Lu and Bi Advances in Difference Equations (2015)2015:219 DOI 10.1186/s13662-015-0555-y R E S E A R C H Open Access Convergence of very weak solutions to A-Dirac equations in Clifford analysis Yueming Lu* and Hui Bi *Correspondence:
[email protected] Abstract Department of Applied Mathematics, Harbin University of This paper is concerned with the very weak solutions to A-Dirac equations Science and Technology, Xue Fu DA(x, Du) = 0 with Dirichlet boundary data. By means of the decomposition in a Road, Harbin, 150080, P.R. China Clifford-valued function space, convergence of the very weak solutions to A-Dirac equations is obtained in Clifford analysis. MSC: Primary 35J25; secondary 31A35 Keywords: Dirac equations; very weak solutions; decomposition; convergence 1 Introduction In this paper, we shall consider a nonlinear mapping A : × Cn → Cn such that (N) x → A(x, ξ) is measurable for all ξ ∈ Cn, (N) ξ → A(x, ξ) is continuous for a.e. x ∈ , p– (N) |A(x, ξ)–A(x, ζ )|≤b|ξ – ζ | , p– (N) (A(x, ξ)–A(x, ζ ), ξ – ζ ) ≥ a|ξ – ζ | (|ξ| + |ζ |) , where < a ≤ b < ∞. ,p The exponent p > will determine the natural Sobolev class, denoted by W (, Cn), in which to consider the A-Dirac equations DA(x, Du)=. () ∈ ,p We call u Wloc (, Cn) a weak solution to ()if A(x, Du)Dϕ dx = () ∈ ,p for each ϕ Wloc (, Cn) with compact support. { } ∈ ,s Definition . For s > max , p– , a Clifford-valued function u Wloc(, Cn) is called a s , s–p+ very weak solution of equation ()ifitsatisfies() for all ϕ ∈ W (, Cn)withcompact support.