010209 Jeff Davis 13 602365 3387091 Muridae Peromyscus pectoralis M 20010211 Jeff Davis 13 603274 3387091 Muridae Peromyscus pectoralis M 20010208 Jeff Davis 13 602218 3387106 Muridae Peromyscus pectoralis F 20010210 Jeff Davis 13 602736 3387106 Muridae Peromyscus pectoralis F 20010210 Jeff Davis 13 602678 3387116 Muridae Peromyscus pectoralis M 20010211 Jeff Davis 13 602670 3387125 Muridae Peromyscus pectoralis M 20010211 Jeff Davis 13 602670 3387125 Muridae Peromyscus pectoralis F 20010210 Jeff Davis 13 602811 3387152 Muridae Peromyscus pectoralis M 20010210 Jeff Davis 13 602811 3387152 Muridae Peromyscus pectoralis M 20010208 Jeff Davis 13 601575 3387215 Muridae Peromyscus pectoralis M 20010206 Jeff Davis 13 601828 3387277 Muridae Peromyscus pectoralis M 20010205 Jeff Davis 13 602128 3387306 Muridae Peromyscus pectoralis M 20010205 Jeff Davis 13 602128 3387306 Muridae Peromyscus pectoralis M 20010207 Jeff Davis 13 602370 3387327 Muridae Peromyscus pectoralis F 20010206 Jeff Davis 13 601830 3387330 Muridae Peromyscus pectoralis F 20010206 Jeff Davis 13 601918 3387339 Muridae Peromyscus pectoralis F 20010206 Jeff Davis 13 601918 3387339 Muridae Peromyscus pectoralis M 20010206 Jeff Davis 13 601860 3387357 Muridae Peromyscus pectoralis M 20010206 Jeff Davis 13 602509 3387362 Muridae Peromyscus pectoralis M 20010206 Jeff Davis 13 602359 3387380 Muridae Peromyscus pectoralis F 20010207 Jeff Davis 13 602558 3387392 Muridae Peromyscus pectoralis F 20010206 Jeff Davis 13 602549 3387395 Muridae Peromyscus pectoralis F 20010205 Jeff Davis 13 602218 3387435 Muridae Peromyscus pectoralis F 20010205 Jeff Davis 13 602172 3387436 Muridae Peromyscus pectoralis F 20010206 Jeff Davis 13 601692 3387438 Muridae Peromyscus pectoralis M 20010205 Jeff Davis 13 601577 3387480 Muridae Peromyscus pectoralis F 20010220 Jeff Davis 13 602959 3387484 Muridae Peromyscus pectoralis M 20010205 Jeff Davis 13 601889 3387509

145

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Peromyscus pectoralis F 20010204 Jeff Davis 13 601889 3387509 Muridae Peromyscus pectoralis F 20010205 Jeff Davis 13 602023 3387517 Muridae Peromyscus pectoralis F 20010204 Jeff Davis 13 601942 3387541 Muridae Peromyscus pectoralis F 20010204 Jeff Davis 13 602243 3387541 Muridae Peromyscus pectoralis F 20010204 Jeff Davis 13 602497 3387562 Muridae Peromyscus pectoralis F 20010209 Jeff Davis 13 602773 3387633 Muridae Peromyscus pectoralis M 20010207 Jeff Davis 13 602778 3387633 Muridae Peromyscus pectoralis M 20010205 Jeff Davis 13 602386 3387647 Muridae Peromyscus pectoralis F 20010206 Jeff Davis 13 602843 3387668 Muridae Peromyscus pectoralis F 20010204 Jeff Davis 13 602483 3387676 Muridae Peromyscus pectoralis M 20010204 Jeff Davis 13 602507 3387687 Muridae Peromyscus pectoralis F 20010203 Jeff Davis 13 601627 3387728 Muridae Peromyscus pectoralis F 20010204 Jeff Davis 13 602372 3387735 Muridae Peromyscus pectoralis M 20010203 Jeff Davis 13 601599 3387738 Muridae Peromyscus pectoralis F 20010204 Jeff Davis 13 602363 3387745 Muridae Peromyscus pectoralis M 20010122 Jeff Davis 13 602282 3387786 Muridae Peromyscus pectoralis F 20010122 Jeff Davis 13 601842 3387793 Muridae Peromyscus pectoralis F 20010122 Jeff Davis 13 601874 3387798 Muridae Peromyscus pectoralis F 20010121 Jeff Davis 13 601518 3387882 Muridae Peromyscus pectoralis M 20010121 Jeff Davis 13 601518 3387882 Muridae Peromyscus pectoralis F 20010205 Jeff Davis 13 602297 3387885 Muridae Peromyscus pectoralis M 20010125 Jeff Davis 13 602722 3387889 Muridae Peromyscus pectoralis M 20010123 Jeff Davis 13 602320 3387953 Muridae Peromyscus pectoralis M 20010123 Jeff Davis 13 602320 3387953 Muridae Peromyscus pectoralis M 20010122 Jeff Davis 13 602060 3387959 Muridae Peromyscus pectoralis M 20010126 Jeff Davis 13 603027 3387967 Muridae Peromyscus pectoralis M 20010311 Jeff Davis 13 601520 3387981 Muridae Peromyscus pectoralis M 20010311 Jeff Davis 13 601520 3387981 Muridae Peromyscus pectoralis F 20010122 Jeff Davis 13 601796 3388002 Muridae Peromyscus pectoralis M 20010121 Jeff Davis 13 601670 3388005 Muridae Peromyscus pectoralis F 20010124 Jeff Davis 13 602469 3388006 Muridae Peromyscus pectoralis F 20010123 Jeff Davis 13 602312 3388010 Muridae Peromyscus pectoralis F 20010124 Jeff Davis 13 602572 3388016 Muridae Peromyscus pectoralis F 20010126 Jeff Davis 13 602999 3388025 Muridae Peromyscus pectoralis F 20010122 Jeff Davis 13 601846 3388026 Muridae Peromyscus pectoralis M 20010126 Jeff Davis 13 602945 3388071 Muridae Peromyscus pectoralis M 20010123 Jeff Davis 13 602286 3388092 Muridae Peromyscus pectoralis M 20010123 Jeff Davis 13 602286 3388092 Muridae Peromyscus pectoralis F 20010123 Jeff Davis 13 602286 3388092 Muridae Peromyscus pectoralis F 20010126 Jeff Davis 13 602913 3388110 Muridae Peromyscus pectoralis F 20010127 Jeff Davis 13 602999 3388203 Muridae Peromyscus pectoralis F 20010127 Jeff Davis 13 602999 3388203 Muridae Peromyscus pectoralis F 20010127 Jeff Davis 13 602441 3388307 Muridae Peromyscus pectoralis M 20010221 Jeff Davis 13 601425 3388333 Muridae Peromyscus pectoralis F 20010123 Jeff Davis 13 601807 3388427 Muridae Peromyscus pectoralis F 20010123 Jeff Davis 13 601823 3388469 Muridae Peromyscus pectoralis F 20010123 Jeff Davis 13 601823 3388469 Muridae Peromyscus pectoralis F 20010127 Jeff Davis 13 602461 3388549 Muridae Peromyscus pectoralis F 20010203 Jeff Davis 13 601452 3388593 Muridae Peromyscus pectoralis F 20010123 Jeff Davis 13 601782 3388634 Muridae Peromyscus pectoralis M 20010123 Jeff Davis 13 601782 3388634 Muridae Peromyscus pectoralis M 20010123 Jeff Davis 13 601782 3388634

146

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Peromyscus pectoralis F 20010203 Jeff Davis 13 601551 3388644 Muridae Peromyscus pectoralis M 20010203 Jeff Davis 13 601551 3388644 Muridae Peromyscus pectoralis F 20010203 Jeff Davis 13 601493 3388645 Muridae Peromyscus pectoralis M 20010204 Jeff Davis 13 601496 3388645 Muridae Peromyscus pectoralis F 20010203 Jeff Davis 13 601465 3388728 Muridae Peromyscus pectoralis F 20010204 Jeff Davis 13 601451 3388743 Muridae Peromyscus pectoralis M 20010202 Jeff Davis 13 601694 3388757 Muridae Peromyscus pectoralis F 20010202 Jeff Davis 13 603033 3388805 Muridae Peromyscus pectoralis M 20010202 Jeff Davis 13 603033 3388805 Muridae Reithrodon fulvescens M 20010311 Jeff Davis 13 603398 3384813 Muridae Reithrodon fulvescens F 19991126 Jeff Davis 13 602626 3386008 Muridae Reithrodon fulvescens M 20010209 Jeff Davis 13 602371 3386982 Muridae Reithrodon fulvescens M 20010127 Jeff Davis 13 602991 3388246 Muridae Reithrodon fulvescens M 19990723 Jeff Davis 13 580230 3390355 Muridae Reithrodon megalotis M 20000320 Jeff Davis 13 602507 3385309 Muridae Reithrodon megalotis M 19980604 Jeff Davis 13 602620 3385381 Muridae Reithrodon megalotis M 19980621 Jeff Davis 13 604047 3385954 Muridae Reithrodon megalotis F 19980621 Jeff Davis 13 603940 3385999 Muridae Reithrodon megalotis M 20000208 Jeff Davis 13 602625 3386131 Muridae Reithrodon megalotis M 20000208 Jeff Davis 13 602625 3386131 Muridae Reithrodon megalotis F 20010208 Jeff Davis 13 602374 3387029 Muridae Reithrodon megalotis F 20010206 Jeff Davis 13 602843 3387668 Muridae Reithrodon megalotis M 20010126 Jeff Davis 13 602921 3388098 Muridae Reithrodon megalotis F 20010127 Jeff Davis 13 602487 3388297 Muridae Reithrodon megalotis F 20010201 Jeff Davis 13 602232 3388595 Muridae Reithrodon megalotis F 19981107 Jeff Davis 13 579953 3389871 Muridae Reithrodon megalotis F 20020317 Jeff Davis 13 579190 3389899 Muridae Reithrodon megalotis F 19981107 Jeff Davis 13 580285 3390250 Muridae Reithrodon megalotis F 19990722 Jeff Davis 13 580230 3390355 Muridae Reithrodon megalotis F 19980717 Jeff Davis 13 579627 3391776 Muridae Reithrodon megalotis M 19980717 Jeff Davis 13 579772 3392041 Muridae Reithrodon megalotis F 19990318 Jeff Davis 13 580634 3392612 Muridae Reithrodon megalotis M 19990723 Jeff Davis 13 580656 3392637 Muridae Reithrodon megalotis M 20010315 Jeff Davis 13 584579 3396435 Muridae Reithrodon megalotis F 19981106 Jeff Davis 13 584680 3396664 Muridae Reithrodon megalotis M 19981106 Jeff Davis 13 584680 3396664 Muridae Reithrodon megalotis M 19981106 Jeff Davis 13 584680 3396664 Muridae Reithrodon megalotis F 19981106 Jeff Davis 13 584680 3396664 Muridae Reithrodon megalotis F 19990317 Jeff Davis 13 584680 3396664 Muridae Reithrodon megalotis M 19981106 Jeff Davis 13 584680 3396664 Muridae Reithrodon montanus M 20010201 Jeff Davis 13 602239 3388707 Muridae Reithrodon montanus M 20010124 Jeff Davis 13 602036 3388783 Muridae Reithrodon montanus M 19990316 Jeff Davis 13 579953 3389871 Muridae Reithrodon montanus M 19980715 Jeff Davis 13 584128 3396517 Muridae Reithrodon montanus F 19990722 Jeff Davis 13 584596 3396540 Muridae Reithrodon montanus F 19981106 Jeff Davis 13 584680 3396664 Muridae Sigmodon hispidus F 20000320 Jeff Davis 13 585500 3379290 Muridae Sigmodon hispidus F 20001012 Jeff Davis 13 601070 3384909 Muridae Sigmodon hispidus F 19980802 Jeff Davis 13 609924 3422930 Muridae Sigmodon hispidus F 19980802 Jeff Davis 13 609917 3422967 Muridae Sigmodon hispidus F 20010514 Reeves 13 616323 3423938 Muridae Sigmodon hispidus F 20010506 Reeves 13 616075 3424137

147

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Muridae Sigmodon hispidus F 20010506 Reeves 13 616075 3424137 Muridae Sigmodon hispidus M 20010506 Reeves 13 616075 3424137 Muridae Sigmodon hispidus F 20010504 Reeves 13 616139 3424192 Muridae Sigmodon hispidus F 20020421 Reeves 13 621256 3429110 Muridae Sigmodon hispidus F 20020421 Reeves 13 621172 3429128 Muridae Sigmodon hispidus F 20020422 Reeves 13 621236 3429172 Muridae Sigmodon hispidus F 20020422 Reeves 13 621237 3429216 Muridae Sigmodon ochrognathus U 20010308 Jeff Davis 13 602414 3384447 Muridae Sigmodon ochrognathus M 19991122 Jeff Davis 13 601356 3385195 Muridae Sigmodon ochrognathus F 19991121 Jeff Davis 13 601408 3385319 Muridae Sigmodon ochrognathus F 19991122 Jeff Davis 13 601408 3385319 Muridae Sigmodon ochrognathus M 19980604 Jeff Davis 13 602622 3385346 Muridae Sigmodon ochrognathus M 19980523 Jeff Davis 13 603346 3385378 Muridae Sigmodon ochrognathus F 19980523 Jeff Davis 13 603346 3385378 Muridae Sigmodon ochrognathus F 19980604 Jeff Davis 13 602620 3385381 Muridae Sigmodon ochrognathus M 19980602 Jeff Davis 13 602747 3385564 Muridae Sigmodon ochrognathus M 19981009 Jeff Davis 13 603848 3385816 Muridae Sigmodon ochrognathus F 19980619 Jeff Davis 13 602966 3385843 Muridae Sigmodon ochrognathus F 19980604 Jeff Davis 13 603964 3385847 Muridae Sigmodon ochrognathus F 19980706 Jeff Davis 13 602685 3385934 Muridae Sigmodon ochrognathus F 19990117 Jeff Davis 13 603004 3385935 Muridae Sigmodon ochrognathus M 19990117 Jeff Davis 13 603004 3385935 Muridae Sigmodon ochrognathus M 19980701 Jeff Davis 13 602568 3386138 Muridae Sigmodon ochrognathus M 20020317 Jeff Davis 13 578900 3389976 Muridae Sigmodon ochrognathus F 19980717 Jeff Davis 13 579788 3391776 Muridae Sigmodon ochrognathus M 19980718 Jeff Davis 13 580001 3392034 Muridae Sigmodon ochrognathus F 19990318 Jeff Davis 13 580965 3392241 Muridae Sigmodon ochrognathus F 19990318 Jeff Davis 13 580634 3392610 Muridae Sigmodon ochrognathus M 19990318 Jeff Davis 13 580634 3392610 Muridae Sigmodon ochrognathus M 19990722 Jeff Davis 13 580656 3392637 Muridae Sigmodon ochrognathus F 20010324 Jeff Davis 13 581757 3392969 Muridae Sigmodon ochrognathus F 20010324 Jeff Davis 13 581621 3393049 Muridae Sigmodon ochrognathus F 19990722 Jeff Davis 13 581557 3393136 Muridae Sigmodon ochrognathus F 19980716 Jeff Davis 13 582083 3393511 Muridae Sigmodon ochrognathus F 19981108 Jeff Davis 13 583865 3394042 Muridae Sigmodon ochrognathus M 20000213 Jeff Davis 13 584335 3396144 Muridae Sigmodon ochrognathus M 19981106 Jeff Davis 13 584680 3396664 Muridae Sigmodon ochrognathus F 19990317 Jeff Davis 13 584680 3396664 Muridae Sigmodon ochrognathus M 20000215 Jeff Davis 13 584204 3397373 Muridae Sigmodon ochrognathus M 20000214 Jeff Davis 13 583960 3397680 Sciuridae Spermophilus mexicanus F 20010607 Jeff Davis 13 601629 3376701 Sciuridae Spermophilus mexicanus F 19990713 Reeves 13 616052 3423397 Sciuridae Spermophilus mexicanus M 19990713 Reeves 13 616052 3423397 Sciuridae Spermophilus mexicanus F 20010514 Reeves 13 615829 3423931 Sciuridae Spermophilus mexicanus M 19990711 Reeves 13 616270 3423944 Sciuridae Spermophilus mexicanus F 19990712 Reeves 13 615945 3423975 Sciuridae Spermophilus mexicanus F 19990713 Reeves 13 616052 3423997 Sciuridae Spermophilus mexicanus F 19990816 Reeves 13 615956 3424020 Sciuridae Spermophilus mexicanus F 19990810 Reeves 13 616098 3424032 Sciuridae Spermophilus mexicanus M 19990810 Reeves 13 616274 3424040 Sciuridae Spermophilus mexicanus F 19990810 Reeves 13 616105 3424082 Sciuridae Spermophilus mexicanus F 19990810 Reeves 13 616105 3424082

148

FAMILY GENUS SPECIES SEX DATE COUNTY ZONE EAST NORTH Sciuridae Spermophilus mexicanus M 19990810 Reeves 13 615825 3424102 Sciuridae Spermophilus mexicanus F 20010517 Reeves 13 616312 3424169 Sciuridae Spermophilus mexicanus M 20010514 Reeves 13 616185 3424307 Sciuridae Spermophilus mexicanus M 20020422 Reeves 13 621410 3428956 Sciuridae Spermophilus variegatus F 20000926 Jeff Davis 13 616088 3378822 Sciuridae Spermophilus variegatus M 20000318 Jeff Davis 13 605952 3384513 Sciuridae Spermophilus variegatus M 19980709 Jeff Davis 13 601599 3384677 Sciuridae Spermophilus variegatus F 19980618 Jeff Davis 13 602114 3385332 Sciuridae Spermophilus variegatus F 19980718 Jeff Davis 13 603987 3385622 Sciuridae Spermophilus variegatus M 19971008 Jeff Davis 13 604139 3385854 Sciuridae Spermophilus variegatus F 19980624 Jeff Davis 13 600964 3385993 Sciuridae Spermophilus variegatus M 19980716 Jeff Davis 13 605892 3386003 Sciuridae Spermophilus variegatus F 19980617 Jeff Davis 13 601806 3386599 Sciuridae Spermophilus variegatus F 20010814 Jeff Davis 13 599836 3386694 Sciuridae Spermophilus variegatus M 19980710 Jeff Davis 13 595559 3387131 Sciuridae Spermophilus variegatus F 19990723 Jeff Davis 13 580230 3390355 Sciuridae Spermophilus variegatus M 19980717 Jeff Davis 13 580177 3391875 Sciuridae Spermophilus variegatus U 19981106 Jeff Davis 13 588305 3394547 Sciuridae Spermophilus variegatus M 20010822 Jeff Davis 13 579762 3395101 Sciuridae Spermophilus variegatus F 19990721 Jeff Davis 13 582544 3395513 Sciuridae Spermophilus variegatus F 19980718 Jeff Davis 13 584170 3395878 Sciuridae Spermophilus variegatus F 19990721 Jeff Davis 13 586689 3396132 Sciuridae Spermophilus variegatus M 19990721 Jeff Davis 13 584596 3396540

149

APPENDIX B

Presence/absence data are presented for mammals and woody plants that occur in woodlands and conifer forest associations of mountain ranges in the Trans-Pecos. These data were used to analyze the ecological relationships along probable dispersal corridors in the region in chapter two. Species, subspecies, and varieties were used for evaluation.

Taxa Hueco Mtns. Eagle Mtns. Mtns. Guadalupe Davis Mtns. Sierra Vieja Chinati Mtns. Chisos Mtns. Sierra Diablo Franklin Mtns. Del Norte Mtns. Mtns. Apache Mtns. Sacramento Quitman Mtns. Sierra del Carmen Organ Mtns. Sorex vagrans 0000000000 0 1 000 Sorex nanus 0000000000 0 1 000 Eptesicus fuscus 0111111010 0 1 000 Myotis thysanodes 1111111100 0 1 011 Myotis volans 0011111000 0 1 010 Sylvilagus floridanus cognatus 0000000000 0 1 000 Sylvilagus robustus 0011111000 0 0 010 Neotamias minimus 0000000000 0 1 000 Neotamias cinereicollis 0000000000 0 0 000 Neotamias canipes 0010000100 0 1 000 Neotamias quadrivitatus 0000000000 0 0 001 Spermophilus variegatus couchii 0000001000 0 0 010 Sylvilagus variegatus grammurus 0111110001 1 1 011 Peromyscus boylii 0111011011 1 1 001 Peromyscus truei 0010000000 0 1 000 Peromyscus nasutus nasutus 0011000000 1 1 001 Peromyscus nasutus penicillatus 0000011010 0 0 010 Neotoma mexicana 0011011001 1 1 010 Sigmodon ochrognathus 0011101101 1 0 010 Microtus longicaudus 0000000000 0 1 000 Microtus montanus 0000000000 0 1 000 Microtus mongollonensis 0011000000 1 1 000 Zapus princeps 0000000000 0 1 000 Tamisciurus hudsonicus 0010000000 0 1 000 Cupressus arizonica 0000001000 0 0 010

1 50

Taxa Hueco Mtns. Eagle Mtns. Mtns. Guadalupe Davis Mtns. Sierra Vieja Chinati Mtns. Chisos Mtns. Sierra Diablo Franklin Mtns. Del Norte Mtns. Mtns. Apache Mtns. Sacramento Quitman Mtns. Sierra del Carmen Organ Mtns. Juniperus scopulorum 0010000000 0 1 000 Juniperus coahilaensis 0010001011 0 0 110 Juniperus pinochetes 0111111111 1 0 100 Juniperus askei 0010000000 0 0 010 Juniperus monosperma 0010000100 1 1 001 Juniperus depeana depeana 0111111000 0 0 010 Juniperus depeana sperri 0011000000 0 0 000 Juniperus flaccida 0000001000 0 0 010 Pinus douglasii 0010001000 0 1 011 Pinus flexilis 0000000000 0 1 010 Pinus pungens 0000000000 0 1 000 Abies concolor 0000000000 0 1 010 Pinus strobiformis 0011000000 0 0 010 Pinus ponderosa 0011000000 0 1 011 Pinus arizonica 0000001000 0 0 010 Pinus edulis 0010000100 0 1 001 Pinus cembroides 0001110001 0 0 010 Pinus remota 0100001001 0 0 010 Populus tremuloides 0011001000 0 1 000 Ostrya virginiana 0000001000 0 0 000 Ostrya knowltonii 0010000000 0 1 000 Quercus muhelenbergia 0001001000 0 1 010 Quercus gambelli 0011011011 0 1 001 Quercus obligiflora 0000000000 0 0 000 Quercus hinckleyi 0000000001 0 0 000 Quercus lacei 0000000000 0 0 000 Quercus depressipes 0001000000 0 0 010 Quercus oblongifolia 0000011000 0 0 110 Quercus depressipes 0001000000 0 0 010 Quercus turbinella 0100000011 0 0 100 Quercus rugosa 0001001000 0 0 010 Quercus arizonica 0110001110 0 1 111 Quercus pungens pungens 0010010110 0 1 101 Quercus pungens vaseyana 1110111100 1 0 110 Quercus intricata 0100001000 0 0 010 Quercus mohriana 0011000100 0 0 110 Quercus grisea 0111111101 0 1 011 Quercus hypoleucoides 0001000000 0 0 010 Quercus emoryi 0001101000 0 0 010 Quercus graciliformis 0000001000 0 0 000

151

Taxa Hueco Mtns. Eagle Mtns. Mtns. Guadalupe Davis Mtns. Sierra Vieja Chinati Mtns. Chisos Mtns. Sierra Diablo Franklin Mtns. Del Norte Mtns. Mtns. Apache Mtns. Sacramento Quitman Mtns. Sierra del Carmen Organ Mtns. Quercus gravesii 0001101001 0 0 010 Quercus confusa 0000000000 0 1 000 Quercus ptelatomentosa 0000000000 0 1 001 Quercus utahensis 0000000000 0 1 001 Quercus leptophylla 0000000000 0 1 000 Quercus venustula 0000000000 0 1 000 Quercus novomexicana 0000000000 0 1 001 Quercus tardifolia 0000001000 0 0 000 Quercus carmenensis 0000001000 0 0 010 Arceuthobium divaricatum 0011000100 0 1 000 Arceuthobium vaginatum 0011000000 0 0 000 Phoradendron juniperinum 0011011100 0 1 010 Phoradendron villosum 0011111111 0 0 000 Ptelea trifoliata 1111111011 0 0 000 Berberis heamatocarpa 1011011101 0 1 001 Berberis repens 0010000000 0 1 000 Philadelphus serpyllifolius 0001100001 0 0 000 Philadelphus mearnsii 0010000011 0 0 010 Philadelphus hitchcockianus 0010000010 0 0 010 Philadelphus microphillus 0010001011 0 0 000 Philadelphus argyrocalyx 0001000000 1 0 010 Philadelphus crinitus 0001000000 0 0 000 Philadelphus occidentalis 0010001011 0 0 010 Philadelphus palmeri 0011000000 0 0 010 Philadelphus argentus 0011000000 0 0 010 Ribes leptanthum 0011000000 0 0 000 Ribes mescalerium 0010000000 0 1 000 Ribes aureum 0000110001 1 0 000 1111110111 1 0 111 Fendlera rigida 0000001000 0 0 010 Fendlera utahensis 0010000001 0 0 010 Glossopetalon spinescens 0010010011 0 0 011 Petrophyton casspitosum 1010000111 0 1 010 Phylocarpus monogynus 0011000000 1 0 000 malacomeles denticulata 0001110000 0 0 010 Amalancher utahensis 0010000000 0 1 000 Rosa woodsii 0011000000 0 1 000 Rosa stellata 0110000100 0 0 001 Prunus virginiana 0011000000 0 1 000 Prunus Murryana 0001000001 0 0 000 Vaquelina corymleosa 0000011000 0 0 010

152

Taxa Hueco Mtns. Eagle Mtns. Mtns. Guadalupe Davis Mtns. Sierra Vieja Chinati Mtns. Chisos Mtns. Sierra Diablo Franklin Mtns. Del Norte Mtns. Mtns. Apache Mtns. Sacramento Quitman Mtns. Sierra del Carmen Organ Mtns. Holodiscus discolor 0011001001 0 1 000 Cerocarpus montanus pancidentatus 0111101111 0 0 000 Cerocarpus montanus glaber 0000011001 0 0 000 Cerocarpus montanus argentus 0010000100 0 1 000 Mimosa dysocarpa 0001000001 0 0 000 Mimosa warnockii 0001000000 0 0 000 Peteria scoparia 0011101011 0 0 010 Chisoya dumosa 0010000001 1 0 011 Zanthoxylum parvum 0001000000 0 0 000 Aspicarpa longipes 0001000000 0 0 000 Toxicodendron radicans 0000011000 0 0 010 Toxicodendron rydbergii 0011000000 0 0 000 Rhus lanceolata 0011000001 0 1 001 Rhus virens 0010000010 0 0 001 Celastrus scandens 0011000001 0 0 000 Acer Grandidentatum 0011101001 0 1 010 Ceanothus greggii 0010001111 0 0 011 Ceanothus fendleri 0001000000 0 1 010 Sageretia wrightii 0001110000 0 0 010 Rhamnus serrata 0011001001 0 1 010 Rhamnus betulifolia 0011011000 0 0 010 Vitis arizonica 0011111111 0 1 001 Parthenocissus vitacea 0011000001 0 0 001 Batesimalua biolacea 0000001000 0 0 010 Aralia racemosa 0001000000 0 1 000 Garrya wrightii 1001100110 1 1 110 Garrya ovata goldmani 0111110001 0 0 011 Garrya ovata. lindheimeri 0000001000 0 0 000 Arctostaphylos pungens 0001000000 0 0 010 Arbutus calapensis 0011101001 0 1 010 Styrax youngiae 0001000000 0 0 010 Telosiphonia hypoleuca 0001011000 0 0 000 Telosiphonia brachysiphon 0000000010 0 0 000 Salvia regala 0000001000 0 0 010 Salvia lycoides 0010101110 0 0 011 Hedoma mollis 0000111001 0 0 000 Lycium palladium 0101010011 0 0 101 Bouvardia rernifolia 0101111001 0 0 010 Hedyotis intricata 0000111000 0 0 011

153

Taxa Hueco Mtns. Eagle Mtns. Mtns. Guadalupe Davis Mtns. Sierra Vieja Chinati Mtns. Chisos Mtns. Sierra Diablo Franklin Mtns. Del Norte Mtns. Mtns. Apache Mtns. Sacramento Quitman Mtns. Sierra del Carmen Organ Mtns. Lonicera albiflora 0011111101 1 1 011 Symphoricarpos longifloris 0010000000 0 0 000 Symphoricarpos oreophilus 0011000000 0 0 001 Symphoricarpos rotundifulius 1010000010 0 0 000 Symphoricarpos palmeri 0011010001 0 0 000 Sambucus cerulia 0001000000 0 0 010 Viburnum rafinesquianum 0001000000 0 0 010 Carphochaete bigelovii 0001011011 0 0 011 Brickellia californica 1011011011 1 0 010 Brickellia venosa 0000000010 0 0 010 Brickellia parvula 0010000010 0 0 000 Ageratina wrightii 0011011111 1 0 000 Baccharis pteronioides 0011011111 0 0 011 Baccharis havardii 0011001000 0 0 000 Symphyotrichum ericoides 0011000001 0 0 010 Chrysothamnus spathulatus 0010001001 0 1 000 Pericone caudata 0001011000 0 0 011 Porophyllum gracille 0000000010 0 0 010 Salvia pinguifolia 0000000010 0 0 001 Symphoricarpos guadalupensis 0010000000 0 0 000 Fraxianus cuspidata 1001011101 0 0 101

1 54

APPENDIX C

The contents of this section show graphs of species accumulation curves presented for Davis Mountains State Park, Davis Mountains Preserve, and the surrounding lowlands. Lowlands used pooled results from Balmorhea State Park, Sandia Springs

Preserve, Phantom Spring, and localities near Point of Rocks Park, south of the Davis

Mountains. The pink line in the graphs represents cumulative species counts, and the lower curve represents the new species recorded with each sampling period. Counts were totaled by months during the survey period.

30

25

20

15

10 Number ofSpecies

5

0

8 9 9 9 0 0 0 1 9 9 9 9 00 0 0 -98 l-98 - -99 - - -01 u p ul- p r-0 y-00 ul- p-00 n r-0 J J an a a J a May Se Nov-98Jan-99Mar-99May Se Nov- J M M Se Nov- Ja M Sampling Period

1. Accumulation of terrestrial mammal species at Davis Mountains State Park.

155

16

14

12

10

8

6 Number ofSpecies

4

2

0 Jul-98 Jul-99 Jul-00 Jul-01 Jan-99 Jan-00 Jan-01 Nov-98 Nov-99 Nov-00 Mar-99 Mar-00 Mar-01 Sep-98 Sep-99 Sep-00 May-98 May-99 May-00 May-01 Sampling Period

2. Accumulation of bat species at Davis Mountains State Park.

40

35

30

25

20

15 Number of Species of Number

10

5

0 Apr-98 Jun-98 Apr-99 Jun-99 Apr-00 Jun-00 Apr-01 Jun-01 Oct-98 Oct-99 Oct-00 Feb-99 Feb-00 Feb-01 Aug-98 Dec-98 Aug-99 Dec-99 Aug-00 Dec-00 Sampling Period

3. Accumulation of all mammal species at Davis Mountains State Park.

156

25

20

15

10 Number of Species of Number

5

0

8 9 0 0 2 98 9 -99 99 00 0 -01 01 01 l- t- -9 - n-0 l- t- - - n-0 an a an a Apr-98 Ju Oc J Apr Jul-99Oct J Apr-00 Ju Oc J Apr Jul-01Oct J Sampling Period

4. Accumulation of terrestrial mammal species at Davis Mountains Preserve.

16

14

12

10

8

6 Number Species of

4

2

0

9 0 0 98 9 -99 -99 99 00 00 -0 -01 - - n-0 g- - r pr-98 ug-98 ct ug ec-99 u ec A Jun-98A O Dec-98Feb- Apr-99Jun A Oct D Feb-00Apr-00Ju A Oct D Feb-01Ap Jun-01Aug-01 Sampling Period

5. Accumulation of bat species at Davis Mountains Preserve.

157

40

35

30

25

20

15 Number of Species of Number

10

5

0

8 9 0 0 2 98 9 -99 99 00 0 -01 01 01 l- t- -9 - n-0 l- t- - - n-0 an a an a Apr-98 Ju Oc J Apr Jul-99Oct J Apr-00 Ju Oc J Apr Jul-01Oct J Sampling Period

6. Accumulation of all mammal species at Davis Mountains Preserve.

20

18

16

14

12

10

8

Number of Species of Number 6

4

2

0

8 9 9 0 1 -9 98 9 -9 -99 00 -0 -01 -01 -0 01 g b- b- y y u ov- ov a ov- A N Fe May Aug-99N Fe M Aug-00Nov-00Feb Ma Aug N Feb-02May-02 Sampling Period

7. Accumulation of terrestrial mammal species in the surrounding lowlands.

158

6

5

4

3

2 Number of Species of Number

1

0

8 9 9 0 1 1 2 9 -9 -9 -99 0 -00 -0 -01 -0 -02 0 g- g g-00 b y g u eb u ay- u ov u A Nov-98 F May-99 A Nov Feb-00M A N Fe Ma A Nov-01 Feb May- Sampling period

8. Accumulation of bat species in the surrounding lowlands.

30

25

20

15

10 Number of Species of Number

5

0

8 9 9 0 1 1 2 9 -9 -9 -99 0 -00 -0 -01 -0 -02 0 g- g g-00 b y g u eb u ay- u ov u A Nov-98 F May-99 A Nov Feb-00M A N Fe Ma A Nov-01 Feb May- Sampling Period

9. Accumulation of all mammal species in the surrounding lowlands.

159

LITERATURE CITED

Adams, R. A., and K. M. Thibault. 2006. Temporal resource partitioning by bats at

water holes. Journal of Zoology, 270:466-472.

Adams, R. A., and J. A. Simmons. 2002. Directionality of drinking passes by bats at

water holes: Is there cooperation? Acta Chiroptera, 4:195-199.

Allen, G. M. 1939. Bats. Dover, New York, 368p.

Aristotle. 1971. The movement of animals. In, the complete works of Aristotle, J.

Barnes ed. Priceton University Press, vol. 1, 1087-1096.

Armstrong, D.M. 1972. Distribution of mammals in Colorado. Monograph of the

Museum of Natural History, The University of Kansas, 3:x + 1-415..

Arrhenius, O. 1921. Species and area. Ecology, 9:95-99.

Atmar, J.W., and B.D. Patterson. 1995. The nestedness temperature calculator: a visual

basic program, including 294 presence-absence matrices. AICS Research, Inc.,

University Park, NM, and The Field Museum, Chicago.

Baker, V. J., and D. H. Van Vuren. 2004. Gap-crossing decisions by the red squirrel, a

fordst dependent small mammal. Conservation Biology, 18, 689-697.

Betancourt, J. L., K. A. Rylander, C. Peñalba, and J. L. McVickar. 2001. Late

Quaternary vegetation history of Rough Canyon, south-central New Mexico,

USA. Paleogeography, Paleocliamatology, and Paleoecology, 165:71-95.

Betancourt, J. L., W. S. Schuster, J. B. Mitton, and S. R. Anderson. 1991. Fossil and

genetic history of a pinyon pine (Pinus edulis) isolate. Ecology, 72:1685-1697.

Bergen, J. D. 1969. Cold air drainage on a forested mountain slope. Journal of Applied

Meteorology. 8:884–895.

160

Bergen, K.M., A.M. Gilboy, and D.G. Brown. 2007. Multi-dimensional vegetation

structure in modeling avian habitat. Ecological Informatics, 2:9-22.

Berger, J. S. 1989. Reproductive fates of dispersers in a harem-dwelling ungulate: The

wild horse. In Mammalian Dispersal Patterns: The effects of social structure on

population genetics, B. D. Chepko-Sade and Z. T Halpin (eds.), University of

Chicago Press, 41-55.

Blumenshine, S. C., Lodge D. M., and J. R. Hodgson. 2000. Gradient of fish predation

alters body size distributions of lake Benthos, Ecology, 81:373-386.

Bowers, M.A. 1982. Foraging behavior of heteromyid rodents: field evidence for

resource partitioning. Journal of Mammalogy, 63: 361-367.

Bowers, M.A., and J.H. Brown. 1982. Body size and coexistence in desert

rodents: chance or community structure? Ecology, 63:391-400.

Bowers, M.A., and J.H. Brown. 1992. Structure in a desert rodent community: use of

space around Dipodomys spectabilis mounds. Oecologia, 92:242-249.

Bright, P. W. 1998. Behaviour of specialist species in habitat corridors: arboreal

dormice avoid corridor gaps. Animal Behaviour, 56:1485-1490.

Brown, J.H. 1987. Variation in desert rodent guilds: patterns, processes, and

scales, Pp. 181-197, in Organization of communities: past and present (J.

Gee and P. Giller, eds.). The 27th Symposium of the British Ecological

society, Oxford, Blackwell Scientific Publications, 576 pp.

Brown, J. H. 1995. Macroecology. The University of Chicago Press, Chicago and

London, xii+269.

161

Brown, J. H. 1988. Species diversity. In, Analytical Biogoegraphy, A. Myers and R. S.

Giller (eds.), Chapman and Hall, London, 57-89.

Brown, J.H., and B.A. Harney. 1993. Population and community ecology of

heteromyid rodents in temperate habitats. Pp. 618-651, in Biology of the

Heteromyidae (H.H. Genoways and J.H. Brown, eds.). Special

Publication, The American Society of Mammalogists, 10:1-719.

Brown, J.H., and G.A. Lieberman. 1973. Resource utilization and coexistence of seed-

eating desert rodents in sand dune habitats, Ecology, 54:789-797.

Brown, J. H., and B. A. Maurer. 1987. Evolution of species assemblages: Effects of

energetic constraints and species dynamics on the diversification of North

American terrestrial avifauna. American naturalist, 130:1-17.

Chung-MacCoubrey, A. L. 2004. Use of pinyon-juniper woodlands by bats in New

Mexico. Forest Ecology and Management, 204:209-220.

Ciechanowski, M. 2002. Community structure and activity of bats (Chiroptera) over

different water bodies. Mammalian Biology – Zeitschrift für Saugetierkunde,

67:276-285.

Cockrum, E. L. and Stephen P. Cross. 1964. Time of Bat Activity over Water Holes.

Journal of Mammalogy, 45:635-636.

Cryan, P. M. 2003. Seasonal distribution of migratory tree bats (Lasiurus and

Lasionycteris) in North America. Journal of Mammalogy, 84:579–593.

Cryan, P. M., M. A. Bogan, and J. S. Altenbach. 2000. Effect of elevation on

distribution of female bats in the Black Hills, South Dakota. Journal of

Mammalogy, 81:719–725.

162

Cressie, N. A. C. 1993. Statistics for spatial data. John Wiley and Sons, Inc., 928p.

Dalquest, W. W., and F. B. Stangl, Jr. 1984. Late Pleistocene and early Recent mammals

from Fowlkes Cave, southern Culberson County, Texas. Pp. 432-455, in

Contributions in Quaternary vertebrate paleontology: a volume in memorial to

John E. Guilday (H. H. Genoways and M. R. Dawson, eds.). Carnegie Mus. Nat.

Hist., Spec. Publ., 8:1-538.

Dalquest, W. W., F. B. Stangl, Jr., and J. K. Jones, Jr. 1990. Mammalian zoogeography

of a Rocky Mountain-Great Plains interface in New Mexico, Oklahoma, and

Texas. Special Publications, the Museum Texas Tech University, 34:78pp.

Davis, R. 1996. The Pinalenos as an island in a montane archipelago. In, Storm over a

Mountain Archipelago: Conservation Biology and the Mt. Graham Affair, C. A.

Istock and R. S. Hoffman (eds.). University of Arizona Press, Tucson, pp. 123-

134.

DeBaca, R. S., and J. R. Choate. 2002. Biogeography of heteromyid rodents on the

Central Great Plains. Occasional Papers, Museum of Texas Tech University,

212:1-22.

Dial, K. P., and J. M. Marzluff. 1988. Are the smallest organisms the most diverse?

Ecology, 69:1620-1624.

Dice, L. R. 1923. Life Zones and Mammalian Distribution. Journal of Mammalogy,

4:39-47.

Dick-Peddie, W. A. 1999. New Mexico Vegetation: Past, present, and future.

University of New Mexico Press, Albuquerque, 280p.

163

Elser, J. J., D. R. Dobberfuhl, N. A. MacKay, and J. H. Schampel. 1996. Organism size,

life history, and N:P stoichiometry. BioScience 46:674-684.

J. A. Encarnação, U. Kierdorf, D. Holweg, U. Jansoch, and V. Wolters. 2005. Sex-

related differences in roost-site selection by Daubenton's bats, Myotis

daubentonii, during the nursery period. Mammal Review, 35:285–294.

Ersts, P. J. 2008. Geographic Distance Matrix Generator (version 1.2.2). American

Museum of Natural History, Center for Biodiversity and Conservation,

http://biodiversityinformatics.amnh.org/open_source/gdmg. Accessed on 15

April 2008.

Estrada-Franco J. G., R. Navarro-Lopez, D. W. C. Beasley, L. Coffey, A-S Carrara, A.

Travassos da Rosa, T. Clements, E. Wang, G. V. Ludwig, A. C. Cortes, P. P.

Ramírez, R. B. Tesh, A. D. Barrett, S. C. Weaver. 2003. West Nile virus in

Mexico: Serologic evidence of widespread circulation since July 2002. Emerging

Infectious Diseases, 9:1604–1607.

Etienne R. S. and H. Olff. 2004. How dispersal limitation shapes species-body size

distributions in local communities. The American Naturalist, 163:69–83.

Fitzgerald, J. P., C. A. Meaney, and D. M. Armstrong. 1994. Mammals of Colorado.

University of Colorado Press, Niwot, Colorado, vii+467p.

Floyd, C. H., D. H. Van Vuren, and B. May. Marmost on Great Basin mountaintops:

Using genetics to test a biogeographic paradigm. Ecology, 86:2145-2153.

Ford, M. W., M. A. Menzel, J. M. Menzel, D. J. Welch. Influence of summer

temperature on sex ratios in eastern red bats (Lasiurus borealis), American

Midland Naturalist, Vol. 147:179-184.

164

Gleason, H, .A. 1922. On the relation between species and area. Ecologv, 3:158-162.

Goetz, S., D. Steinberg, R. Dubayah, and B. Blair. 2007. Laser remote sensing of canopy

habitat heterogeneity as a predictor of bird species richness in an eastern

temperate forest, USA, Remote Sensing of Environment, 108: 254-263.

Gordon, J. E., I. J. Dvorák, C. Jonasson, M. Josefsson, M. Kociánová, and D. B. A.

Thompson. 2002. Geo-ecology and management of sensitive montane

landscapes. Geografiska Annaler, 84:193-203.

Graham , G. L. 1983. Changes in bat species diversity along an elevational gradient up

the Peruvian Andes. Journal of Mammalogy, 64:559-571.

Gray, S. T., J. L. Betancourt, S. T. Jackson, R. G. Eddy. 2006. Role of multidecadal

climate variability in a range extension of pinyon pine. Ecology, 87:1124-1130.

Grindal, S. D., J. L. Morissette, and R. M. Bringham. 1999. Concentration of bat

activity in riparian habitats over an elevational gradient. Canadian Journal

Zoology, 77:972-977.

Hammer, Ø., D.A.T. Harper, and P. D. Ryan. 2001. PAST: Paleontological Statistics

Software Package for Education and Data Analysis. Palaeontologia Electronica

4(1): 9p.

Hanski, I. 1999. Metapopulaiton ecology. Oxford University Press, Oxford, U. K.,

328p.

Hanski, I, and O. E. Gaggiotti. 2004. Metapopulation biology: Past, present, and future.

In Ecology, genetics, and evolution of Metapopulations, I. Hanski and O. E.

Gaggiotti eds. Elsevier Academic Press, Burlington, San Diego, London, 3-23.

16 5

Heinrich, J. 2000. West Nile virus outbreak: Lessons for public health preparedness.

United States General Accounting Office, GAO/HEHS-00-180, 74p.

Harris, A. H., D. E. Wilson, C. Jones, and J. S. Findley. 1975. Mammals of New

Mexico. University of New Mexico Press, xii+360p.

Harper, D.A.T. (ed.). 1999. Numerical Palaeobiology. John Wiley & Sons, Chichester.

Hawkins, A. F. A. 1999. Altitudinal and latitudinal distribution of east Malagasy forest

bird communities. Journal of Biogeography, 26:447-458.

Heaney L. R. 2001. Small mammal diversity along elevational gradients in the

Philippines: An assessment of patterns and hypotheses. Global Ecology and

Biogeography, 10:15-39.

Holmgren, C. A., M. C. Penalba, K. A. Rylander, and J. L. Betancourt. 2003. A 16,000

14C yr b.p. packrat midden series from the USA-Mexico borderlands. Quaternary

Research, 60:319-329.

Humphries, C. J. and L. Parenti. 1986. Cladistic Biogeography. Oxford University

Monographs in Biogeography. Clarendon Press, Oxford, 200p.

Hunt, C. B. 1974. Natural regions of the United States and Canada. W. H. Freeman and

Co., San Francisco, 725 p.

Hutchins, W. C. and C. R. Martin. A flora of New Mexico. 1980. J. Cramer, Germany.

2 vols.

Hutchinson, G. E. and R. H. MacArthur. 1959. A theoretical model of size

distributions among species of animals. American Naturalist, 93:117-125.

Hyde, P., R. Dubayah, W. Walker, J.B. Blair, M. Hofton, and C. Hunsaker. 2006.

Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR,

166

SAR/InSAR, ETM plus, Quickbird) synergy. Remote Sensing of Environment,

102: 63-73

Jaberg, C. and A. Guisan. 2001. Modeling the distribution of bats in relation to

landscape structure in a temperate mountain environment. Journal of Applied

Ecology, 38:1169-1181.

Jackson, S. T., J. L. Betancourt, M. E. Lyford, S. T. Gray, and K. A. Rylander. 2005. A

40,000-year woodrad-midden record of vegetational and biogeographical

dynamics in north-eastern Utah, USA. Journal of Biogeography, 32:1085-1106.

Jones, C. 1965. Ecological distribution and activity records of bats of the Mogollon

Mountains area of New Mexico and adjacent Arizona. Tulane Studies in

Zoology, 12:93-100.

Kaňuch, P. and A. Krištín. 2006. Altitudinal distribution of bats in the Pol’ana Mts Area

(Central Slovakia). Biologia, 61:605-610.

Kennedy, S., and C. Jones. 2006. Two new records of mammals from the Davis

Mountains, Jeff Davis County, Texas. Occasional Papers, the Museum of Texas

Tech University, 252:1-4.

Kilpatric, A. M., L. D. Kramer, M. J. Jones, P. P. Marra, P. Daszak. 2006. West Nile

virus epidemics in North America are driven by shifts in mosquito feeding

behavior. PLOS Biology, www.plosbiology.org, 4:606-610.

Krebs, C.J. 2001. Ecology: The experimental analysis of distribution and abundance.

Benjamin Cummings, Menlo Park, California, 608p.

Lawton, J. H. 1991. Species richness, population abundances, and body sizes in insect

communities: tropical versus temperate comparisons. In, Plant-Animal

167

Interactions: Evolutionary ecology in tropical and temperate regions, ed. P. W.

Price, T. M. Lewinsohn, G. W. Fernandes, and W. W. Benson. New York, John

Wiley and Sons, 71-89.

Lee, P.-F., T.-S. Ding, Fu-Hu. Hsu, and G. Shu. 2004. Breeding bird species richness in

Taiwan: Distribution on gradients in elevation, primary productivity and

urbanization. Journal of Biogeography 31:3-7-314.

Lomolino, M. V. 1989. Interpretations and comparisons of constants in the species-area

relationship: An additional caution. The American Naturalist, 133:277-280.

Lomolino, M. V. 1996. Investigating causality of nestedness of insular communities:

Selective immigrations or extinctions? Journal of biogeography, 23:699-703.

Lomolino, M. V. 2000. A species-based theory of insular zoogeography. Global

Ecology and Biogeography, 9:39-58.

Lomolino, M. V. 2000. Ecology’s most general, yet protean pattern: The species-area

relationship, Journal of Biogeography, 27:17–26.

Lomolino, M. V. 2001. Elevation gradients of species-density: Historical and

prospective views. Global Ecology and Biogeography, 10:3-13.

Lomolino, M. V. 2001. The species-area relationship: new challenges for an old

pattern. Progress in Physical Geography, 25:1-21.

Lomolino, M. V. and R. Davis. 1997. Biogeographic scale and biodiversity of mountain

forest mammals of western North America. Global Ecology and Biogeography

Letters, 6:57-76.

Lomilio, M. V., B. R. Riddle, and J. H. Brown. 2006. Biogeography. Sinauer and

Associates, Inc., Sunderland, Massachussetts, 845p.

168

MacArthur, R. H. 1964. Environmental factors affecting bird species diversity.

American Naturalist, 98: 387-397.

MacArthur, R. A. 1965. Patterns of species diversity. Biological Review, 40:510-533.

MacArthur, R. A. 1969. Patterns of communities in the tropics. Biological Journal of

the Linneaen Society, 1:19-30.

MacArthur, R. A., and E. Pianka. 1966. On optimal use of a patchy environment,

American Naturalist, 100:603-609.

MacArthur, R. A., H. Recher, and M. Cody. 1966. On the relation between habitat

selection and species diversity. American Naturalist, 100:319-332.MacArthur, R.

H. and Wilson, E. O. 1967. The Theory of Island Biogeography. Princeton

University Press, Princeton, N.J., 226p.

Marsh, W. M. 1987. Earthscape: A physical geography. John Wiley & Sons, Hoboken,

New Jersey, 608p.

Mattar S., E. Edwards, J. Laguado, M. González, J. Alvarez, N. Komar. 2005. West Nile

virus antibodies in Colombian horses [letter]. Emerging Infectious Diseases.

11:1497-1498.

Maurer, B. A. 1999. Untangling ecological complexity. The University of Chicago

Press, Chicago and London, 251p.

Milne, D. J., A. Fischer, and C. R. Pavey. 2006. Models of the habitat associations and

distributions of insectivorous bats of the Top End of the Northern Territory,

Australia. Biological Conservation, 130:370-385.

National Institute of Allergy and Infectious Diseases, National Institutes of Health. 2006.

NIAID Research on West Nile Virus. NIAID Factsheet.

169

O’Farrell, M. J. and Bradley, W. G. 1970. Activity patterns of bats over a desert spring.

Journal of Mammalogy, 51:18–26.

O’Farrell, M. J. and S. A. Shanahan. 2006. Las Vegas Wash bat survey, 2004-2005.

Southern Nevada Water Authority, Las Vegas, Nevada. 27p.

Patterson, B. D. 1995. Local extinctions and the biogeographic dynamics of boreal

mammals in the southwest. In, Storm over a mountain island: Conservation

biology and the Mt. Graham affair, A. I. Istock and R. S. Hoffmann eds.

University of Arizona Press, 151-176.

Peterson, A. T. 2003. Projected climate change effects on Rocky Mountain and Great

Plains birds: generalities of biodiversity consequences. Global Change Biology,

9:647-655.

Pianka, E. R. 1966. Convexity, desert lizards, and spatial heterogeneity. Ecology, Vol.

47:1055-1059.

Porter, J. H. and J. L. Dooley, Jr. 1993. Animal Dispersal Patterns: A Reassessment of

Simple Mathematical Models. Ecology, 74:2436-2443.

Powell, M. A. 1998. Woody plants of the Trans-Pecos and adjacent areas. University of

Texas Press, Austin, xv+498p.

Quamen, D. 1996. The song of the dodo: Island biogeography in an age of extinction.

Scribner, New York, 704p.

Rappole, J. H., S. R. Derrickson, and Z. Hubálek. Migratory birds and spread of West

Nile virus in the western hemisphere. Emerging Infectious Diseases, 6:319-328.

170

Reichman, O. J., and M. V. Price. 1993. Ecological aspects of heteromyid foraging. In

Biology of the Heteromyidae, H. H. Gennoways and J. H. Brown eds. American

Society of Mammallogists, Special Publication no. 10, 539-572.

Ricklefs, R. E. 1987. Community diversity: Relative roles of local and regional

processes. Science, 235:167-171.

Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University

Press, 458p.

Rosenzweig, M. L., and J. Winakur. 1969. Population ecology of desert rodent

communities: habitats and environmental complexity. Ecology, 50:559-572.

Rowe, R. J. 2005. Elevational gradient analyses and the use of historical museum

specimens: a cautionary tale. Journal of Biogeography, 32:1883-1897.

Schmidly, D. J. 1977. The mammals of Trans-Pecos Texas. Texas A&M University

Press, College Station and London, 225p.

Simpson, G. G. 1940. Mammals and land bridges. Journal of the Washington [D. C.]

Academy of Science, 30:137-163.

Spearing, D. 1991. Roadside geology of Texas. Mountain Press Publishing Company,

Missoula, Montana, 418p.

Spencer, S. R., and G. N. Cameron. 1982. Reithrodontomys fulvescens. Mammalian

Species. The American Society of Mammalogists, 174:1-7.

Standley, P. C. 1920. Trees and Shrubs of Mexico. Archives from the National

Herbarium. Washington Government Printing Office, Smithsonian Institution,

United States National Museum, v.23, part 1-5:vii+1721p.

171

Stangl, F. B., Jr., W. W. Dalquest, and R. R. Hollander. Evolution of a desert

mammalian fauna: A 10,000-year history of mammals from Culberson and Jeff

Davis counties, Trans-Pecos Texas. Midwestern State University Press, Wichita

Falls, Texas, xix+264p.

Stock, C. 1948. Exploring northern Mexico's fossil deposits. El Palacio, 55:177-182.

Thornbury, W. D. 1965. Regional geomorphology of the United States. John Wiley &

Sons, New York, 609p.

Turell M. J., D. J. Dohm, M. R. Sardelis, M. L. O’Guinn, T. G. Andreadis, and J. A.

Blow. 2005. An update on the potential of North American mosquitoes (Diptera:

Culicidae) to transmit West Nile virus. Jounal of Medical Entomology, 42:57–62.

Turner, A. J. 1977. Soil survey of Jeff Davis County, Texas. United States Department

of Agriculture, Soil Conservation Service, 93pp+77 map pp.

Van Devender, T. R. 1990. Late Quaternary Vegetation and Climate of the Chihuahuan

Desert, United States and Mexico. In, Packrat middens: The last 40,000 years of

biotic change, J. L. Betancourt, T. R. Van Devender, and P. S. Martin eds.

University of Arizona Press, Tucson, 104-133.

Wallace, A. R. 1876. The geographical distribution of animals. With a study of the

relations of living and extinct faunas as elucidating the past changes of the earth's

surface. Harper & Brothers, New York, vol. 1: xxiv+503p.

Webster, W. D., and J. K. Jones, Jr. 1982. Reithrodontomys megalotis. Mammalian

Species. The American Society of Mammalogists, 167:1-5.

Whittaker, R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California.

Ecological Monographs, 30:279-338.

172

Wilkins, K. T. 1986. Reithrodontomys montanus. Mammalian species. The American

Society of Mammalogists, 257:1-5.

Williams, C. 1964. Patterns in the balance of nature. Academic Press, London.

Williams, S. L., and R. J. Baker. 1976. Vagility and local movements of pocket gophers

(Geomyidae: Rodentia). American Midland Naturalist, 96:303-316.

Worthington, D. J. 1991. Abundance, distribution, and sexual segregation of bats in the

Pryor Mountains of south central Montana. M.A. Thesis, University of Montana,

Missoula, Montana. 41p.

Wooton, E. O. and P. S. Standley. 1915. Flora of New Mexico: Contributions from the

United States National Herbarium. Government Printing Office, Washington

D.C., Vol. 19: 794p.

Yancey, F. D., II. 1997. The mammals of Big Bend Ranch State Park. Special

Publications of the Museum of Texas Tech University, 39:210p.

Zar. J. H. . Biostatistical analysis. Prentice –Hall, Inc., Englewood Cliffs, New Jersey,

xiv+719p.

173