Hsp70–Hsp110 Chaperones Deliver Ubiquitin-Dependent

Total Page:16

File Type:pdf, Size:1020Kb

Hsp70–Hsp110 Chaperones Deliver Ubiquitin-Dependent © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs210948. doi:10.1242/jcs.210948 RESEARCH ARTICLE Hsp70–Hsp110 chaperones deliver ubiquitin-dependent and -independent substrates to the 26S proteasome for proteolysis in yeast Ganapathi Kandasamy and Claes Andréasson* ABSTRACT proteasome by shuttling factors that associate with both the During protein quality control, proteotoxic misfolded proteins are ubiquitin chain and the 19S regulatory particle of the proteasome recognized by molecular chaperones, ubiquitylated by dedicated (Elsasser et al., 2004; Husnjak et al., 2008; Su and Lau, 2009). quality control ligases and delivered to the 26S proteasome for Delivered proteins are unfolded, deubiquitylated and translocated degradation. Proteins belonging to the Hsp70 chaperone and Hsp110 into the 20S proteolytic chamber of the proteasome for degradation. (the Hsp70 nucleotide exchange factor) families function in the Ubiquitin tagging is dispensable for the proteasomal degradation degradation of misfolded proteins by the ubiquitin-proteasome of a subset of cellular proteins. In such ubiquitin-independent system via poorly understood mechanisms. Here, we report that the degradation, unstructured tails that interact directly with the Saccharomyces cerevisiae Hsp110 proteins (Sse1 and Sse2) function proteasome function as degrons (Ben-Nissan and Sharon, 2014; in the degradation of Hsp70-associated ubiquitin conjugates at the Takeuchi et al., 2007; Yu et al., 2016a,b). Classical examples of post-ubiquitylation step and are also required for ubiquitin-independent proteins that undergo such ubiquitin-independent degradation in Saccharomyces cerevisiae proteasomal degradation. Hsp110 associates with the 19S regulatory include ornithine decarboxylase (ODC), particle of the 26S proteasome and interacts with Hsp70 to facilitate the Rpn4 and Pih1 (Gödderz et al., 2011; Paci et al., 2016; Xie and delivery of Hsp70 substrates for proteasomal degradation. By using a Varshavsky, 2001). Thus the physical targeting of substrate proteins highly defined ubiquitin-independent proteasome substrate, we show directly to the proteasome and the susceptibility of flexible peptide that the mere introduction of a single Hsp70-binding site renders its stretches to mediate a translocation into the core proteolytic chamber degradation dependent on Hsp110. The findings define a dedicated govern rates of cellular protein turnover. and chaperone-dependent pathway for the efficient shuttling of The abundant Hsp70 family of chaperones (hereafter Hsp70) cellular proteins to the proteasome with profound implications for functions at the heart of PQC systems, and is critical for both the understanding protein quality control and cellular stress management. folding and proteasomal degradation of misfolded proteins. Hsp70 associates with misfolded proteins in a manner controlled by KEY WORDS: Protein degradation, Proteasome, Ubiquitin, its ATPase cycle and co-chaperones. The Hsp110 sub-family of Chaperone, Hsp70, Quality control proteins (hereafter Hsp110) is an abundant co-chaperone relative of Hsp70 that plays a central role in Hsp70 function. Hsp110 INTRODUCTION [Saccharomyces cerevisiae (hereafter yeast) proteins Sse1 and Proteolytic removal of misfolded proteins is an important process to Sse2], transiently associates with Hsp70 and accelerates nucleotide maintain proteostasis and to limit the damage caused by proteotoxic exchange, which results in large conformational changes of Hsp70 stress. Cellular protein quality control (PQC) systems selectively and release of substrates from the chaperone (Andréasson et al., recognize misfolded proteins, keep them associated with molecular 2008b; Dragovic et al., 2006; Raviol et al., 2006). Such controlled chaperones and target them for proteolytic degradation (McClellan association and release play critical roles in regulating the et al., 2005; Park et al., 2007). Failure to degrade misfolded proteins proteasomal degradation of misfolded proteins during PQC by PQC results in the accumulation of proteotoxic misfolded (Abrams et al., 2014; Gowda et al., 2013). Studies in yeast have proteins and has been linked to age-associated neurodegenerative shown that reducing the Hsp70 levels (yeast proteins Ssa1, Ssa2, Ssa3 diseases, including Parkinson’s and Huntington’s disease (Forloni and Ssa4) results in the accumulation of aggregated and ubiquitin- et al., 2002). modified misfolded proteins (Fang et al., 2011; Lee et al., 2016; The ubiquitin-proteasome system (UPS) is a critical component Shiber et al., 2013). Similarly decreasing the levels of Hsp110 in PQC (Ciechanover, 1994; Glickman and Ciechanover, 2002). (sse1Δ) results in the accumulation of misfolded model proteins Misfolded proteins are recognized by specialized ubiquitin ligases (Escusa-Toret et al., 2013; Guerriero et al., 2013; Heck et al., 2010; and covalently tagged with ubiquitin chains that serve as Mandal et al., 2010; McClellan et al., 2005) and of ubiquitin degradation signals (Eisele and Wolf, 2008; Theodoraki et al., conjugates following a heat shock (Gowda et al., 2013). These 2012). The polyubiquitylated proteins are then delivered to 26S findings support a role for Hsp70 and Hsp110 in misfolded protein degradation, perhaps to maintain misfolded proteins in a soluble form Department of Molecular Biosciences, The Wenner-Gren Institute Stockholm during transit to the proteasome, but experiments are plagued by University, SE-10691, Stockholm, Sweden. indirect phenotypes stemming from the role of Hsp70 and Hsp110 in protein biogenesis (Gowda et al., 2013). Thus, the mechanistic *Author for correspondence ([email protected]) function of Hsp70 and Hsp110 in proteolysis is not well understood. G.K., 0000-0001-8110-2567; C.A., 0000-0001-8948-0685 The transfer of misfolded proteins from chaperone systems to the UPS may rely on simple kinetic competition for substrate binding as Received 13 September 2017; Accepted 14 February 2018 well as on more intricate mechanisms that physically link chaperones Journal of Cell Science 1 RESEARCH ARTICLE Journal of Cell Science (2018) 131, jcs210948. doi:10.1242/jcs.210948 to the UPS machinery. For example in the yeast cytoplasm, the analysis was expanded with the distinct UFD substrate UbV76–EGFP degradation of misfolded proteins that are associated with the (Dantuma et al., 2000). This UFD substrate was also dependent on chaperone Hsp70 depends on the nucleotide exchange factor Fes1 Hsp110 for its degradation, and again the unmodified and being released from the chaperone and then recognized by PQC monoubiquitylated forms were found to be distributed in the ubiquitin ligases (Gowda et al., 2016, 2013, 2018). In metazoan cells, soluble and insoluble fractions (Fig. 1D). To assess the functional mechanisms involve the direct docking of the ubiquitin ligase CHIP requirements of Sse1 in the protein degradation pathway, we tested to Hsp70, and the nucleotide exchange factor BAG-1 coordinates the previously described Sse1 mutants deficient in ATP binding release of the misfolded protein from Hsp70 with proteasome (G205D), ATP hydrolysis (K69M) and substrate binding (denoted interactions (Demand et al., 2001; Hohfeld and Jentsch, 1997; Lüders sbd; L433A, N434P, F439L and M441A) (Andréasson et al., 2008b; et al., 2000). A third example involves the ubiquitylation of proteins Garcia et al., 2017; Shaner et al., 2004). Sse1 depends on ATP damaged by acute heat shock, which has been proposed to depend on binding but not on hydrolysis to interact with Hsp70 (Andréasson the coordinated interactions of the PQC ubiquitin ligase Rsp5, the et al., 2008b). We found that the proteasomal degradation of UbV76– Hsp40 chaperone Ydj1 and the misfolded protein (Fang et al., 2014). Ura3–HA was strongly impeded by the lack of ATP binding, but not Nevertheless, our understanding of the basic PQC mechanisms that by ATP hydrolysis or substrate binding (Fig. 1F). Thus, Hsp110 link chaperone systems and the UPS is at the best rudimentary. functions together with Hsp70 in the proteasomal degradation Here, we investigate the function of Hsp110 in proteasomal pathway. degradation by employing a novel yeast strain with a temperature- Next, we focused on the potential post-ubiquitylation role of sensitive Hsp110 function (sse1-200 sse2Δ). We find that Hsp110 Hsp110 in proteasomal degradation following the turnover of functions together with Hsp70 in the degradation of aggregation- misfolded ubiquitylated proteins after heat shock (Fang et al., 2011; prone proteins involving both ubiquitin-dependent and -independent Gowda et al., 2013). Consistent with the previous reports, western proteasomal pathways. Hsp110 is required to keep Hsp70-associated blot analysis of ubiquitin-conjugate levels in wild-type (WT) cells proteasome substrates soluble and interacts with 19S regulatory transferred from 25°C to 37°C showed an accumulation of particle of the proteasome, suggesting coordinated recruitment of ubiquitylated proteins during the first 20 min after the temperature Hsp70–substrate complexes to the 26S proteasome for degradation. upshift, which were subsequently cleared by proteasomal The data defines a novel PQC pathway that enables the direct and degradation to reach the initial levels after 30 min (Fig. S1A). In efficient delivery of Hsp70-associated aggregation-prone proteins to sse1-200 sse2Δ cells, the accumulation of ubiquitin-conjugate the proteasome. levels was exacerbated and the accumulated ubiquitylated
Recommended publications
  • Proteasomes: Unfoldase-Assisted Protein Degradation Machines
    Biol. Chem. 2020; 401(1): 183–199 Review Parijat Majumder and Wolfgang Baumeister* Proteasomes: unfoldase-assisted protein degradation machines https://doi.org/10.1515/hsz-2019-0344 housekeeping functions such as cell cycle control, signal Received August 13, 2019; accepted October 2, 2019; previously transduction, transcription, DNA repair and translation published online October 29, 2019 (Alves dos Santos et al., 2001; Goldberg, 2007; Bader and Steller, 2009; Koepp, 2014). Consequently, any disrup- Abstract: Proteasomes are the principal molecular tion of selective protein degradation pathways leads to a machines for the regulated degradation of intracellular broad array of pathological states, including cancer, neu- proteins. These self-compartmentalized macromolecu- rodegeneration, immune-related disorders, cardiomyo- lar assemblies selectively degrade misfolded, mistrans- pathies, liver and gastrointestinal disorders, and ageing lated, damaged or otherwise unwanted proteins, and (Dahlmann, 2007; Motegi et al., 2009; Dantuma and Bott, play a pivotal role in the maintenance of cellular proteo- 2014; Schmidt and Finley, 2014). stasis, in stress response, and numerous other processes In eukaryotes, two major pathways have been identi- of vital importance. Whereas the molecular architecture fied for the selective removal of unwanted proteins – the of the proteasome core particle (CP) is universally con- ubiquitin-proteasome-system (UPS), and the autophagy- served, the unfoldase modules vary in overall structure, lysosome pathway (Ciechanover, 2005; Dikic, 2017). UPS subunit complexity, and regulatory principles. Proteas- constitutes the principal degradation route for intracel- omal unfoldases are AAA+ ATPases (ATPases associated lular proteins, whereas cellular organelles, cell-surface with a variety of cellular activities) that unfold protein proteins, and invading pathogens are mostly degraded substrates, and translocate them into the CP for degra- via autophagy.
    [Show full text]
  • The HSP70 Chaperone Machinery: J Proteins As Drivers of Functional Specificity
    REVIEWS The HSP70 chaperone machinery: J proteins as drivers of functional specificity Harm H. Kampinga* and Elizabeth A. Craig‡ Abstract | Heat shock 70 kDa proteins (HSP70s) are ubiquitous molecular chaperones that function in a myriad of biological processes, modulating polypeptide folding, degradation and translocation across membranes, and protein–protein interactions. This multitude of roles is not easily reconciled with the universality of the activity of HSP70s in ATP-dependent client protein-binding and release cycles. Much of the functional diversity of the HSP70s is driven by a diverse class of cofactors: J proteins. Often, multiple J proteins function with a single HSP70. Some target HSP70 activity to clients at precise locations in cells and others bind client proteins directly, thereby delivering specific clients to HSP70 and directly determining their fate. In their native cellular environment, polypeptides are participates in such diverse cellular functions. Their constantly at risk of attaining conformations that pre- functional diversity is remarkable considering that vent them from functioning properly and/or cause them within and across species, HSP70s have high sequence to aggregate into large, potentially cytotoxic complexes. identity. They share a single biochemical activity: an Molecular chaperones guide the conformation of proteins ATP-dependent client-binding and release cycle com- throughout their lifetime, preventing their aggregation bined with client protein recognition, which is typi- by protecting interactive surfaces against non-productive cally rather promiscuous. This apparent conundrum interactions. Through such inter actions, molecular chap- is resolved by the fact that HSP70s do not work alone, erones aid in the folding of nascent proteins as they are but rather as ‘HSP70 machines’, collaborating with synthesized by ribosomes, drive protein transport across and being regulated by several cofactors.
    [Show full text]
  • Heat Shock Protein 27 Is Involved in SUMO-2&Sol
    Oncogene (2009) 28, 3332–3344 & 2009 Macmillan Publishers Limited All rights reserved 0950-9232/09 $32.00 www.nature.com/onc ORIGINAL ARTICLE Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity M Brunet Simioni1,2, A De Thonel1,2, A Hammann1,2, AL Joly1,2, G Bossis3,4,5, E Fourmaux1, A Bouchot1, J Landry6, M Piechaczyk3,4,5 and C Garrido1,2,7 1INSERM U866, Dijon, France; 2Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, Burgundy, France; 3Institut de Ge´ne´tique Mole´culaire UMR 5535 CNRS, Montpellier cedex 5, France; 4Universite´ Montpellier 2, Montpellier cedex 5, France; 5Universite´ Montpellier 1, Montpellier cedex 2, France; 6Centre de Recherche en Cance´rologie et De´partement de Me´decine, Universite´ Laval, Quebec City, Que´bec, Canada and 7CHU Dijon BP1542, Dijon, France Heat shock protein 27 (HSP27) accumulates in stressed otherwise lethal conditions. This stress response is cells and helps them to survive adverse conditions. We have universal and is very well conserved through evolution. already shown that HSP27 has a function in the Two of the most stress-inducible HSPs are HSP70 and ubiquitination process that is modulated by its oligomeriza- HSP27. Although HSP70 is an ATP-dependent chaper- tion/phosphorylation status. Here, we show that HSP27 is one induced early after stress and is involved in the also involved in protein sumoylation, a ubiquitination- correct folding of proteins, HSP27 is a late inducible related process. HSP27 increases the number of cell HSP whose main chaperone activity is to inhibit protein proteins modified by small ubiquitin-like modifier aggregation in an ATP-independent manner (Garrido (SUMO)-2/3 but this effect shows some selectivity as it et al., 2006).
    [Show full text]
  • Heat Shock Protein 70 (HSP70) Induction: Chaperonotherapy for Neuroprotection After Brain Injury
    cells Review Heat Shock Protein 70 (HSP70) Induction: Chaperonotherapy for Neuroprotection after Brain Injury Jong Youl Kim 1, Sumit Barua 1, Mei Ying Huang 1,2, Joohyun Park 1,2, Midori A. Yenari 3,* and Jong Eun Lee 1,2,* 1 Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea; [email protected] (J.Y.K.); [email protected] (S.B.); [email protected] (M.Y.H.); [email protected] (J.P.) 2 BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea 3 Department of Neurology, University of California, San Francisco & the San Francisco Veterans Affairs Medical Center, Neurology (127) VAMC 4150 Clement St., San Francisco, CA 94121, USA * Correspondence: [email protected] (M.A.Y.); [email protected] (J.E.L.); Tel.: +1-415-750-2011 (M.A.Y.); +82-2-2228-1646 (ext. 1659) (J.E.L.); Fax: +1-415-750-2273 (M.A.Y.); +82-2-365-0700 (J.E.L.) Received: 17 July 2020; Accepted: 26 August 2020; Published: 2 September 2020 Abstract: The 70 kDa heat shock protein (HSP70) is a stress-inducible protein that has been shown to protect the brain from various nervous system injuries. It allows cells to withstand potentially lethal insults through its chaperone functions. Its chaperone properties can assist in protein folding and prevent protein aggregation following several of these insults. Although its neuroprotective properties have been largely attributed to its chaperone functions, HSP70 may interact directly with proteins involved in cell death and inflammatory pathways following injury.
    [Show full text]
  • Senescence Inhibits the Chaperone Response to Thermal Stress
    SUPPLEMENTAL INFORMATION Senescence inhibits the chaperone response to thermal stress Jack Llewellyn1, 2, Venkatesh Mallikarjun1, 2, 3, Ellen Appleton1, 2, Maria Osipova1, 2, Hamish TJ Gilbert1, 2, Stephen M Richardson2, Simon J Hubbard4, 5 and Joe Swift1, 2, 5 (1) Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK. (2) Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK. (3) Current address: Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA, 22903, USA. (4) Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK. (5) Correspondence to SJH ([email protected]) or JS ([email protected]). Page 1 of 11 Supplemental Information: Llewellyn et al. Chaperone stress response in senescence CONTENTS Supplemental figures S1 – S5 … … … … … … … … 3 Supplemental table S6 … … … … … … … … 10 Supplemental references … … … … … … … … 11 Page 2 of 11 Supplemental Information: Llewellyn et al. Chaperone stress response in senescence SUPPLEMENTAL FIGURES Figure S1. A EP (passage 3) LP (passage 16) 200 µm 200 µm 1.5 3 B Mass spectrometry proteomics (n = 4) C mRNA (n = 4) D 100k EP 1.0 2 p < 0.0001 p < 0.0001 LP p < 0.0001 p < 0.0001 ) 0.5 1 2 p < 0.0001 p < 0.0001 10k 0.0 0 -0.5 -1 Cell area (µm Cell area fold change vs. EP fold change vs.
    [Show full text]
  • HSP90 Interacts with the Fibronectin N-Terminal Domains and Increases Matrix Formation
    cells Article HSP90 Interacts with the Fibronectin N-terminal Domains and Increases Matrix Formation Abir Chakraborty 1 , Natasha Marie-Eraine Boel 1 and Adrienne Lesley Edkins 1,2,* 1 Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; [email protected] (A.C.); [email protected] (N.M.-E.B.) 2 Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa * Correspondence: [email protected] Received: 20 December 2019; Accepted: 18 January 2020; Published: 22 January 2020 Abstract: Heat shock protein 90 (HSP90) is an evolutionarily conserved chaperone protein that controls the function and stability of a wide range of cellular client proteins. Fibronectin (FN) is an extracellular client protein of HSP90, and exogenous HSP90 or inhibitors of HSP90 alter the morphology of the extracellular matrix. Here, we further characterized the HSP90 and FN interaction. FN bound to the M domain of HSP90 and interacted with both the open and closed HSP90 conformations; and the interaction was reduced in the presence of sodium molybdate. HSP90 interacted with the N-terminal regions of FN, which are known to be important for matrix assembly. The highest affinity interaction was with the 30-kDa (heparin-binding) FN fragment, which also showed the greatest colocalization in cells and accommodated both HSP90 and heparin in the complex. The strength of interaction with HSP90 was influenced by the inherent stability of the FN fragments, together with the type of motif, where HSP90 preferentially bound the type-I FN repeat over the type-II repeat. Exogenous extracellular HSP90 led to increased incorporation of both full-length and 70-kDa fragments of FN into fibrils.
    [Show full text]
  • Protein Folding: Dual Chaperone Function
    RESEARCH HIGHLIGHTS PROTEIN FOLDING Dual chaperone function Chaperones support protein folding deletion of the JJJ1 gene and the in different cellular compartments SSB1 and SSB2 genes caused cytosolic and some chaperones associate synthetic lethality, which implies and nuclear with ribosomes to help fold newly that RAC–SSB and Jji1 function in synthesized proteins. Two studies by distinct pathways. functions [of Koplin et al. and Albanèse et al. now Cells lacking both SSB and NAC chaperones] in reveal that, in addition to promoting accumulated aggregates consisting protein folding protein folding, the yeast chaperone mostly of ribosomal proteins and system RAC–SSB (ribosome-asso- pre-ribosomal RNA (rRNA) species. and ribosome ciated complex–stress 70B; in which Furthermore, double-deletion strains biogenesis RAC acts as a co-chaperone for the for RAC–SSB and NAC and for RAC functionally interchangeable SSB and Jjj1 showed a reduction in the proteins Ssb1 and Ssb2), the nascent levels of 80S ribosomes and translat- chain-associated complex (NAC) ing polysomes as well as the 60S and and the chaperone Jjj1 (which is a 40S subunits. Albanèse et al. further co-chaperone for the Hsp70 chaper- showed that the loss of Zuo1 and Jjj1 one SSA) also help with assembling led to the accumulation of immature ribosomes. 27S rRNA precursors, a hallmark of Genetic interaction studies defective 60S ribosomal subunit mat- showed that RAC, which consists uration. Microarray analysis allowed of zuotin (Zuo1) and Ssz1, and the detection of deficiencies in 27S the Zuo-like protein Jjj1, have and 35S rRNA processing in strains distinct but overlapping biological with Jji1 or RAC deletions, although functions.
    [Show full text]
  • REVIEW Heat Shock Proteins – Modulators of Apoptosis in Tumour
    Leukemia (2000) 14, 1161–1173 2000 Macmillan Publishers Ltd All rights reserved 0887-6924/00 $15.00 www.nature.com/leu REVIEW Heat shock proteins – modulators of apoptosis in tumour cells EM Creagh, D Sheehan and TG Cotter Tumour Biology Laboratory, Department of Biochemistry, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland Apoptosis is a genetically programmed, physiological method ditions, when the stress level eliminates the capacity for regu- of cell destruction. A variety of genes are now recognised as lated activation of the apoptotic cascade, the cells undergo positive or negative regulators of this process. Expression of inducible heat shock proteins (hsp) is known to correlate with necrosis. At lower levels, injured cells activate their own increased resistance to apoptosis induced by a range of apoptotic programme. However, if the level of stress is low diverse cytotoxic agents and has been implicated in chemo- enough, cells attempt to survive and activate a stress response therapeutic resistance of tumours and carcinogenesis. Inten- system (Figure 1). This response involves a shut-down of all sive research on apoptosis over the past number of years has cellular protein synthesis apart from a rapid induction of heat provided significant insights into the mechanisms and molecu- shock proteins, which results in a transient state of thermotol- lar events that occur during this process. The modulatory 8 effects of hsps on apoptosis are well documented, however, erance. Once the stress element is removed, these cells func- the mechanisms of hsp-mediated protection against apoptosis tion normally and the levels of hsps drop back to basal levels remain to be fully defined, although several hypotheses have with time.
    [Show full text]
  • Genetic Disorders Involving Molecular-Chaperone Genes: a Perspective Alberto J.L
    January 2005 ⅐ Vol. 7 ⅐ No. 1 review Genetic disorders involving molecular-chaperone genes: A perspective Alberto J.L. Macario, MD1,2, Tomas M. Grippo, MD1, and Everly Conway de Macario, PhD1 Molecular chaperones are important for maintaining a functional set of proteins in all cellular compartments. Together with protein degradation machineries (e.g., the ubiquitin-proteasome system), chaperones form the core of the cellular protein-quality control mechanism. Chaperones are proteins, and as such, they can be affected by mutations. At least 15 disorders have been identified that are associated with mutations in genes encoding chaperones, or molecules with features suggesting that they function as chaperones. These chaperonopathies and a few other candidates are presented in this article. In most cases, the mechanisms by which the defective genes contribute to the observed phenotypes are still uncharacterized. However, the reported observations definitely point to the possibility that abnormal chaperones participate in pathogenesis. The available data open novel perspectives and should encourage searches for new genetic chaperonopathies, as well as further analyses of the disorders discussed in this article, including detection of new cases. Genet Med 2005:7(1):3–12. Key Words: genetic chaperonopathies, defective chaperones, structural chaperonopathies, neuromuscular diseases, eye diseases. Protein biogenesis is one of the most crucial physiological and quality of the information currently available justify a se- processes, ensuring the maintenance of a complete set of pro- rious consideration of the possibility that defective chaperones teins, correctly folded, in every cellular compartment. The contribute to pathogenesis and may even be the primary etiol- pathogenetic potential of failure in the mechanisms that assist ogy in many disorders.
    [Show full text]
  • Mapping the Conformation of a Client Protein Through the Hsp70 Functional Cycle
    Mapping the conformation of a client protein through the Hsp70 functional cycle Ashok Sekhara,1,2, Rina Rosenzweiga,1,2, Guillaume Bouvigniesb, and Lewis E. Kaya,c,2 aDepartments of Molecular Genetics, Biochemistry, and Chemistry, The University of Toronto, Toronto, ON, Canada M5S 1A8; bUniversité Grenoble Alpes, Centre National de la Recherche Scientifique, and Commissariat à l′Énergie Atomique et aux Énergies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France; and cProgram in Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8 Edited by Peter E. Wright, The Scripps Research Institute, La Jolla, CA, and approved June 30, 2015 (received for review April 30, 2015) The 70 kDa heat shock protein (Hsp70) chaperone system is ubiqui- (9, 10). Larger fragments of apomyoglobin bound to the DnaK tous, highly conserved, and involved in a myriad of diverse cellular SBD were found to be predominantly unfolded but adopted small processes. Its function relies on nucleotide-dependent interactions amounts of native and nonnative helical structure (11, 12). In ad- with client proteins, yet the structural features of folding-competent dition, low-resolution studies on protein substrates have suggested substrates in their Hsp70-bound state remain poorly understood. Here that the substrate is globally unfolded (13, 14) and expanded in the we use NMR spectroscopy to study the human telomere repeat DnaK-bound conformation (15). Although these studies have pro- binding factor 1 (hTRF1) in complex with Escherichia coli Hsp70 (DnaK). vided important insights into DnaK-substrate binding, a more com- In the complex, hTRF1 is globally unfolded with up to 40% helical prehensive structural characterization of this interaction is crucial secondary structure in regions distal to the binding site.
    [Show full text]
  • Molecular Chaperone HSP90 Is Necessary to Prevent Cellular Senescence Via Lysosomal
    Author Manuscript Published OnlineFirst on October 28, 2016; DOI: 10.1158/0008-5472.CAN-16-0613 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Molecular chaperone HSP90 is necessary to prevent cellular senescence via lysosomal 2 degradation of p14ARF 1,7 1,7 2,3 2,4 1 1 3 Su Yeon Han , Aram Ko , Haruhisa Kitano , Chel Hun Choi , Min-Sik Lee , Jinho Seo , 5 6 2 2 1 4 Junya Fukuoka , Soo-Youl Kim , Stephen M. Hewitt , Joon-Yong Chung , Jaewhan Song 5 Affiliations and addresses 1 6 Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 7 Seoul, Korea 2 8 Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, 9 National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA 3 10 Department of Thoracic Surgery, Shiga University of Medical Science, Otsu 520-2192, 11 Japan 4 12 Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan 13 University School of Medicine, Seoul 135-710, Republic of Korea 5 14 Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 15 Nagasaki, 852-8523, Japan 6 16 Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, Research Institute, 17 National Cancer Center, Goyang 410-769, Republic of Korea 7 18 These authors contributed equally to this work. 19 Running title: HSP90-mediated p14ARF degradation in NSCLC 20 Key words: p14ARF, HSP90, NSCLC, Lysosome-dependent degradation, Senescence 21 Funding: This work was supported by grants from the Basic Science Research Program of 22 the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT 23 and Future Planning (2014R1A1A1002589) (S Han, A Ko) and from the National Cancer 1 Downloaded from cancerres.aacrjournals.org on September 27, 2021.
    [Show full text]
  • A Chaperone Network Controls the Heat Shock Response in E. Coli
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press A chaperone network controls the heat shock response in E. coli Eric Guisbert,1 Christophe Herman,2,4,5 Chi Zen Lu,2 and Carol A. Gross2,3,6 Departments of 1Biochemistry and Biophysics, 2Microbiology and Immunology, and 3Stomatology, University of California, San Francisco, San Francisco, California 94143, USA; 4Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA The heat shock response controls levels of chaperones and proteases to ensure a proper cellular environment for protein folding. In Escherichia coli, this response is mediated by the bacterial-specific transcription factor, ␴32. The DnaK chaperone machine regulates both the amount and activity of ␴32, thereby coupling ␴32 function to the cellular protein folding state. In this manuscript, we analyze the ability of other major chaperones in E. coli to regulate ␴32, and we demonstrate that the GroEL/S chaperonin is an additional regulator of ␴32. We show that increasing the level of GroEL/S leads to a decrease in ␴32 activity in vivo and this effect can be eliminated by co-overexpression of a GroEL/S-specific substrate. We also show that depletion of GroEL/S in vivo leads to up-regulation of ␴32 by increasing the level of ␴32. In addition, we show that changing the levels of GroEL/S during stress conditions leads to measurable changes in the heat shock response. Using purified proteins, we show that that GroEL binds to ␴32 and decreases ␴32-dependent transcription in vitro, suggesting that this regulation is direct.
    [Show full text]