A Clinical Study Measuring Dental Aerosols with and Without a High-Volume Extraction Device

Total Page:16

File Type:pdf, Size:1020Kb

A Clinical Study Measuring Dental Aerosols with and Without a High-Volume Extraction Device RESEARCH A clinical study measuring dental aerosols with and without a high-volume extraction device Adam Nulty,*1,2 Chris Lefkaditis,3 Patrik Zachrisson,4 Quintus Van Tonder5 and Riaz Yar6 Key points Without the use of an external high-volume With the use of an external HVE device, PM1- The use of an external high-volume suction extraction (HVE) device during aerosol sized particle count, which would pass through device reduced the aerosol particle count of all generating procedures, there is a signifcant an N95 or N99 mask, remained moderately stable sizes signifcantly. increase of PM2.5- and PM10-sized particle throughout the procedures. count from the use of micromotor high-speed, air turbine high-speed, slow-speed and ultrasonic handpieces. Abstract Introduction External high-volume extraction (HVE) devices may ofer a way to reduce any aerosol particulate generated. Aims The aim of this study was to measure the particle count during dental aerosol generating procedures and compare the results with when a HVE device is used. Design A comparative clinical study measuring the amount of PM1, PM2.5 and PM10 aerosol particulate with and without the use of an external HVE device was undertaken. Materials and methods In total, ten restorative procedures were monitored with an industrial Trotec PC220 particle counter. The intervention was an external HVE device. Main outcome methods The air sampler was placed at the average working distance of the clinicians involved in the study – 420 mm. Results In the present study, aerosol particulate was recorded at statistically signifcantly increased levels during dental procedures without an external HVE device versus with the device. Discussion The null hypothesis was rejected, in that signifcant diferences were found between the results of the amount of aerosol particle count with and without a HVE device. Conclusion If the results of the present study are repeated in an in vivo setting, an external high-volume suction device may potentially show a lower risk of transmission of viral particulate. Introduction aerosols produced.1 Before investigating the can range from 0.001–100 microns.5 Tese present study, we must discuss how aerosols particles can be defned according to their Aerosols and the SARS-CoV-2 virus are generated and what sized particles are size: coarse particles are 2.5–10 microns In light of the SARS-CoV-2 pandemic, the present within any potential aerosol that is (PM10 classifcation), fne particles are under United States Occupational Safety and Health generated in a dental procedure, in order to 2.5 microns (PM2.5) and ultra-fne particles Administration have classifed dentistry as understand the signifcance of reducing the are under 0.1 microns (PM1). For human one of the very high-risk occupations for aerosols generated. An aerosol is a dispersion transmission of disease, the infectious dose transmission of the disease because of the system consisting of solid and liquid particles required is small. Viral and bacterial agents of various sizes which are suspended in a gas have an afnity for specifc components of cells medium.2 While using this defnition, and and tissues along with pathogenic factors.6 Te 1Dentist On THE ROCK, 26 The Rock, Bury, BL9 0NT, UK; 2PhD Student, University of Leeds, Woodhouse Lane, Leeds, the three important elements of aerosols, we oral-nasal breathing pathway can channel air LS2 9JT, UK; 3Hellesdon Dental Care, 153 Middleton’s Lane, must consider that it is normal for an aerosol particles over ten microns in size. Tis poses Norwich, NR6 5SF, UK; 4Wensleydale Dental Practice, 11 George Street, Huntingdon, PE29 3BD, UK; 5Zandielle to be suspended in the air only if it is less than risk as particles under ten microns in size can Clinic, Queen’s Square, Attleborough, NR17 2AE, UK; 6The ten microns in size.2,3 Tis is because as these therefore enter the respiratory system and Square Advanced Dental Care, 2 Hollins House, 329 Hale Road, Hale Barns, WA15 8TS, UK. droplets decrease in size, so does their relative smaller particles under 2.5 microns can enter *Correspondence to: Adam Nulty mass. As such, the impact of gravity on these the alveoli sac. Ultra-fne particles, such as the Email address: [email protected] particles reduces and they can be suspended in SARS-CoV-2 virus molecule, which are sub-1 Refereed Paper. the air for much longer.4 micron can potentially enter the circulatory Accepted 25 September 2020 The size of the particles that can be system through this mechanism directly or https://doi.org/10.1038/s41415-020-2274-3 potentially suspended in the aerosols produced through being carried on a larger particle.7,8 BRITISH DENTAL JOURNAL | ONLINE PUBLICATION | NOVEMBER 12 2020 1 © The Author(s), under exclusive licence to British Dental Association null RESEARCH Te mechanism of breathing in living creatures to the naked eye, and is noticed by the patient surfaces; and inhalation of infectious can also create aerosols in the form of bio- and dental staf.21 particulate aerosols.34 aerosols.9 Tese droplets can be produced in One recent study looked at how ultrasonic Te aim of this study was to measure the large numbers; for example, up to 3,000 in scaling can transmit particulate aerosol for particle count during dental aerosol procedures just a single cough. High-projectile particles up to six feet and, without an air current, and compare the results to when a high-volume can also be generated in larger numbers (over this particulate can remain suspended extraction (HVE) device was used. 40,000) in the action of sneezing.10 from 35 minutes to several hours.22 If the Te null hypothesis was that no diferences suspended particulate is over ten microns, would be found in the amount of aerosol How do airborne infections spread? gravity can cause these particles to settle on particle count with or without a HVE device. Even before specifc infectious agents (such the surrounding surfaces, such as the patient as bacteria and viruses) were discovered, the and the immediate clinical area, for up to two Materials and methodology potential of infection by the airborne route was meters.3,23 During these dental procedures, recognised; for example, the bubonic plague, various dental equipment such as dental Air sampler device also known as the ‘Black Death’, which was handpieces, air-water syringes, ultrasonic In total, fve diferent restorative procedures recorded to be spread via an airborne route. scalers and air-polishing units are known to were monitored with an industrial Trotec Tis is seen as a concern in more recent times produce colony-forming units via the bio- PC220 particle counter. This sampler is in air travel. In one report, the mycobacterium aerosols generated.19,24,25 sent with a calibration certifcate where the Bacillus causing tuberculosis was spread sampler is calibrated with a PC200/220 flter through passengers on an aeroplane.11 Can splatter from dental procedures for zero calibration by the manufacturer. Passengers seated closer to the source of the spread disease? The air sampler therefore does not need infection were more likely to contract the Miller et al. have concluded that bio-aerosols calibrating before use by the user. Tis air disease. can contain millions of bacteria per cubic foot sampler conforms with ISO 21501-4 – which The exact mechanisms by which SARS- of air.26 King et al. have stated that aerosols specifically refers to the light-scattering CoV-2 virus is spread remain under retrieved from six inches away from a patient airborne particle counter – and is accurate to investigation, but current understanding points demonstrated that the colony-forming units within ± 95% with a 5% particle coincidence to transmission through aerosol droplets.12,13,14 were substantially reduced through aerosol loss. Te sampler was used to measure the Many worldwide governments and healthcare reduction systems.27 following sized particulate generated in authorities have therefore advised dental During a conventional dental procedure, each procedure: PM1 (particulate sized 1 practitioners to proceed with only emergency the patient is required to sit with their mouth micrometre [μm] or less), PM2.5 (particulate and essential procedures, and to avoid elective open, exposing naturally occurring fluids sized 1–2.5 μm) and PM10 (particulate sized dental procedures altogether.15,16 such as saliva and blood.28 During a dental 2.5–10 μm). Te fve diferent procedures procedure that uses ultrasonic scalers, air- were carried out without a HVE device in Dental aerosols water syringes or high-speed air turbine or place and then repeated separately with the Te mechanical action of tools used in the micromotor devices, the mechanical action HVE device in place, in order to compare dental clinic can produce suspended particles can spread these bodily fuids through splatter the efect of the HVE on the particle counts as aerosols, such as the use of fast and slow out of the operating site into the surrounding recorded. Te air sampler uses multi-angle, dental handpieces, ultrasonic scalers and air- environment. It is this splatter that can take the laser-scattering detection. Scattered light can water syringes.17 Tese tools use high-powered form of a spray of variously sized droplets.29 be collected at a specifed angle and, according air or fast-turning mechanical micromotors to Te constituents of these droplets and their to the scattering intensity, equivalent particle work, which can create these aerosols through relative size have been given the dental terms diameters and the number of suspended the kinetic energy acting in the process of ‘splatter’ and ‘aerosols’.30 Larger particles that particulate matter with diferent sizes per unit dental instrumentation.18,19 are not suspended can be visible where spread volume can be obtained.
Recommended publications
  • Mitigation of Aerosol Generating Procedures in Dentistry a Rapid Review Version 1.2
    Mitigation of Aerosol Generating Procedures in Dentistry A Rapid Review Version 1.2 19 April 2021 The content of this review might change as new information becomes available. Please ensure that you are using the most recent version of this document by referring to www.sdcep.org.uk. SDCEP Mitigation of Aerosol Generating Procedures in Dentistry Version history Version Date Summary of changes V1.0 25/09/2020 First publication V1.1 25/01/2021 Agreed positions and conclusions of the review unchanged. New members added to Working Group in Appendix 1. Post-publication update added in Appendix 4. V1.2 19/04/2021 Agreed positions and conclusions of the review unchanged. Changes to Working Group membership noted in Appendix 1. Post-publication update in Appendix 4 amended to reflect the outcome of the literature searches conducted up to 2 March 2021. i SDCEP Mitigation of Aerosol Generating Procedures in Dentistry Contents Summary iii 1 Introduction 1 2 The COVID-19 Pandemic – Risk and Impact on Dental Care 2 2.1 Risk 2 2.2 Underlying SARS-CoV-2 risk 3 2.2.1 Prevalence of COVID-19 and transmission rate 3 2.2.2 Level of virus present in saliva 5 2.2.3 SARS-CoV-2 and aerosols 5 2.3 Impact on dental services and patient care 5 2.3.1 Dental services and personnel 6 2.3.2 Patient care 6 3 Aerosol Generating Procedures 9 3.1 Definitions of aerosol and aerosol generating procedures 9 3.2 Categorisation of dental procedures 9 3.2.1 Dental drill speeds 11 3.2.2 3-in-1 syringe 11 4 Procedural Mitigation 12 4.1 High volume suction 12 4.2 Rubber dam 14 4.3
    [Show full text]
  • Dental Aerosol As a Hazard Risk for Dental Workers
    materials Article Dental Aerosol as a Hazard Risk for Dental Workers Jacek Matys 1 and Kinga Grzech-Le´sniak 1,2,* 1 Laser Laboratory, Oral Surgery Department, Wroclaw Medical University, 50-367 Wroclaw, Poland; [email protected] 2 Department of Periodontics School of Dentistry, Virginia Commonwealth University, VCU, Richmond, VA 23298, USA * Correspondence: [email protected] Received: 23 October 2020; Accepted: 9 November 2020; Published: 12 November 2020 Abstract: Standard dental procedures, when using a water coolant and rotary instruments, generate aerosols with a significantly higher number of various dangerous pathogens (viruses, bacteria, and fungi). Reducing the amount of aerosols to a minimum is mandatory, especially during the new coronavirus disease, COVID-19. The study aimed to evaluate the amount of aerosol generated during standard dental procedures such as caries removal (using dental bur on a high and low-speed handpiece and Er:YAG laser), ultrasonic scaling, and tooth polishing (using silicon rubber on low-speed handpiece) combined with various suction systems. The airborne aerosols containing particles in a range of 0.3–10.0 µm were measured using the PC200 laser particle counter (Trotec GmbH, Schwerin, Germany) at three following sites, manikin, operator, and assistant mouth, respectively. The following suction systems were used to remove aerosols: saliva ejector, high volume evacuator, saliva ejector with extraoral vacuum, high volume evacuator with extraoral vacuum, Zirc® evacuator (Mr.Thirsty One-Step®), and two customized high volume evacuators (white and black). The study results showed that caries removal with a high-speed handpiece and saliva ejector generates the highest amount of spray particles at each measured site.
    [Show full text]
  • Dental Aerosol Management Interim Guidance from CDA’S COVID-19 Clinical Care Workgroup
    BACK TO PRACTICE California Dental Association 1201 K Street, Sacramento, CA 95814 PATIENT CARE 800.232.7645 | cda.org ® Dental Aerosol Management Interim Guidance from CDA’s COVID-19 Clinical Care Workgroup Updated May 26, New: Resources for Upper-Room UV and portable HEPA room filtration, per CDC Guidance for Dental Settings, May 19 Introduction As part of its overall charge to assist dental professionals during the COVID-19 pandemic, the California Dental Association COVID-19 Clinical Care Workgroup initiated an in-depth investigation into aerosol management in dentistry. This document reflects that work. It is important to note that the environment is rapidly evolving and we are constantly learning more about the virus, its transmission and how to reduce risk during the provision of dental care. In particular, new products for dental aerosol management are being introduced almost daily and the evidence on the efficacy of these in the dental setting is just beginning to develop. We anticipate evidence on this will continue to emerge well after this resource is published. Therefore, this document should be considered a living document that will be updated over time as information becomes available. What’s more, the California Dental Association is not a regulatory agency, therefore the guidance offered here is not intended to be construed as the “standard of care,” and should be considered along with guidance from local, state, and federal government agencies, local/regional hospital systems and/or other authorities. Background The delivery of dental services routinely involves exposure of dental health personnel and patients to the contents of saliva and blood through droplets, spatter and aerosols produced during patient care.
    [Show full text]
  • Evaluating Dental Aerosol and Splatter in an Open Plan Clinic Environment
    Evaluating dental aerosol and splatter in an open plan clinic environment: implications for the COVID-19 pandemic Running title: Open dental clinic aerosol R Holliday1,2 *#, JR Allison1,2 #, CC Currie1,2, DC Edwards1,2, C Bowes 1,2, K Pickering 2, S Reay2, J Durham1,2, J Lumb2, N Rostami1, J Coulter1,2, C.Nile1, N Jakubovics1 *Corresponding Author #Joint First Authors Affiliations: 1. School of Dental Sciences, Newcastle University, United Kingdom 2. Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom Corresponding Author: Dr Richard Holliday School of Dental Sciences Newcastle University Framlington Place Newcastle Upon Tyne NE2 4BW Telephone: 07876 580022 Email: [email protected] Keywords: Aerosols, Dental Equipment; Dental Fallow Time; Dental High-Speed Equipment; Dental Infection Control; SARS-CoV-2; Suction Abstract Aim: To identify splatter and aerosol distribution resulting from dental aerosol generating procedures (AGPs) in the open plan clinic environment. A secondary aim is to explore the detailed time course of aerosol settling after an AGP. Methodology: Dental procedures were undertaken on a dental mannequin. Fluorescein dye was placed into the irrigation system of the high-speed air turbine handpiece for the first experimental design, and in the second, fluorescein dye was entered into the mannequin's mouth via artificial salivary ducts. Filter papers were placed at set distances around the open plan clinic environment to collect aerosol and splatter under various mitigating conditions, including ventilation and aspiration flow rate. An 8-metre diameter rig was set up to investigate the effect of fallow time. Filter papers were analysed using imaging software and spectrofluorometric analysis.
    [Show full text]
  • Evaluation of Dentist's Awareness About Less Aerosol Producing
    Interventions in Pediatric Dentistry Open Access Journal DOI: 10.32474/IPDOAJ.2021.06.000241 ISSN: 2637-6636 Review Article Evaluation of Dentist’s Awareness About Less Aerosol Producing Procedures During Covid 19 Pandemic Vijai S*, Krishnakumar R, Joby Peter, Anaswara MS, Beena MS and Asmabi E Department of Dentistry, Kerala University of Health Science, India *Corresponding author: Vijai S, Department of Dentistry, Kerala University of Health Science, India Received: July 29, 2021 Published: August 10, 2021 Abstract Aim: The aim of present study is to evaluate Dentist’s awareness about less aerosol practice during Covid 19 pandemic. Materials and Methods: The study involved 600 dentists from all over India. A self-reported online questionnaire was developed to evaluate dentist’s awareness about less aerosol producing procedures .The collected data was tabulated for statistical analysis. The distribution of responses is presented with frequency and percentage. Results: The results showed that most of the dentists are aware and are practicing less aerosol producing procedures. Conclusion: Most of the respondents recommend these less aerosol producing procedures should be continued in this pandemic scenario Introduction Materials and Methods The Covid -19 pandemic has brought many unprecedented The present study was conducted in Department of Pediatric challenges in the professional lives of all health care professionals and Preventive Dentistry, Malabar Dental College and Research [1]. According to Occupational Safety and Health Administration Centre, Manoor. This prospective, cross-sectional study was (OSHA), dental health care personnel (DHCP) are placed in very carried out. A semi –structured questionnaire written in English high exposure risk category as dentists work in close proximity was pretested for validity and revised according to feedback to the patient’s oral cavity .Also, dental procedures involve the from research experts.
    [Show full text]
  • Open Operatory Dental Setting Infection Control Practices and Risk Of
    RAPID REVIEW 11/26/2020 Open operatory dental setting infection control practices and risk of transmission during aerosol-generating dental procedures Key Findings • Few pre-operative mouth rinses have in vivo data available on their virucidal effectiveness versus SARS-CoV-2; and hydrogen peroxide should no longer be recommended as a pre-operative mouth rinse due to lack of efficacy versus SARS-CoV-2. • No direct evidence has been published on the use of dental dams and various types of suction to prevent SARS-CoV-2 aerosol spread. Pathogen non-specific contamination studies indicate an important role for dental dams and suction in reducing aerosol spread during aerosol-generating dental procedures. • No direct evidence has been published on aerosol transmission of SARS-CoV-2 in open versus closed dental operatories. The limited evidence available indicates that spread can be diffuse affecting adjacent bays in an open operatory set-up. Spread may be impacted by factors such as air flow conditions and work practice controls, but this requires further investigation. Background and Scope The Provincial Infectious Diseases Advisory Committee – Infection Prevention and Control (PIDAC-IPC) has recommended that all aerosol-generating dental procedures (AGDPs) be performed in individual rooms due to risk of SARS-CoV-2 transmission from aerosolized saliva.1 Open dental operatories may encounter challenges or an inability to improve ventilation or construct enclosed operatories in accordance with this recommendation. Globally, many dental guidance documents exist and yet many do not cite evidence to support the guidance provided.2 This review aims to summarize available evidence for work practice controls to reduce infectious aerosol production during dental procedures with no restriction on type of dental procedure, but with specific reference to reduction of SARS-CoV-2 transmission risk.
    [Show full text]
  • Dental Aerosols: a Silent Hazard in Dentistry!
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 Dental Aerosols: A Silent Hazard in Dentistry! Rosiline James1, Amit Mani2 1 Post Graduate Student, Rural Dental College, Pravara Institute of Medical Sciences, Loni, Ahmednagar, India 2 Professor, Rural Dental College, Pravara Institute of Medical Sciences, Loni, Ahmednagar, India Abstract: Dental aerosol as an infection vector is totally ignored. Aerosols are liquid and solid particles, 50 micron or less in diameter, suspended in air where as splatter is usually described as a mixture of air, water and/or solid substances; water droplets in splatter are from 50 micron to several millimeters in diameter and are visible to the naked eye. Both are produced with the use of dental unit hand pieces and are commonly contaminated with bacteria, viruses, fungi, often also with blood. The most intensive aerosol and splatter emission occurs during the work of an ultrasonic scaler tip and a bur on a high-speed hand piece. Air-water aerosol produced during dental treatment procedures emerges from a patient's mouth and mixes with the surrounding air, thus influencing its composition. The air contained in this space is the air breathed by both dentist and patient, its composition is extremely important as a potential threat to the dentist's health as well as to the patient and the dental assistant. In this review, the author describes about the formation of dental bio aerosols, its hazardous nature to the clinician, patient and the assistant and also the protective measure against it thereby preventing it.
    [Show full text]
  • Risk of Airborne Infection and Transmission-Based Precautions in Dental Setting Kurinji a Ratnakaran1, Hrudi S Sahoo2
    REVIEW ARTICLE Risk of Airborne Infection and Transmission-based Precautions in Dental Setting Kurinji A Ratnakaran1, Hrudi S Sahoo2 ABSTRACT In the current scenario of constant emergence and re-emergence of infectious diseases around the world, the dental fraternity must be well aware of the basic principles that govern infection prevention, and control to ensure preparedness and safe dental practice. Most dental procedures involve the use of one or more devices that generate spatter and aerosol. The dental aerosols may carry water, saliva, mucous, microorganisms, debris, calculus, blood, respiratory secretion, and/or metallic trace elements from restorative materials and possess a potential risk of disease transmission through inhalation to both the dental healthcare personnel (DHCP) and patients. Standard precautions taken during routine dental practice adequately protect the dental team and patients from the direct and contact-based transmission, but these precautions may not be sufficient to prevent airborne transmission of infectious diseases. Although the limited available evidence estimates the risk of airborne transmission in a dental setting to be low, it should not be underestimated. This narrative review aims to review the quantity, characteristic features, pathogenicity of aerosols produced in the dental settings, the associated risks, and precautions to be followed. Keywords: Aerosols, Infection control, Infections, Saliva, Virulence. Journal of Operative Dentistry and Endodontics (2020): 10.5005/jp-journals-10047-0090 INTRODUCTION 1,2Department of Conservative Dentistry and Endodontics, In the year 1993, the Centers for Disease Control and Prevention Sathyabama Dental College and Hospital, Chennai, Tamil Nadu, India (CDC) published recommended infection control practices for Corresponding Author: Hrudi S Sahoo, Department of Conservative dentistry.
    [Show full text]
  • Aerosols Created by Dental Procedures in a Primary Care Setting
    medRxiv preprint doi: https://doi.org/10.1101/2020.08.27.20183087; this version posted September 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Aerosols created by dental procedures in a primary care setting R S Hobson BDS, MDS, PhD (Ncl); MDOrth, FDS RCPS (Glas); FDS RCS (Ed); FDS RCS (Eng); SHFEA Windmill Orthodontics 37a Heaton Road Newcastle upon Tyne, NE6 1SB, UK S B Pabary BDS Indental Fewster Square, Felling, Gateshead NE10 8XQ, UK K Alamani BDS South View Dental 46 South View, East Denton, Newcastle upon Tyne NE5 2BP, UK K Badminton Windmill Orthodontics 37a Heaton Road Newcastle upon Tyne, NE6 1SB, UK NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.08.27.20183087; this version posted September 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Abstract The study was undertaken to record the amount of dental aerosol created using 3-in-1 syringe, air rotor, and ultrasonic scaler using high volume suction (HVS) in 5 primary care dental surgeries.
    [Show full text]
  • A Clinical Study Measuring Dental Aerosols with and Without a HVE Device
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 September 2020 doi:10.20944/preprints202009.0358.v1 Research Article A Clinical Study Measuring Dental Aerosols with and without a HVE Device Adam Nulty 1, Chris Lefkaditis 2, Patrik Zachrisson 3, Quintus Van Tonder 4 and Riaz Yar 5 1 University of Leeds, Woodhouse Lane. Leeds. LS2 9JT. England [email protected] Received: date; Accepted: date; Published: date Abstract: (1) Introduction: External high volume extraction devices may offer a way to reduce any aerosol particulate generated. The aim of this study was to measure the particle count during dental aerosol procedures and compare the results to when a High Volume Extraction device is used; (2) Methods: A comparative clinical study measuring the amount of PM1, PM2.5 and PM10 aerosol particulate with and without the use of an external High Volume Extraction device was undertaken. In total, 10 restorative procedures were monitored with an an industrial Trotec PC220 particle counter. The air sampler was placed at the average working distance of the clinicians involved in the study - 420mm.; (3) Results: In the present study aerosol particulate was recorded at statistically significantly increased levels during dental procedures without an external high volume extraction device versus with the device. The null hypothesis was rejected, in that significant differences were found between the results of the amount of aerosol particle count with and without a High Volume Extraction device.; (4) Conclusion: If the results of the present study are repeated in an in vivo setting, an external high volume suction device may potentially lower the risk of transmission of viral particulate.
    [Show full text]
  • Endodontic Procedures Produce Bacterial Droplet Contamination – but What About Viruses?
    SUMMARY REVIEW/COVID-19 AND ENDODONTICS Endodontic procedures produce bacterial droplet contamination – but what about viruses? Sabrina R. Rasaiah,1 James Allison2 and David C. Edwards*3 A commentary on Practice points Bahador M, Alfirdous R A, Alquria T A, Griffin I L, Tordik P A, • Bacterial contamination during endodontic procedures is Martinho F C. highest closest to the patient’s mouth. Aerosols generated during endodontic treatments: a special concern • Bacterial contamination increases as the length of a procedure during COVID-19 pandemic. J Endod 2021; 47: 732–739. increases. • This case-control study does not add to our knowledge of viral bioaerosol generation during endodontic procedures. Abstract Research question The study aims to investigate spread, distance and spatial distribution of aerosolised microorganisms generated through various endodontic procedures. Study design A case-control study carried out at the University of Maryland, US in 2020. The study investigated the aerosolised microorganisms produced during three endodontic treatments: emergency pulpotomy, emergency pulpectomy and non-surgical © fotograzia/Moment/Getty Images Plus © fotograzia/Moment/Getty root canal therapy (NSRCT), with 15 participants in each group (n = 45). Patients diagnosed with symptomatic apical periodontitis were included. The use of settle plates for passive air sampling was employed, in a 4 x 4 m room with closed doors. The number of colony-forming units (CFUs) and composition of bacterial species were analysed. Variables within the study included: distance of plate to patient’s mouth (0.5 m or 2 m), positioning of plate (directly in front of or diagonal to the participant’s mouth), type of endodontic treatment performed and the duration of treatment.
    [Show full text]
  • Safety Protocols for Dental Care During the COVID-19 Pandemic: the Experience of a Brazilian Hospital Service
    CRITICAL REVIEW Infection Control Safety protocols for dental care during the COVID-19 pandemic: the experience of a Brazilian hospital service Alessandra Figueiredo SOUZA(a) José Alcides Almeida de Abstract: The coronavirus disease (COVID-19) has been prioritized ARRUDA(a) in relation to other illnesses considered critical, such as cancer, Fernanda Pereira Delgado cardiovascular diseases/stroke, diabetes, and autoimmune diseases. COSTA(b) The management of patients with these diseases involves dental care Larissa Marques BEMQUERER(a) to reduce systemic complications caused by odontogenic infections, Wagner Henriques CASTRO(a) and/or to treat oral manifestations of systemic comorbidities. In Felipe Eduardo Baires CAMPOS(a) this regard, the dental care of these individuals must be guaranteed Fabiana Maria KAKEHASI(c) during the pandemic. Although a high risk of exposure to and catching Denise Vieira TRAVASSOS(d) of COVID-19 is expected to befall dental professionals, biosafety Tarcília Aparecida SILVA(a) guidelines reduce the likelihood of infection. Thus, the current scenario poses challenges, and offers decision-making approaches and tools (a) Universidade Federal de Minas Gerais – UFMG, School of Dentistry, Department that facilitate the management of individuals with oral manifestations of Oral Surgery, Pathology and Clinical of chronic and/or critical diseases, using hospital-based services. This Dentistry, Belo Horizonte, MG, Brazil article presents an overview for hospital service providers who are at (b) Universidade Federal de Minas Gerais – the forefront of COVID-19 care, including a secure protocol, and clinical UFMG, Hospital das Clínicas, Dental Surgeon guidelines based on the experience of the Hospital das Clínicas in Belo Residency, Belo Horizonte, MG, Brazil Horizonte, a public referral service, supported by the Brazilian National (c) Universidade Federal de Minas Gerais – UFMG, School of Medicine, Department of Health System.
    [Show full text]