Takayasu Arteritis Coexisting with Sclerosing Osteomyelitis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Severe Septicaemia in a Patient with Polychondritis and Sweet's
81 LETTERS Ann Rheum Dis: first published as 10.1136/ard.62.1.88 on 1 January 2003. Downloaded from Severe septicaemia in a patient with polychondritis and Sweet’s syndrome after initiation of treatment with infliximab F G Matzkies, B Manger, M Schmitt-Haendle, T Nagel, H-G Kraetsch, J R Kalden, H Schulze-Koops ............................................................................................................................. Ann Rheum Dis 2003;62:81–82 D Sweet first described an acute febrile neutrophilic dermatosis in 1964 characterised by acute onset, fever, Rleucocytosis, and erythematous plaques.1 Skin biopsy specimens show infiltrates consisting of mononuclear cells and neutrophils with leucocytoclasis, but without signs of vasculi- tis. Sweet’s syndrome is frequently associated with solid malig- nancies or haemoproliferative disorders, but associations with chronic autoimmune connective tissue disorders have also been reported.2 The aetiology of Sweet’s syndrome is unknown, but evidence suggests that an immunological reaction of unknown specificity is the underlying mechanism. CASE REPORT A 51 year old white man with relapsing polychondritis (first diagnosed in 1997) was admitted to our hospital in June 2001 with a five week history of general malaise, fever, recurrent arthritis, and complaints of morning stiffness. Besides Figure 1 autoimmune polychondritis, he had insulin dependent Manifestation of Sweet’s syndrome in a patient with relapsing polychondritis. diabetes mellitus that was diagnosed in 1989. On admission, he presented with multiple small to medium, sharply demarked, raised erythematous plaques on both fore- dose of glucocorticoids (80 mg) and a second application of http://ard.bmj.com/ arms and lower legs, multiple acne-like pustules on the face, infliximab (3 mg/kg body weight) were given. -
Imaging of Osteomyelitis: the Key Is in the Combination
Special RepoRt Special RepoRt Imaging of osteomyelitis: the key is in the combination An accurate diagnosis of osteomyelitis requires the combination of anatomical and functional imaging techniques. Conventional radiography is the first imaging modality to begin with, as it provides an overview of both the anatomy and the pathologic conditions of the bone. Sonography is most useful in the diagnosis of fluid collections, periosteal involvement and soft tissue abnormalities, and may provide guidance for diagnostic or therapeutic interventions. MRI highlights sites with tissue edema and increased regional perfusion, and provides accurate information of the extent of the infectious process and the tissues involved. To detect osteomyelitis before anatomical changes are present, functional imaging could have some advantages over anatomical imaging. Fluorine-18 fluorodeoxyglucose-PET has the highest diagnostic accuracy for confirming or excluding the diagnosis of chronic osteomyelitis. For both SPECT and PET, specificity improves considerably when the scintigraphic images are fused with computed tomography. Close cooperation between clinicians and imagers remains the key to early and adequate diagnosis when osteomyelitis is suspected or evaluated. †1 KEYWORDS: computed tomography n hybrid systems n imaging n MRI n nuclear Carlos Pineda , medicine n osteomyelitis n ultrasonography Angelica Pena2, Rolando Espinosa2 & Cristina Osteomyelitis is inflammation of the bone that osteomyelitis. The ideal imaging technique Hernández-Díaz1 is usually due to infection. There are different should have a high sensitivity and specificity; 1Musculoskeletal Ultrasound Department, Instituto Nacional de classification systems to categorize osteomyeli- numerous studies have been published con- Rehabilitacion, Avenida tis. Traditionally, it has been labeled as acute, cerning the accuracy of the various modali- Mexico‑Xochimilco No. -
A Comparison of Imaging Modalities for the Diagnosis of Osteomyelitis
A comparison of imaging modalities for the diagnosis of osteomyelitis Brandon J. Smith1, Grant S. Buchanan2, Franklin D. Shuler2 Author Affiliations: 1. Joan C Edwards School of Medicine, Marshall University, Huntington, West Virginia 2. Marshall University The authors have no financial disclosures to declare and no conflicts of interest to report. Corresponding Author: Brandon J. Smith Marshall University Joan C. Edwards School of Medicine Huntington, West Virginia Email: [email protected] Abstract Osteomyelitis is an increasingly common pathology that often poses a diagnostic challenge to clinicians. Accurate and timely diagnosis is critical to preventing complications that can result in the loss of life or limb. In addition to history, physical exam, and laboratory studies, diagnostic imaging plays an essential role in the diagnostic process. This narrative review article discusses various imaging modalities employed to diagnose osteomyelitis: plain films, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, bone scintigraphy, and positron emission tomography (PET). Articles were obtained from PubMed and screened for relevance to the topic of diagnostic imaging for osteomyelitis. The authors conclude that plain films are an appropriate first step, as they may reveal osteolytic changes and can help rule out alternative pathology. MRI is often the most appropriate second study, as it is highly sensitive and can detect bone marrow changes within days of an infection. Other studies such as CT, ultrasound, and bone scintigraphy may be useful in patients who cannot undergo MRI. CT is useful for identifying necrotic bone in chronic infections. Ultrasound may be useful in children or those with sickle-cell disease. Bone scintigraphy is particularly useful for vertebral osteomyelitis. -
A Resident's Guide to Pediatric Rheumatology
A RESIDENT’S GUIDE TO PEDIATRIC RHEUMATOLOGY 4th Revised Edition - 2019 A RESIDENT’S GUIDE TO PEDIATRIC RHEUMATOLOGY This guide is intended to provide a brief introduction to basic topics in pediatric rheumatology. Each topic is accompanied by at least one up-to-date reference that will allow you to explore the topic in greater depth. In addition, a list of several excellent textbooks and other resources for you to use to expand your knowledge is found in the Appendix. We are interested in your feedback on the guide! If you have comments or questions, please feel free to contact us via email at [email protected]. Supervising Editors: Dr. Ronald M. Laxer, SickKids Hospital, University of Toronto Dr. Tania Cellucci, McMaster Children’s Hospital, McMaster University Dr. Evelyn Rozenblyum, St. Michael’s Hospital, University of Toronto Section Editors: Dr. Michelle Batthish, McMaster Children’s Hospital, McMaster University Dr. Roberta Berard, Children’s Hospital – London Health Sciences Centre, Western University Dr. Liane Heale, McMaster Children’s Hospital, McMaster University Dr. Clare Hutchinson, North York General Hospital, University of Toronto Dr. Mehul Jariwala, Royal University Hospital, University of Saskatchewan Dr. Lillian Lim, Stollery Children’s Hospital, University of Alberta Dr. Nadia Luca, Alberta Children’s Hospital, University of Calgary Dr. Dax Rumsey, Stollery Children’s Hospital, University of Alberta Dr. Gordon Soon, North York General Hospital and SickKids Hospital Northern Clinic in Sudbury, University -
Immunopathologic Studies in Relapsing Polychondritis
Immunopathologic Studies in Relapsing Polychondritis Jerome H. Herman, Marie V. Dennis J Clin Invest. 1973;52(3):549-558. https://doi.org/10.1172/JCI107215. Research Article Serial studies have been performed on three patients with relapsing polychondritis in an attempt to define a potential immunopathologic role for degradation constituents of cartilage in the causation and/or perpetuation of the inflammation observed. Crude proteoglycan preparations derived by disruptive and differential centrifugation techniques from human costal cartilage, intact chondrocytes grown as monolayers, their homogenates and products of synthesis provided antigenic material for investigation. Circulating antibody to such antigens could not be detected by immunodiffusion, hemagglutination, immunofluorescence or complement mediated chondrocyte cytotoxicity as assessed by 51Cr release. Similarly, radiolabeled incorporation studies attempting to detect de novo synthesis of such antibody by circulating peripheral blood lymphocytes as assessed by radioimmunodiffusion, immune absorption to neuraminidase treated and untreated chondrocytes and immune coprecipitation were negative. Delayed hypersensitivity to cartilage constituents was studied by peripheral lymphocyte transformation employing [3H]thymidine incorporation and the release of macrophage aggregation factor. Positive results were obtained which correlated with periods of overt disease activity. Similar results were observed in patients with classical rheumatoid arthritis manifesting destructive articular changes. This study suggests that cartilage antigenic components may facilitate perpetuation of cartilage inflammation by cellular immune mechanisms. Find the latest version: https://jci.me/107215/pdf Immunopathologic Studies in Relapsing Polychondritis JERoME H. HERmAN and MARIE V. DENNIS From the Division of Immunology, Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio 45229 A B S T R A C T Serial studies have been performed on as hematologic and serologic disturbances. -
A Case of Acute Osteomyelitis: an Update on Diagnosis and Treatment
International Journal of Environmental Research and Public Health Review A Case of Acute Osteomyelitis: An Update on Diagnosis and Treatment Elena Chiappini 1,*, Greta Mastrangelo 1 and Simone Lazzeri 2 1 Infectious Disease Unit, Meyer University Hospital, University of Florence, Florence 50100, Italy; [email protected] 2 Orthopedics and Traumatology, Meyer University Hospital, Florence 50100, Italy; [email protected] * Correspondence: elena.chiappini@unifi.it; Tel.: +39-055-566-2830 Academic Editor: Karin Nielsen-Saines Received: 25 February 2016; Accepted: 23 May 2016; Published: 27 May 2016 Abstract: Osteomyelitis in children is a serious disease in children requiring early diagnosis and treatment to minimize the risk of sequelae. Therefore, it is of primary importance to recognize the signs and symptoms at the onset and to properly use the available diagnostic tools. It is important to maintain a high index of suspicion and be aware of the evolving epidemiology and of the emergence of antibiotic resistant and aggressive strains requiring careful monitoring and targeted therapy. Hereby we present an instructive case and review the literature data on diagnosis and treatment. Keywords: acute hematogenous osteomyelitis; children; bone infection; infection biomarkers; osteomyelitis treatment 1. Case Presentation A previously healthy 18-month-old boy presented at the emergency department with left hip pain and a limp following a minor trauma. His mother reported that he had presented fever for three days, cough and rhinitis about 15 days before the trauma, and had been treated with ibuprofen for 7 days (10 mg/kg dose every 8 h, orally) by his physician. The child presented with a limited and painful range of motion of the left hip and could not bear weight on that side. -
Relapsing Polychondritis
Relapsing polychondritis Author: Professor Alexandros A. Drosos1 Creation Date: November 2001 Update: October 2004 Scientific Editor: Professor Haralampos M. Moutsopoulos 1Department of Internal Medicine, Section of Rheumatology, Medical School, University of Ioannina, 451 10 Ioannina, GREECE. [email protected] Abstract Keywords Disease name and synonyms Diagnostic criteria / Definition Differential diagnosis Prevalence Laboratory findings Prognosis Management Etiology Genetic findings Diagnostic methods Genetic counseling Unresolved questions References Abstract Relapsing polychondritis (RP) is a multisystem inflammatory disease of unknown etiology affecting the cartilage. It is characterized by recurrent episodes of inflammation affecting the cartilaginous structures, resulting in tissue damage and tissue destruction. All types of cartilage may be involved. Chondritis of auricular, nasal, tracheal cartilage predominates in this disease, suggesting response to tissue-specific antigens such as collagen II and cartilage matrix protein (matrillin-1). The patients present with a wide spectrum of clinical symptoms and signs that often raise major diagnostic dilemmas. In about one third of patients, RP is associated with vasculitis and autoimmune rheumatic diseases. The most commonly reported types of vasculitis range from isolated cutaneous leucocytoclastic vasculitis to systemic polyangiitis. Vessels of all sizes may be affected and large-vessel vasculitis is a well-recognized and potentially fatal complication. The second most commonly associated disorder is autoimmune rheumatic diseases mainly rheumatoid arthritis and systemic lupus erythematosus . Other disorders associated with RP are hematological malignant diseases, gastrointestinal disorders, endocrine diseases and others. Relapsing polychondritis is generally a progressive disease. The majority of the patients experience intermittent or fluctuant inflammatory manifestations. In Rochester (Minnesota), the estimated annual incidence rate was 3.5/million. -
An Unusual Cause of Back Pain in Osteoporosis: Lessons from a Spinal Lesion
Ann Rheum Dis 1999;58:327–331 327 MASTERCLASS Series editor: John Axford Ann Rheum Dis: first published as 10.1136/ard.58.6.327 on 1 June 1999. Downloaded from An unusual cause of back pain in osteoporosis: lessons from a spinal lesion S Venkatachalam, Elaine Dennison, Madeleine Sampson, Peter Hockey, MIDCawley, Cyrus Cooper Case report A 77 year old woman was admitted with a three month history of worsening back pain, malaise, and anorexia. On direct questioning, she reported that she had suVered from back pain for four years. The thoracolumbar radiograph four years earlier showed T6/7 vertebral collapse, mild scoliosis, and degenerative change of the lumbar spine (fig 1); but other investigations at that time including the eryth- rocyte sedimentation rate (ESR) and protein electophoresis were normal. Bone mineral density then was 0.914 g/cm2 (T score = −2.4) at the lumbar spine, 0.776 g/cm2 (T score = −1.8) at the right femoral neck and 0.738 g/cm2 (T score = −1.7) at the left femoral neck. She was given cyclical etidronate after this vertebral collapse as she had suVered a previous fragility fracture of the left wrist. On admission, she was afebrile, but general examination was remarkable for pallor, dental http://ard.bmj.com/ caries, and cellulitis of the left leg. A pansysto- lic murmur was heard at the cardiac apex on auscultation; there were no other signs of bac- terial endocarditis. She had kyphoscoliosis and there was diVuse tenderness of the thoraco- lumbar spine. Her neurological examination was unremarkable. on September 29, 2021 by guest. -
Pharmacy Policy Statement
PHARMACY POLICY STATEMENT Ohio Medicaid DRUG NAME Actemra (tocilizumab) BILLING CODE For medical - J3262 (1 unit = 1 mg) For Rx - must use valid NDC BENEFIT TYPE Medical or Pharmacy SITE OF SERVICE ALLOWED Outpatient/Office/Home COVERAGE REQUIREMENTS Prior Authorization Required (Preferred Product) QUANTITY LIMIT— 3200 units per 28 days LIST OF DIAGNOSES CONSIDERED NOT Click Here MEDICALLY NECESSARY Actemra (tocilizumab) is a preferred product and will only be considered for coverage under the medical or pharmacy benefit when the following criteria are met: Members must be clinically diagnosed with one of the following disease states and meet their individual criteria as stated. GIANT CELL ARTERITIS (GCA) For initial authorization: 1. Member must be 50 years of age or older; AND 2. Medication must be prescribed by a rheumatologist; AND 3. Must have a documented negative TB test (i.e., tuberculosis skin test (PPD), an interferon-release assay (IGRA)) within 12 months prior to starting therapy; AND 4. Member has a history of erythrocyte sedimentation rate (ESR) ≥ 50 mm/h or history of C - reactive protein (CRP) ≥ 2.45 mg/dL documented in chart notes OR if member received glucocorticoid (prednisone) therapy ESR ≥ 30 mm/h and CRP ≥ 1 mg/dL; AND 5. At least one of the following: a) Unequivocal cranial symptoms of GCA (new onset localized headache, scalp or temporal artery tenderness, ischemia-related vision loss, or otherwise unexplained mouth or jaw pain upon mastication); b) Unequivocal symptoms of polymyalgia rheumatica (PMR), defined as shoulder and/or hip girdle pain associated with inflammatory stiffness; AND 6. At least one of the following: a) Temporal artery biopsy revealing features of GCA; b) Evidence of large-vessel vasculitis by angiography; c) Cross-sectional imaging (such as MRI, CTA or PET-CT); AND 7. -
Tuberculosis – the Masquerader of Bone Lesions in Children MN Rasool FCS(Orth) Department of Orthopaedics, University of Kwazulu-Natal
SAOJ Autumn 2009.qxd 2/27/09 11:11 AM Page 21 CLINICAL ARTICLE SA ORTHOPAEDIC JOURNAL Autumn 2009 / Page 21 C LINICAL A RTICLE Tuberculosis – the masquerader of bone lesions in children MN Rasool FCS(Orth) Department of Orthopaedics, University of KwaZulu-Natal Reprint requests: Dr MN Rasool Department of Orthopaedics University of KwaZulu-Natal Private Bag 7 Congella 4001 Tel: (031) 260 4297 Fax: (031) 260 4518 Email: [email protected] Abstract Fifty-three children with histologically confirmed tuberculous osteomyelitis were treated between 1989 and 2007. The age ranged from 1–12 years. There were 65 osseous lesions (excluding spinal and synovial). Seven had mul- tifocal bone involvement. Four basic types of lesions were seen: cystic (n=46), infiltrative (n=7), focal erosions (n=6) and spina ventosa (n=7). The majority of lesions were in the metaphyses (n=36); the remainder were in the diaphysis, epiphysis, short tubular bones, flat bones and small round bones. Bone lesions resembled chronic infections, simple and aneurysmal bone cysts, cartilaginous tumours, osteoid osteoma, haematological bone lesions and certain osteochondroses seen during the same period of study. Histological confirmation is man- datory to confirm the diagnosis of tuberculosis as several bone lesions can mimic tuberculous osteomyelitis. Introduction The variable radiological appearance of isolated bone Tuberculous osteomyelitis is less common than skeletal lesions in children can resemble various bone lesions tuberculosis involving the spine and joints. The destruc- including subacute and chronic osteomyelitis, simple and tive bone lesions of tuberculosis, the disseminated and the aneurysmal bone cysts, cartilaginous tumours, osteoid multifocal forms, are less common now than they were 50 osteoma, granulomatous lesions, haematological disease, 6,7,12 years ago.1-7 However, in recent series, solitary involve- and certain malignant tumours. -
1019 2 Feb 11 Weisbrode FINAL.Pages
The Armed Forces Institute of Pathology Department of Veterinary Pathology Wednesday Slide Conference 2010-2011 Conference 19 2 February 2011 Conference Moderator: Steven E. Weisbrode, DVM, PhD, Diplomate ACVP CASE I: 2173 (AFIP 2790938). Signalment: 3.5-month-old, male intact, Chow-Rottweiler cross, canine (Canis familiaris). History: This 3.5-month-old male Chow-Rottweiler mixed breed dog was presented to a veterinary clinic with severe neck pain. No cervical vertebral lesions were seen radiographically. The dog responded to symptomatic treatment. A week later the dog again presented with neck pain and sternal recumbency. The nose was swollen, and the submandibular and popliteal lymph nodes were moderately enlarged. The body temperature was normal. A complete blood count (CBC) revealed a marked lymphocytosis (23,800 lymphocytes/uI). Over a 3-4 hour period there was a noticeable increase in the size of all peripheral lymph nodes. Treatment included systemic antibiotics and corticosteroids. The dog became ataxic and developed partial paralysis. The neurologic signs waxed and waned over a period of 7 days, and the lymphadenopathy persisted. The peripheral blood lymphocyte count 5 days after the first CBC was done revealed a lymphocyte count of 6,000 lymphocytes/uI. The clinical signs became progressively worse, and the dog was euthanized two weeks after the initial presentation. Laboratory Results: Immunohistochemical (IHC) staining of bone marrow and lymph node sections revealed that tumor cells were negative for CD3 and CD79α. Gross Pathology: Marked generalized lymph node enlargement was found. Cut surfaces of the nodes bulged out and had a white homogeneous appearance. The spleen was enlarged and meaty. -
21362 Arthritis Australia a to Z List
ARTHRITISINFORMATION SHEET Here is the A to Z of arthritis! A D Goodpasture’s syndrome Achilles tendonitis Degenerative joint disease Gout Achondroplasia Dermatomyositis Granulomatous arteritis Acromegalic arthropathy Diabetic finger sclerosis Adhesive capsulitis Diffuse idiopathic skeletal H Adult onset Still’s disease hyperostosis (DISH) Hemarthrosis Ankylosing spondylitis Discitis Hemochromatosis Anserine bursitis Discoid lupus erythematosus Henoch-Schonlein purpura Avascular necrosis Drug-induced lupus Hepatitis B surface antigen disease Duchenne’s muscular dystrophy Hip dysplasia B Dupuytren’s contracture Hurler syndrome Behcet’s syndrome Hypermobility syndrome Bicipital tendonitis E Hypersensitivity vasculitis Blount’s disease Ehlers-Danlos syndrome Hypertrophic osteoarthropathy Brucellar spondylitis Enteropathic arthritis Bursitis Epicondylitis I Erosive inflammatory osteoarthritis Immune complex disease C Exercise-induced compartment Impingement syndrome Calcaneal bursitis syndrome Calcium pyrophosphate dehydrate J (CPPD) F Jaccoud’s arthropathy Crystal deposition disease Fabry’s disease Juvenile ankylosing spondylitis Caplan’s syndrome Familial Mediterranean fever Juvenile dermatomyositis Carpal tunnel syndrome Farber’s lipogranulomatosis Juvenile rheumatoid arthritis Chondrocalcinosis Felty’s syndrome Chondromalacia patellae Fibromyalgia K Chronic synovitis Fifth’s disease Kawasaki disease Chronic recurrent multifocal Flat feet Kienbock’s disease osteomyelitis Foreign body synovitis Churg-Strauss syndrome Freiberg’s disease