Water, Sodium and Potassium Imbalance in Peritoneal Dialysis Pediatric Patients

Total Page:16

File Type:pdf, Size:1020Kb

Water, Sodium and Potassium Imbalance in Peritoneal Dialysis Pediatric Patients Central Annals of Pediatrics & Child Health Review Article *Corresponding author Carlos G. Musso, Adult Nephrology & Internal Millieu Divisions, Hospital Italiano de Buenos Aires, Argentina, Water, Sodium and Potassium Email: Submitted: 09 July 2016 Accepted: 28 August 2016 Imbalance in Peritoneal Published: 02 September 2016 Copyright Dialysis Pediatric Patients © 2016 Musso et al. OPEN ACCESS Carlos G. Musso¹*, Maritza Contreras², and Paula Coccia² 1Adult Nephrology & Internal Millieu Divisions, Hospital Italiano de Buenos Aires, Keywords • Water Argentina • Sodium 2 Pediatric Nephrology & Internal Millieu Divisions, Hospital Italiano de Buenos Aires, • Potassium Argentina • Peritoneal dialysis • Pediatrics Abstract Water, sodium and potassium regulation is usually altered in end-stage renal disease patients, particularly in frail individuals such as pediatric and elderly people. In this review article, pathophysiology of water, sodium, and potassium imbalance in peritoneal dialysis pediatric patients is in detail described. Understanding the etiological mechanisms of dysnatremia and dyskalemia in this group is crucial for their proper diagnosis and treatment. INTRODUCTION other diseases: neurological, pulmonary, or paraneoplastic. (c) Excessive water intake: A water income which overcomes renal One of the main renal functions consists of regulation of water, free water excretion capability can induce hyponatremia even sodium and potassium metabolisms. Therefore serum sodium in a context of fully suppressed vasopressin secretion. This type and potassium levels can be seriously affected, resulting in the of hyponatremia has been documented in patients who suffered appearance of dysnatremias or dyskalemias, respectively, in end- from primary polydipsia. (D) Low intracelular phosphate content: stage renal disease patients, particularly in pediatric patients Low cellular phosphate can lead to intracellular hypo-osmolarity on dialysis [1-3]. In the present article, the pathophysiology of and consequently to water shift into extracellular compartment. water, sodium, and potassium imbalance in peritoneal dialysis (E) Reset osmostat: Reset osmostat hyponatremia is induced by pediatric patients is analyzed in detail, in order to facilitate its a change in the set point for serum sodium tonicity. This sort of understanding, and consequently the implementation of an hyponatremia is usually found in malnourished chronically-ill adequate therapeutic approach. patients, and it should be a diagnosis of exclusion. Regarding Salt & water imbalance: its pathophysiology Serum sodium level usually results from the relation between (Tablehyponatremia, 2). it is classically classified depending on patient´s salt and water (Na:H2O) body content, thus a low Na:H2O ratio plasma tonicity and patient´s extracellular fluid (ECF) status can induce hyponatremia (serum sodium < 135 mmol/L), and Altered serum sodium in peritoneal dialysis a high Na:H2O ratio can induce hypernatremia (serum sodium Hyponatremia is a prevalent electrolyte problem in > 145 mmol/L) (Table 1). Additionally, there are other factors peritoneal dialysis patients; and this disturbance is mainly which can modify Na:H2O ratio, and induce hyponatremia, such as induced in anuric peritoneal dialysis patients by different [4-12]: (A) Low body potassium content: Potassium intracellular mechanisms [1,12-14]: (A) Low sodium / water ratio secondary depletion induces hyponatremia at least by two mechanisms: inducing inadequate vasopressin release. Edelman summarized Table 1: Salt & water imbalance characteristics. this• by conceptinducing in sodiumthe following shift into equation the intracellular [1]: Serum space,sodium •by = volume contraction volume overload body (exchangeable) sodium + body (exchangeable) potassium imbalance negative positive / total body water (B) Excessive free water retention: Free magnitude mild to severe mild to severe water retention induced by inadequate vasopressin secretion axillary dryness secondary to drugs (opioids, psychotropic medications), hypertension, peripheral clinical manifestation orthostatism, edema, lung congestion endocrinopathies (hypothyroidism, hypoaldosteronism), and hypotension, Cite this article: Musso CG, Contreras M, Coccia P (2016) Water, Sodium and Potassium Imbalance in Peritoneal Dialysis Pediatric Patients. Ann Pediatr Child Health 4(4): 1110. Musso et al. (2016) Email: Central Table 2: Hypotonic Hyponatremia Normotonic Hyponatremia Hypertonic Hyponatremia Hyponatremia clinical classification. PO: <280 PO: 280-300 PO: >300 mOsm/L mOsm/L mOsm/L normal free water body content increased free water body content increased free water intravascular content eg: important paraproteinemia eg: classical hyponatremia eg: hyperglicemia or dyslipidemia Hypotonic Hypotonic Hypotonic Hyponatremia Hyponatremia Hyponatremia axillary dryness, orthostatism hypotension normal clinical exam hypertension, peripheral edema, lung congestion low ECF normal ECF high ECF Abbreviations: PO: Plasma Osmolarity; ECF: Extracellular Fluid to a high oral water intake (water in excess of sodium), and/or volume is low: salt supply should be delivered (orally or intravenously, depending on the acuity of the situation); and if occurs with an increase in body weight, as well as clinical signs of volumelow water overload. excretion (B) (insufficientLow sodium ultrafiltration)./ water ratio secondary This situation to an function: consideration should be given to antidiuretic hormone extracellular volume is normal with significant residual renal residual renal function, it could be interpreted as an osmostat Lowextracellular potassium fluid bodysodium content deficit due due to tolow a low potassium intake (low intake sodium [low reset- driven [13]. renal Hypernatremia water retention; is usually in associated those without with intermittent significant potassiumdiet), and/or diet], excess and/or sodium excessive loss (excessive potassium ultrafiltration). loss (diarrhea). (C) peritoneal dialysis which consists of a dialytic schedule based Intracellular potassium depletion induces sodium to shift from on frequent exchanges at 30-60 minutes intervals. This sort the extracellular compartment to the intracellular one, in order to of dysnatremia occurs more commonly when high dialysate least three mechanisms for the development of hypernatremia leadskeep bodyto extracellular compartments volume electrically contraction. neutral. This The scenario flux of presents sodium glucose concentration is used to achieve ultra filtration [14]. A withfrom athe reduction extracellular in body fluid weight to theand intracellularthere may be compartment, clinical signs of hypovolemia, but not always hypokalemia. (D) Intracellular hyperglycemiahave been proposed which causes[14-16]: osmotic • Dialysate diuresis hypertonicity, (if residual diuresis which isinduces preserved) salt and and water consequently loss in excess increases of water. the •Dialysis serum inducedsodium water into the intravascular compartment. This mechanism of dilutionalphosphate hyponatremia deficit due to presents malnutrition itself with which reduced induces body shift weight of concentration and because of that are more likely associated with (lean mass reduction) but without signs of volume contraction. hypernatremia.level. •Shorter exchanges have a lower outflow dialysate sodium residual renal function (RRF): GFR: 15-20 ml/min/1.73 m², such Salt & water imbalance in peritoneal dialysis asRegarding those who peritoneal start peritoneal dialysis dialysispatients earlier who have due toa significantrefractory pediatrics patients hyperkalemia or concomitant cardiac failure (incremental Fluid and electrolyte requirements in children vary dialysis), they can also suffer from hyponatremia induced by according to their primary kidney disease, degree of residual free water retention due to an inadequate vasopressin secretion. kidney function, and method of kidney replacement therapy. This hyponatremia presents itself without edema or body weight should rule out the presence of non hypotonic hyponatremia, outputSupplementation and the ability or restriction to concentrate of fluid, urine, sodium, hydration and status,potassium and change. When evaluating hyponatremic patients, first of all you either normotonic hyponatremia (pseudohyponatremia), theintake presence is individualized or absence andof hypertension influenced by or thehyperkalemia. volume of urineBody as it is documented in cases of severe paraproteinemia or composition also differs considerably in children as compared to dyslipidemia; or hypertonic hyponatremia, as it is documented in adults. Total body water is 75 % in newborns, 60 % in infants hyperglycemia, or icodextrin use. Secondly, evaluate the serum and adolescents and 50 % in elderly men [17,18]. The primary potassium level, and nutritional status. If the patient presents cause of chronic kidney disease needs to be considered. Although hypokalemia, or intracellular potassium depletion is strongly suspected, potassium should be administered cautiously and with chronic nephropathy associated with sodium and water with close monitoring of the serum potassium level. If the patient retention,restriction the of mostsodium common and/or causes fluids ofis renalappropriate disease inin children is malnourished, adequate nourishment should be provided, but are associated with excessive loss of sodium and chloride. Infants not before assuring the normal serum potassium and phosphorus and children with obstructive
Recommended publications
  • Dialysis Dosing: Kinetics Versus Physiology
    Dialysis Dosing: Kinetics Versus Physiology KDIGOMaría F. Slon Complejo Hospitalario Navarra Navarra, Spain Disclosure of Interests • NxStage European Medical Advisory Board KDIGO KDIGO Controversies Conference on Dialysis Initiation, Modality Choice & Prescription January 25-28, 2018 | Madrid, Spain Epidemiology Estimated number of patients undergoing RRT from 2010 to 2030 worldwide (A) and by region (B) KDIGO Liyanage T, et al. Lancet 2015 Epidemiology Expected remaining lifetime (years) of the general population (cohort 2011-2015) and of prevalent dialysis and transplant patients (cohort 2011-2015) KDIGO ERA-EDTA Registry Annual Report 2015 Epidemiology Unadjusted percentages of deaths in 2014 by cause, excludes missing/unknown causes of death data among dialysis patients Cardiovascular disease > 50% KDIGO Abbreviations: ASHD, atherosclerotic heart disease; AMI, acute myocardial infarction; CHF, congestive heart failure; CVA, cerebrovascular accident. USRDS Annual Data Report 2017 Dialysis Therapy SOLUTES CLEARANCE Uremic Toxins HORMONE PRODUCTION Electrolites Regulation Red blood cell mass Acid–base Balance regulation Calcium–phosphate Vitamin D regulation control KDIGO Others VOLUME HOMEOSTASIS Fluid Overload Blood pressure control Dialysis Therapy SOLUTES CLEARANCE Convetional Uremic Toxins Hemodialysis Electrolites Regulation Acid–base Balance Peritoneal dialysis Calcium–phosphate control KDIGO Hemodiafiltration technologies VOLUME HOMEOSTASIS Intensive Hemodialysis Fluid Overload Blood pressure control Ability for solute clearance,
    [Show full text]
  • Perspectives of Dialysis Patients
    Department of Health and Human Services OFFICE OF INSPECTOR GENERAL “KNOW YOUR N(JMBER” BROCHURE PERSPECTIVES OF DIALYSIS PATIENTS JUNE GIBBS BROWN Inspector General JANUARY 1997 OEI-06-95-O0320 OFFICE OF INSPECTOR GENERAL The mission of the OffIce of Inspector General (OIG), as mandated by Public Law 95-452, is to protect the integrity of the Department of Health and Human Services programs as well as the health and welfare of beneficiaries served by them. This statutory mission is carried out through a nationwide program of audits, investigations, evaluations, sanctions, and fraud alerts. The Inspector General informs the Secretary of program and management problems and recommends legislative, regulatory, and operational approaches to correct them. OFFICE OF EVALUATION AND INSPECTIONS The OIG’S OffIce of Evaluation and Inspections (OEI) conducts short-term management and program evaluations (called inspections) that focus on issues of concern to the Department, the Congress, and the public. The inspection reports provide findings and recommendations on the efficiency, vulnerability, and effectiveness of departmental programs. OEI’S Dallas Regional Oftlce prepared this report under the direction of Chester B. Slaughter, Regional Inspector General. Project staff included: DALLAS REGION HEADQUARTERS Michelle Adams, Ph. D. Mary Beth Clarke Ruth Ann Dorrill Brian Ritchie Karen Erickson, Intern Barbara Tedesco Sarah Taylor Judy Tyler Nancy Watts For additional copies of this report, please contact the Dallas Regional OffIce at (800) 848-8960. Department of Health and Human Services OFFICE OF INSPECTOR GENERAL “KNOW YOUR NUMBER” BROCHURE PERSPECTIVES OF DIALYSIS PATIENTS $‘o + JUNE GIBBS BROWN Inspector General ‘+4b dza # J~ARY 1997 OEI-06-95-O0320 EXECUTIVE SUMMARY PURPOSE This study describes the perspectives of end stage renal disease (ESRD) patients regarding the effectiveness of the Health Care Financing Administration’s (HCFA) “Know Your Number” brochure in educating them about a way to monitor the adequacy of their dialysis.
    [Show full text]
  • Cystatin C and Some Biochemical Parameters for Dialysis Adequacy Among Hemodialysed Patients at Al-Shifa Hospital, Gaza-Governorate
    الجامعةةةةةةةةةةةةةةةةةةةةة اﻹسةةةةةةةةةةةةةةةةةةةة مية بغةةةةةةةةةةةةةةةةةةةة زة The Islamic University of Gaza عمةةةةةةاحة البحةةةةةةد العلمةةةةةةي والد اسةةةةةةا العليةةةةةةةا Deanship of Research and Graduate Studies كليةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةة العلةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةو Faculty of Science Master of Biological Sciences ماجسةةةةةةةةةةةةةةةةةةتير العلةةةةةةةةةةةةةةةةةةو الحياتيةةةةةةةةةةةةةةةةةةةة Medical Technology التحةةاليةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةل الطبيةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةةة Cystatin C and Some Biochemical Parameters for Dialysis Adequacy Among Hemodialysed Patients at Al-Shifa Hospital, Gaza-Governorate سيستاتين سي وبعض المعايير البيوكيميائية لقياس كفاءة الغسيل الدموي لدى مرضى الفشل الكلوي المزمن في مستشفى الشفاء - محافظة غزة Prepared By Fawwaz H. Eliglah Supervisor Prof. Baker M. Zabut Faculty of Science Biochemistry Department The Islamic University of Gaza A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences- Medical Technology September , 2018 إقةةةةةةةةةةةةةةرا أنا الموقع أحناه مقد الرسالة التي تحمل العنوان: Cystatin C and Some Biochemical Parameters for Dialysis Adequacy Among Hemodialysed Patients at Al-Shifa Hospital, Gaza-Governorate سيستاتين سي وبعض المعايير البيوكيميائية لقياس كفاءة الغسيل الدموي لدى ي مرضى الفشل الكلو المزمن في مستشفى الشفاء - محافظة غزة أقر بأن ما اشتملت عليه هذه الرسالة إنما هو نتاج جهدي الخاص، باستثناء ما تمت اﻹشارة إليه حيثما ورد، وأن هذه الرسالة ككل أو أي جزء منها لم يقدم من قبل اﻻخرين لنيل درجة أو لقب علمي أو بحثي لدى أي مؤسسة تعليمية أو بحثية أخرى. Declaration I understand the nature of plagiarism, and I am aware of the University’s policy on this. The work provided in this thesis, unless otherwise referenced, is the researcher's own work, and has not been submitted by others elsewhere for any other degree or qualification. اسم الطالب: فواز حسن العجلة :Student's name التوقيع: Signature: Fawwaz H.
    [Show full text]
  • Increasing Blood Flow Rate; a Tool to Improve Adequacy of Dialysis
    ORIGINAL ARTICLE ISRA MEDICAL JOURNAL | Volume 9 - Issue 6 | Nov - Dec 2017 Increasing Blood Flow Rate; A Tool To Improve Adequacy Of Dialysis Aurangzeb Afzal1, Maira Iqbal Malik2, Adnan Shabbir2 ABSTRACT OBJECTIVE: To assess the effect of increasing blood flow rate on the adequacy of dialysis, and to prove that increased blood flow can be helpful in achieving adequate dose of dialysis, in patients having low efficiency of dialysis . STUDY DESIGN: Quasi experimental study PLACE AND DURATION: At Dialysis unit of Lahore General Hospital over a period of 1 month from 28th January to 28th February 2017. METHODOLOGY: A total of 40 patients on regular hemodialysis participated in this study. Hemodialysis was performed at two different blood flow speeds 300 and 350 ml/min. Blood samples were obtained just before start and 45 minutes after completion of dialysis to measure urea levels. Urea Reduction Ratio (URR) was used as an index of dialysis dose and hence dialysis efficiency. RESULT: Increasing blood flow rate from 300 to 350ml/min has a significant impact on URR and hence on dialysis adequacy. It was observed that increasing blood flow rate from 300ml/min to 350ml/min raised URR from 53% to 60%. Marked statistical difference in URR between the two groups that is 7% was observed using the paired T-test. P value was 0.001 (<0.05). CONCLUSION: Increasing blood flow rate (BFR) has been successful in boosting effective dose of dialysis and is likely to prove beneficial for patients requiring hemodialysis. KEYWORDS: Hemodialysis, Adequacy, Blood Flow Rates, Low Efficiency, Urea reduction ratio.
    [Show full text]
  • Management of Hypertension for Patients Undergoing Dialysis Therapy Yoshihiro Taniyama
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Taniyama Renal Replacement Therapy (2016) 2:21 DOI 10.1186/s41100-016-0034-2 REVIEW Open Access Management of hypertension for patients undergoing dialysis therapy Yoshihiro Taniyama Abstract Hypertension is very prevalent among patients undergoing dialysis therapy: hemodialysis (HD) and peritoneal dialysis (PD). Although it is recognized as a great risk of cardiovascular mortality for these populations, how to regulate blood pressure (BP) is poorly understood. For HD patients, we should pay much attention to methods of measuring BP. Out- of-center BP levels and BP variability should be evaluated by ambulatory BP monitoring and home BP measurement because they are closely associated with cardiovascular mortality. Although target BP levels are not clear, several clinical guidelines suggest <140/90 mmHg. However, it must be determined for each individual patient with careful considerations about comorbidities. Based on the underling pathophysiology of hypertension in patients on dialysis, maintaining an appropriate volume of body fluid by dietary salt restriction and optimization of dry weigh should be considered as a first line therapy. Inhibitors for renin-angiotensin system may be suitable to reduce BP and mortality for those patients on dialysis. These drugs may also be effective for preserving residual renal function and peritoneal function for PD patients. β-blockers may have potentials to improve survival for HD patients and can be added to anti- hypertensive medications. Lacking large-scale and good quality clinical trials, there are many questions to be answered. Much effort should continuously be made to create evidences for better management of hypertension for patients on dialysis therapy.
    [Show full text]
  • Dialyzers and Dialysis Adequacy
    Dialyzers and Dialysis Adequacy NANT National Symposium February 10th, 2009 Las Vegas, Nevada Jim Curtis, CHT Home Dialysis Plus Portland, Oregon “The dialyzer is where the tire meets the road”... Peter Lepanto DIALYZER CHARACTERISTICS Membrane Material – Biocompatibility Solute Removal - Clearance – Diffusion – Convection – Adsorption Dialyzer Membranes Cellulose Synthetic Cuprophan PAN Cupromonium Rayon AN 69 Hemophan PMMA Cellulose Acetate Polysulphone Cellulose Triacetate Polyflux Purema BIOCOMPATIBILITY The choice of membrane material affects how the blood will react when in contact with the membrane Reactions to Bioincompatability Indicators of Bioincompatability Reactions to Bioincompatability Mild / unnoticed DAA Severe - anaphylactic shock INDICATORS OF BIOINCOMPATABILITY Compliment activation – increase in circulating C3a level – Decrease in white blood cells Hyper coagulation COMPLIMENT ACTIVATION C3a Baseline WBC’s TIME SOLUTE REMOVAL Diffusion Convection Adsorption Dialyzer Clearance Clearance (K) specifications for dialyzers indicate the amount of a specific Solute will be “cleared” from the patients blood in a given amount of time For example, if the specs say a dialyzer has a clearance of 350 ml/min at a Qb of 400 ml/min, it means that in one minute 350 ml’s of blood will be cleared of urea, and the remaining 50 ml/min will have the same amount of urea that it started with Solute Removal: Diffusion In diffusion, molecules move from an area of high concentration to an area of low concentration. The higher the concentration gradient, the more rapid the diffusion Diffusive clearances are dependant upon: – blood flow rates – dialysate flow rates – membrane surface area Solute Removal: Convection Also known as “Solute Drag”, molecules move with the fluid as it crossed the membrane.
    [Show full text]
  • Hemodialysis Dose and Adequacy
    Hemodialysis Dose and Adequacy When kidneys fail, dialysis is neces­ The amount of urea removed (35 mg/dL) sary to remove waste products such as is expressed as a percentage of the pre- urea from the blood. By itself, urea is dialysis urea level (50 mg/dL). only mildly toxic, but a high urea level 35/50 = 70/100 = 70% means that the levels of many other waste products that are more harm­ Although no fixed percentage can be ful and not as easily measured are also said to represent an adequate dialysis, building up. patients generally live longer and have fewer hospitalizations if the URR is To see whether dialysis is removing at least 60 percent. As a result, some enough urea, the dialysis clinic should experts recommend a minimum URR periodically—normally once a month— of 65 percent. test a patient’s blood to measure dialysis adequacy. Blood is sampled at the start The URR is usually measured only once of dialysis and at the end. The levels of every 12 to 14 treatments, which is urea in the two blood samples are then once a month. The URR may vary con­ compared. Two methods are generally siderably from treatment to treatment. used to assess dialysis adequacy, URR Therefore, a single value below 65 per­ and Kt/V. cent should not be of great concern, but a patient’s average URR should exceed What is the URR? 65 percent. URR stands for urea reduction ratio, meaning the reduction in urea as a What is the Kt/V? result of dialysis.
    [Show full text]
  • Reducing Delays in the Dialysis Treatment a Major Qualifying Project
    Project Number: MQF-MQP 3309 Reducing Delays in the Dialysis Treatment A Major Qualifying Project Submitted to the faculty of Worcester Polytechnic Institute in partial fulfillment of the requirements for the Degree of Bachelor of Science in Mechanical Engineering by Danielle Davis Rachel Pineda Aïda Waller Kelly Winthrop Approved April 30, 2015 Prof. M. S. Fofana, Advisor Mechanical Engineering Department Abstract The functions of the kidneys include maintenance of acid-base balance, water removal, electrolyte balance, toxin removal, blood pressure control, erythropoietin production, and the metabolism of Vitamin D. The kidneys accomplish these vital functions by filtering approximately 180 liters of blood plasma each day, but if they fail they are no longer able to perform these tasks. In the United States, the two leading causes of kidney failure are diabetes and high blood pressure. Hemodialysis is a type of dialysis treatment, which is an artificial process that is able to imitate the functions of the kidneys. The treatment process encompasses the removal of blood from the patient, pumping it through an external filtering system, and returning the cleaned blood to the body. Each treatment takes approximately three to four hours and typically a patient can receive hemodialysis treatment three to four times per week. During this process, treatment delays are common occurrences. Primary sources of delays exist within the tubing system, the water treatment system, the dialyzer, and the needle attachment process. The goal of this project is to present alternative designs and suggestions that can be used to reduce treatment delays in the hemodialysis process. We researched and recommend designs including a modified cartridge, which is based on an existing patent, an armband needle-holding fixture and incorporating a new implementation of tubing.
    [Show full text]
  • Birth of Nocturnal Hemodialysis
    DIALYSIS THE VIEW FROM THE OTHER SIDE Myriam Farah, MD, FRCPC Fellow in Hemodialysis Division of Nephrology, University of British Columbia October 2011 1. Identify the limitations of conventional hemodialysis and become become familiar with the evolving concept of "dialysis adequacy". OBJECTIVES 2. Learn about the variety of individualized dialysis regimens aimed at intensifying the dialysis prescriptions and potential benefits thereof. STATEMENT OF DISCLOSURES No personal or financial affiliations with: 3. Become familiar with the model of nocturnal •Handidart in-centre dependent dialysis, and some •Cats •Pigs barriers to implementing such a program in •Jack Nicholson your centre. •The makers of saw tools •The Rubix cube •Any cellphone company ADEQUACY OF DIALYSIS WE HAD IT RIGHT THE FIRST TIME • The first dialysis session that was ever performed reportedly lasted 76 hours! • In the early days of hemodialysis (1960s), treatments typically lasted 8 to 12 hours in duration • Unfortunately, increases in demand, early studies in dialysis, and financial considerations led us to discover how little we could get away with • The “minimum necessary amount” has arbitrarily become the “the new standard of care” CONVENTIONAL HEMODIALYSIS WHAT WE SEE • 3x / week, 4 hours per run • Occasional changes in medications • Occasional changes in goal weight • Routine Bloodwork, focus on: • Phosphate <1.7, Calcium 2.1 – 2.4 • PTH < some number • Hemoglobin 110-120 g/L • If cramps Quinine • If hypotension Midodrine • If hypertension BP meds • Dialysis
    [Show full text]
  • Online Clearance Monitoring
    Haemodialysis Online Clearance Monitoring Assuring the Desired Dose of Dialysis 732 202 1/1 GB (1,0 V&B 05/07) © Copyright 2007 Fresenius Medical Care Deutschland GmbH 732 202 1/1 GB (1,0 Contents 1. Foreword 4 2. Dialysis dose 5 2.1 Standard methods of determination of the dialysis dose 5 2.1.1 Urea Reduction Ratio (URR) 5 2.1.2 Kt/V 5 Clearance K Effective treatment time t Urea distribution volume V 2.1.2.1 Determination of Kt/V using blood samples 7 Formal urea kinetic modelling Single-pool Kt/V (Daugirdas formula) Single-pool variable-volume Kt/V Double-pool Kt/V (dpKt/V) and its approximation: Equilibrated Kt/V (eKt/V) 2.2 The clinical relevance of dialysis dose 10 2.3 Recommendations for dialysis dose and the frequency 11 of measurement of delivered dose 3. Online Clearance Monitoring – OCM® 12 3.1 The method of OCM® operation 12 3.2 OCM® in ONLINEplus Haemodiafiltration treatments 17 4. Optimisation of dialysis efficiency 18 4.1 Blood flow 18 4.2 Dialysis time 19 4.3 Dialyser (Membrane surface area, low flux/high flux) 20 4.4 Dialysate flow rate 20 5. Measurement of plasma sodium with OCM® 22 6. Frequently Asked Questions about OCM® 24 7. References 26 3 1. Foreword Online Clearance Monitoring (OCM®) is a standard feature of the Fresenius Medical Care Therapy System 5008 that provides an automatic intradialytic measurement of the effective in-vivo urea clearance K, the total cleared blood water volume Kt, the delivered dose of dialysis Kt/V and the plasma sodium concentration of the patient.
    [Show full text]
  • (ESRD) Quality Measure Development and Maintenance Hemodialysis Adequacy Clinical Technical Expert Pane
    End Stage Renal Disease (ESRD) Quality Measure Development and Maintenance Hemodialysis Adequacy Clinical Technical Expert Panel Summary Report Prepared by: Arbor Research Collaborative for Health and the University of Michigan Kidney Epidemiology and Cost Center Conducted April 16-17, 2013 in Baltimore, MD Sent to CMS on June 28, 2013 Contract No. 500-2008-00022I, Task Order No. HHSM-500-T0001 1 Table of Contents Technical Expert Panel Summary .................................................................................................................. 5 1. Introduction/Background: ........................................................................................................................ 7 2. Discussion of Urea Kinetics ....................................................................................................................... 8 2.1 Standardized (Std) Kt/V ....................................................................................................................... 9 2.1.1 Literature Review & Scientific Importance .................................................................................. 9 2.1.2 Scientific acceptability: .............................................................................................................. 10 2.1.3 Feasibility and usability: ............................................................................................................. 10 2.1.4 Review of existing measures: ....................................................................................................
    [Show full text]
  • Extended Duration Nocturnal Hemodialysis and Changes in Plasma Metabolite Profiles
    Article Extended Duration Nocturnal Hemodialysis and Changes in Plasma Metabolite Profiles Sahir Kalim,1 Ron Wald,2 Andrew T. Yan,3 Marc B. Goldstein,2 Mercedeh Kiaii,4 Dihua Xu,1 Anders H. Berg,5 Clary Clish,6 Ravi Thadhani,1 Eugene P. Rhee,1,6,7 and Jeffrey Perl2 Abstract Background and objectives In-center, extended duration nocturnal hemodialysis has been associated with variable 1Nephrology Division clinical benefits, but the effect of extended duration hemodialysis on many established uremic solutes and other 7 fi and Endocrinology components of the metabolome is unknown. We determined the magnitude of change in metabolite pro les for Unit, Massachusetts patients on extended duration nocturnal hemodialysis. General Hospital, Boston, Design, setting, participants, & measurements In a 52-week prospective, observational study, we followed 33 Massachusetts; – Divisions of patients receiving conventional thrice weekly hemodialysis who converted to nocturnal hemodialysis (7 8hours 2Nephrology and per session,three times per week). A separate group of 20 patients whoremainedonconventional hemodialysis (3– 3Cardiology, 4 hours per session, three times per week) served as a control group. For both groups, we applied liquid St. Michael’s Hospital, chromatography-mass spectrometry–based metabolite profiling on stored plasma samples collected from all University of Toronto, Toronto, Ontario, participants at baseline and after 1 year. We examined longitudinal changes in 164 metabolites among those who Canada; 4Division of remained on conventional hemodialysis and those who converted to nocturnal hemodialysis using Wilcoxon rank Nephrology, St. Paul’s sum tests adjusted for multiple comparisons (false discovery rate ,0.05). Hospital, Vancouver, British Columbia, 5 Results On average, the nocturnal group had 9.6 hours more dialysis per week than the conventional group.
    [Show full text]