Over-Expression of Mitochondrial Creatine Kinase in the Murine Heart Improves Functional Recovery and Protects Against Injury Following Ischaemia–Reperfusion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis. -
Progressive Increase in Mtdna 3243A>G Heteroplasmy Causes Abrupt
Progressive increase in mtDNA 3243A>G PNAS PLUS heteroplasmy causes abrupt transcriptional reprogramming Martin Picarda, Jiangwen Zhangb, Saege Hancockc, Olga Derbenevaa, Ryan Golhard, Pawel Golike, Sean O’Hearnf, Shawn Levyg, Prasanth Potluria, Maria Lvovaa, Antonio Davilaa, Chun Shi Lina, Juan Carlos Perinh, Eric F. Rappaporth, Hakon Hakonarsonc, Ian A. Trouncei, Vincent Procaccioj, and Douglas C. Wallacea,1 aCenter for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia and the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104; bSchool of Biological Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China; cTrovagene, San Diego, CA 92130; dCenter for Applied Genomics, Division of Genetics, Department of Pediatrics, and hNucleic Acid/Protein Research Core Facility, Children’s Hospital of Philadelphia, Philadelphia, PA 19104; eInstitute of Genetics and Biotechnology, Warsaw University, 00-927, Warsaw, Poland; fMorton Mower Central Research Laboratory, Sinai Hospital of Baltimore, Baltimore, MD 21215; gGenomics Sevices Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806; iCentre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; and jDepartment of Biochemistry and Genetics, National Center for Neurodegenerative and Mitochondrial Diseases, Centre Hospitalier Universitaire d’Angers, 49933 Angers, France Contributed by Douglas C. Wallace, August 1, 2014 (sent for review May -
UCP1-Independent Thermogenesis in Brown/Beige Adipocytes: Classical Creatine Kinase/Phosphocreatine Shuttle Instead of “Futile Creatine Cycling”
UCP1-independent thermogenesis in brown/beige adipocytes: classical creatine kinase/phosphocreatine shuttle instead of “futile creatine cycling”. Theo Wallimann1*), Malgorzata Tokarska-Schlattner2) Laurence Kay2) and Uwe Schlattner2,3*) 1) Biology Dept. ETH-Zurich, Switzerland, emeritus, E-mail address: [email protected] 2) University Grenoble Alpes and Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics & SFR Environmental and Systems Biology, Grenoble, France, E-mail address: [email protected] 3) Institut Universitaire de France (IUF), Paris, France *) joint corresponding authors Abstract Various studies have identified creatine kinase (CK) and creatine (Cr) as important players for thermogenesis. More recently, they have been specifically linked to UCP1-independent thermogenesis in beige/brown adipocytes, and a “Cr-driven futile cycle” within mitochondria was proposed as the mechanistic basis. Here, we provide a critical appraisal of such a mechanism, which would require a rather undefined phosphocreatine phosphatase. As alternative explanation, we suggest instead that the well-known functions of the CK system, that is ATP buffering and shuttling of high-energy phosphocreatine (PCr) from sites of ATP generation to sites of ATP utilization, are also working in brown/beige adipocytes. There, the CK/PCr system would be shunted between ATP generation, at the mitochondria and/or glycolysis, and ATP hydrolysis at the ER/SR. This would largely facilitate high-throughput calcium pumping by the ATP-dependent Ca2+ pump (SERCA) as described also in skeletal and cardiac muscle. This very CK/PCr system would then support adipocyte SERCA2b function and, in tandem with adipocyte ryanodine receptor (RyR2) and/or inositol 1,4,5- 2+ triphosphate receptor (IP3-R3), facilitate thermogenic futile Ca cycling that has been described to operate in UCP1-independent, but ATP-dependent non-shivering thermogenesis. -
Pharmacological Inhibition of Tumor Anabolism and Host Catabolism As A
www.nature.com/scientificreports OPEN Pharmacological inhibition of tumor anabolism and host catabolism as a cancer therapy Alejandro Schcolnik‑Cabrera1,2, Alma Chavez‑Blanco1, Guadalupe Dominguez‑Gomez1, Mandy Juarez1, Ariana Vargas‑Castillo3, Rafael Isaac Ponce‑Toledo4, Donna Lai5, Sheng Hua5, Armando R. Tovar3, Nimbe Torres3, Delia Perez‑Montiel6, Jose Diaz‑Chavez1 & Alfonso Duenas‑Gonzalez1,7* The malignant energetic demands are satisfed through glycolysis, glutaminolysis and de novo synthesis of fatty acids, while the host curses with a state of catabolism and systemic infammation. The concurrent inhibition of both, tumor anabolism and host catabolism, and their efect upon tumor growth and whole animal metabolism, have not been evaluated. We aimed to evaluate in colon cancer cells a combination of six agents directed to block the tumor anabolism (orlistat + lonidamine + DON) and the host catabolism (growth hormone + insulin + indomethacin). Treatment reduced cellular viability, clonogenic capacity and cell cycle progression. These efects were associated with decreased glycolysis and oxidative phosphorylation, leading to a quiescent energetic phenotype, and with an aberrant transcriptomic landscape showing dysregulation in multiple metabolic pathways. The in vivo evaluation revealed a signifcant tumor volume inhibition, without damage to normal tissues. The six‑drug combination preserved lean tissue and decreased fat loss, while the energy expenditure got decreased. Finally, a reduction in gene expression associated with thermogenesis was observed. Our fndings demonstrate that the simultaneous use of this six‑drug combination has anticancer efects by inducing a quiescent energetic phenotype of cultured cancer cells. Besides, the treatment is well‑ tolerated in mice and reduces whole animal energetic expenditure and fat loss. -
Robert Shine, Peter Dwyer, Lyndsay Olson, Jennifer Truong, Matthew Goddeeris, Effie Tozzo, Eric Bell Mitobridge, Inc
Poster Title Here Mitochondrial Deficiency in Primary Muscle Cells from Mdx Mice Robert Shine, Peter Dwyer, Lyndsay Olson, Jennifer Truong, Matthew Goddeeris, Effie Tozzo, Eric Bell Mitobridge, Inc. Cambridge, MA 02138 Abstract Results Results Duchenne muscular dystrophy (DMD) is a recessive, fatal X-linked disease that is characterized M ito c h o n d ria l c o n trib u te d A T P is re d u c e d Mdx myoblasts have decreased expression by progressive skeletal muscle wasting due to a loss of function in dystrophin, a protein that is of OXPHOS complexes part of a complex that bridges the cytoskeleton and extracellular matrix. The mdx mouse, an in m d x m y o b la s ts a n d m y o tu b e s T animal model for DMD, has a point mutation in the dystrophin gene that results in a loss of 1 .5 2.0 W l function. This study uses primary muscle satellite cell derived myoblasts and myotubes to W T a WT m determine differences in mitochondrial biology between the mdx mice and wild type (WT) control s M D X o 1.5 a r MDX mice. Compared to cells isolated from WT mice, mdx cells have reductions in mitochondrial 1 .0 **** f B bioenergetics. Moreover, mdx cells have reduced levels of mitochondria which may partially *** e T g 1.0 explain the reduction in bioenergetics. Interestingly, the mitochondrial phenotype is apparent **** ** n * * W a * * * before dystrophin protein is increased during myogenesis. * * * 0 .5 h 0.5 * d l C o d l F 0.0 o 1 3 2 6 1 a 1 a b B 0 .0 F t v Materials and Analysis a 5 P X D C H H y 5 l l F X T N R O D a M in a M in D C s s P n n U A c c O S C C a 0 a 0 S y y T B 0 B 0 D WT and mdx myoblast isolation and culture: Quadricep and gastrocnemius muscles from a C 1 m 1 m Q A o o N single mouse were pooled and subjected to a mechanical/collagenase digestion. -
Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: an Update
International Journal of Molecular Sciences Review Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update Philippe Icard 1,2,3,*, Antoine Coquerel 1,4, Zherui Wu 5 , Joseph Gligorov 6, David Fuks 7, Ludovic Fournel 3,8, Hubert Lincet 9,10 and Luca Simula 11 1 Medical School, Université Caen Normandie, CHU de Caen, 14000 Caen, France; [email protected] 2 UNICAEN, INSERM U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Normandie Université, 14000 Caen, France 3 Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, 75014 Paris, France; [email protected] 4 INSERM U1075, COMETE Mobilités: Attention, Orientation, Chronobiologie, Université Caen, 14000 Caen, France 5 School of Medicine, Shenzhen University, Shenzhen 518000, China; [email protected] 6 Oncology Department, Tenon Hospital, Pierre et Marie Curie University, 75020 Paris, France; [email protected] 7 Service de Chirurgie Digestive et Hépato-Biliaire, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, 75014 Paris, France; [email protected] 8 Descartes Faculty of Medicine, University of Paris, Paris Center, 75006 Paris, France 9 INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; [email protected] 10 ISPB, Faculté de Pharmacie, Université Lyon 1, 69373 Lyon, France 11 Department of Infection, Immunity and Inflammation, Institut Cochin, INSERM U1016, CNRS UMR8104, Citation: Icard, P.; Coquerel, A.; Wu, University of Paris, 75014 Paris, France; [email protected] Z.; Gligorov, J.; Fuks, D.; Fournel, L.; * Correspondence: [email protected] Lincet, H.; Simula, L. -
PIM2-Mediated Phosphorylation of Hexokinase 2 Is Critical for Tumor Growth and Paclitaxel Resistance in Breast Cancer
Oncogene (2018) 37:5997–6009 https://doi.org/10.1038/s41388-018-0386-x ARTICLE PIM2-mediated phosphorylation of hexokinase 2 is critical for tumor growth and paclitaxel resistance in breast cancer 1 1 1 1 1 2 2 3 Tingting Yang ● Chune Ren ● Pengyun Qiao ● Xue Han ● Li Wang ● Shijun Lv ● Yonghong Sun ● Zhijun Liu ● 3 1 Yu Du ● Zhenhai Yu Received: 3 December 2017 / Revised: 30 May 2018 / Accepted: 31 May 2018 / Published online: 9 July 2018 © The Author(s) 2018. This article is published with open access Abstract Hexokinase-II (HK2) is a key enzyme involved in glycolysis, which is required for breast cancer progression. However, the underlying post-translational mechanisms of HK2 activity are poorly understood. Here, we showed that Proviral Insertion in Murine Lymphomas 2 (PIM2) directly bound to HK2 and phosphorylated HK2 on Thr473. Biochemical analyses demonstrated that phosphorylated HK2 Thr473 promoted its protein stability through the chaperone-mediated autophagy (CMA) pathway, and the levels of PIM2 and pThr473-HK2 proteins were positively correlated with each other in human breast cancer. Furthermore, phosphorylation of HK2 on Thr473 increased HK2 enzyme activity and glycolysis, and 1234567890();,: 1234567890();,: enhanced glucose starvation-induced autophagy. As a result, phosphorylated HK2 Thr473 promoted breast cancer cell growth in vitro and in vivo. Interestingly, PIM2 kinase inhibitor SMI-4a could abrogate the effects of phosphorylated HK2 Thr473 on paclitaxel resistance in vitro and in vivo. Taken together, our findings indicated that PIM2 was a novel regulator of HK2, and suggested a new strategy to treat breast cancer. Introduction ATP molecules. -
GRIN3A and MAPT Stimulate Nerve Overgrowth in Macrodactyly
MOLECULAR MEDICINE REPORTS 14: 5637-5643, 2016 GRIN3A and MAPT stimulate nerve overgrowth in macrodactyly XU SHI1*, LU LU2*, XIU JIN3, BIN LIU4, XIGUANG SUN4, LAIJIN LU4 and YANFANG JIANG1,5 1Department of Genetic Diagnosis Center, Central Laboratory; Departments of 2Breast Surgery, 3Burn Surgery and 4Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130000; 5Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, Jilin 130000, P.R. China Received September 30, 2015; Accepted October 12, 2016 DOI: 10.3892/mmr.2016.5923 Abstract. As an uncommon and congenital condition, to abnormal nerve proliferation and underpin the pathogenesis macrodactyly is characterized by an increase in the size of all of macrodactyly, and provide potential application targets in the elements or structures of the digits or toes; however, the nerve tissue regeneration engineering. underlying pathogenesis remains to be fully elucidated. In the present study, the gene expression profiles of abnormal nerves Introduction were examined in three patients with macrodactyly using microarray analysis to identify potential genes contributing Macrodactyly is an uncommon congenital condition character- to nerve overgrowth. Gene expression profiling in the nerve ized by an increase in the size of all the elements or structures tissue samples were scanned using the microarray and the of the digits or toes, including phalanges, tendons, vessels, differentially expressed genes were verified at the transcrip- subcutaneous fat and finger nails. The malformation often tion level using reverse transcription-quantitative polymerase occurs unilaterally or asymmetrically and affects more than chain reaction analysis. Western blot analysis was used to one digit or toe. -
Ketoconazole and Posaconazole Selectively Target HK2-Expressing Glioblastoma Cells
Published OnlineFirst October 15, 2018; DOI: 10.1158/1078-0432.CCR-18-1854 Translational Cancer Mechanisms and Therapy Clinical Cancer Research Ketoconazole and Posaconazole Selectively Target HK2-expressing Glioblastoma Cells Sameer Agnihotri1, Sheila Mansouri2, Kelly Burrell2, Mira Li2, Mamatjan Yasin, MD2, Jeff Liu2,3, Romina Nejad2, Sushil Kumar2, Shahrzad Jalali2, Sanjay K. Singh2, Alenoush Vartanian2,4, Eric Xueyu Chen5, Shirin Karimi2, Olivia Singh2, Severa Bunda2, Alireza Mansouri7, Kenneth D. Aldape2,6, and Gelareh Zadeh2,7 Abstract Purpose: Hexokinase II (HK2) protein expression is eleva- in vivo. Treatment of mice bearing GBM with ketoconazole ted in glioblastoma (GBM), and we have shown that HK2 and posaconazole increased their survival, reduced tumor could serve as an effective therapeutic target for GBM. Here, we cell proliferation, and decreased tumor metabolism. In interrogated compounds that target HK2 effectively and addition, treatment with azoles resulted in increased pro- restrict tumor growth in cell lines, patient-derived glioma stem portion of apoptotic cells. cells (GSCs), and mouse models of GBM. Conclusions: Overall, we provide evidence that azoles exert Experimental Design: We performed a screen using a set of their effect by targeting genes and pathways regulated by HK2. 15 drugs that were predicted to inhibit the HK2-associated These findings shed light on the action of azoles in GBM. gene signature. We next determined the EC50 of the com- Combined with existing literature and preclinical results, these pounds by treating glioma cell lines and GSCs. Selected data support the value of repurposing azoles in GBM clinical compounds showing significant impact in vitro were used to trials. -
Structural Basis for Phosphorylation and Lysine Acetylation Cross-Talk In
THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 289, NO. 37, pp. 25890–25906, September 12, 2014 © 2014 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Structural Basis for Phosphorylation and Lysine Acetylation Cross-talk in a Kinase Motif Associated with Myocardial Ischemia and Cardioprotection*□S Received for publication, February 4, 2014, and in revised form, June 29, 2014 Published, JBC Papers in Press, July 9, 2014, DOI 10.1074/jbc.M114.556035 Benjamin L. Parker‡§¶1, Nicholas E. Shepherdʈ2, Sophie Trefely§, Nolan J. Hoffman§¶, Melanie Y. Whiteʈ**2, Kasper Engholm-Keller**, Brett D. Hambly‡**, Martin R. Larsen‡‡, David E. James§¶**, and Stuart J. Cordwell‡ʈ**3 From the ‡Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney 2006, Australia, the §Diabetes and Obesity Program, ¶Biological Mass Spectrometry Unit, Garvan Institute of Medical Research, 2010 Australia , the ʈSchool of Molecular Bioscience and the **Charles Perkins Centre, University of Sydney, Sydney 2006, Australia, and the ‡‡Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark Background: Myocardial ischemia and cardioprotection induce signal networks mediated by post-translational modification. Results: Phosphorylation sites altered by ischemia and/or cardioprotection were influenced by inhibition of lysine acetylation consistent with cross-talk. Conclusion: Lysine acetylation induces proximal dephosphorylation in a kinase motif by salt bridge inhibition. Significance: Cross-talk is likely to be an important aspect of signaling during ischemia and cardioprotection. Myocardial ischemia and cardioprotection by ischemic pre- Prolonged blockage of coronary blood flow (ischemia), even conditioning induce signal networks aimed at survival or cell with subsequent restoration (reperfusion), may result in death if the ischemic period is prolonged. -
Parallel High Throughput RNA Interference Screens Identify PINK1
Author Manuscript Published OnlineFirst on January 17, 2011; DOI: 10.1158/0008-5472.CAN-10-2836 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Parallel High Throughput RNA interference Screens Identify PINK1 as a Potential Therapeutic Target for the Treatment of DNA Mismatch Repair Deficient Cancers Sarah A. Martin1,2,3,4 Madeleine Hewish1,2,4, David Sims2, 2 1,2 Christopher J. Lord * and Alan Ashworth * 1Cancer Research UK Gene Function and Regulation Group 2The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, Fulham Road, London, SW3 6JB, UK 3Current address: Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, EC1M 6BQ 4Authors contributed equally to this work *Corresponding Authors: Christopher J. Lord & Alan Ashworth Email: [email protected], [email protected] Keywords: PINK1, oxidative damage, mitochondria, MLH1, MSH2, MSH6 Downloaded from cancerres.aacrjournals.org on October 1, 2021. © 2011 American Association for Cancer Research. Author Manuscript Published OnlineFirst on January 17, 2011; DOI: 10.1158/0008-5472.CAN-10-2836 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. MMR and PINK1 synthetic lethality 2 Abstract Synthetic lethal approaches to cancer treatment have the potential to deliver relatively large therapeutic windows and therefore significant patient benefit. To identify potential therapeutic approaches for cancers deficient in DNA mismatch repair (MMR), we have carried out parallel high throughput RNA interference screens using tumour cell models of MSH2 and MLH1-related MMR deficiency. -
Microrna‑451A Prevents Cutaneous Squamous Cell Carcinoma Progression Via the 3‑Phosphoinositide‑Dependent Protein Kinase‑1‑Mediated PI3K/AKT Signaling Pathway
EXPERIMENTAL AND THERAPEUTIC MEDICINE 21: 116, 2021 MicroRNA‑451a prevents cutaneous squamous cell carcinoma progression via the 3‑phosphoinositide‑dependent protein kinase‑1‑mediated PI3K/AKT signaling pathway JIXING FU*, JIANHUA ZHAO*, HUAMIN ZHANG, XIAOLI FAN, WENJUN GENG and SHAOHUA QIAO Department of Dermatology, Liaocheng Second People's Hospital, Shandong First Medical University Affiliated Liaocheng Second Hospital, Linqing, Shandong 252601, .R.P China Received February 12, 2020; Accepted August 11, 2020 DOI: 10.3892/etm.2020.9548 Abstract. The role of microRNAs (miRNAs/miRs) in pathway, which may offer potential therapeutic targets for the governing the progression of cutaneous squamous cell carci‑ treatment of cSCC. noma (cSCC) has been the focus of recent studies. However, the functional role of miR‑451a in cSCC growth remains Introduction poorly understood. Therefore, the present study aimed to determine the expression levels of miR‑451a in cSCC cell Skin cancer or cutaneous carcinoma is a major worldwide lines and the involvement of miR‑451a in cSCC progression. public health burden which is highly prevalent and demon‑ The results revealed that the expression levels of miR‑451a strates an ever‑increasing incidence with ~108,420 new cases were downregulated in cSCC tissues and cell lines, and that and 11,480 death in the United States in 2020 (1,2). The this subsequently upregulated 3‑phosphoinositide‑dependent majority of diagnosed skin cancer cases are non‑melanoma‑ protein kinase‑1 (PDPK1) expression levels. PDPK1 was tous, consisting of basal cell carcinoma and cutaneous cell validated as a direct target of miR‑451a in cSCC using carcinoma (cSCC), which originate from keratinized epithelial bioinformatics software Starbase, dual‑luciferase reporter cells (3).