Spectroelectrochemistry and Voltammetry of Metalloporphinones Florentina Tutunea Marquette University
Total Page:16
File Type:pdf, Size:1020Kb
Marquette University e-Publications@Marquette Dissertations (2009 -) Dissertations, Theses, and Professional Projects Spectroelectrochemistry and voltammetry of metalloporphinones Florentina Tutunea Marquette University Recommended Citation Tutunea, Florentina, "Spectroelectrochemistry and voltammetry of metalloporphinones" (2011). Dissertations (2009 -). Paper 144. http://epublications.marquette.edu/dissertations_mu/144 SPECTROELECTROCHEMISTRY AND VOLTAMMETRY OF METALLOPORPHINONES By Florentina Tutunea, M.S. A Dissertation submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Milwaukee, Wisconsin August 2011 ABSTRACT SPECTROELECTROCHEMISTRY AND VOLTAMMETRY OF METALLOPORPHINONES Florentina Tutunea, M.S. Marquette University, 2011 Metalloporphinones have been found in a number of enzymes involved in nitrogen metabolism. The emphasis of this research project has been to develop spectroscopic markers in order to identify metal versus porphinone reduction. The carbonyl group in the porphinone has a very strong signal which is quite sensitive to the extent of reduction of the porphinone macrocycle. The spectral change makes IR an important tool in the process of structure determination of metalloporphyrins because the carbonyl group shift can be correlated with the metal oxidation state. It was observed from previously published studies that a higher metal oxidation state moves the carbonyl group at a higher frequency while a lower oxidation state will shift the carbonyl vibration to a lower frequency. Previous work in our laboratory has focused on iron porphinones, but the lack of empirical relationships for the spectroscopic data has made it difficult to clearly interpret the results. Consequently, previous students’ work was extended to include zinc, cobalt and manganese complexes. It has been postulated that zinc and manganese complexes would lead to primarily macrocycle reduction while cobalt complexes would be more similar to iron. By using a combination of spectroscopic techniques (visible and infrared spectroscopy), it has been possible to separate metal from macrocycle reduction. Additional information is now being gathered using oxygen isotopic substitution. This information can be quite useful in understanding both the enzymatic process and the use of these compounds for catalysis. Based on this information, our studies will be focused on the mentioned correlation and bring supplementary evidence for the problem addressed by researchers in the last 25 years concerning the oxidation state of iron(II) upon reduction. i ACKNOWLEDGEMENTS I would like to thank to research adviser, Dr. Michael D. Ryan for his guidance and encouragement throughout the course of this research and for his suggestions and corrections of this dissertation. I also would like to express appreciation to my research committee members, Dr. James R. Kincaid, Dr. Adam Fiedler for their guidance and support. I am thankful to Dr. Rajendra Rathore, Dr. Sergey Lindeman and Dr. Sheng Cai for their help. I am very thankful to the graduate students, the faculty and the staff of the Chemistry Department of Marquette University for all their help. I am very thankful for the support and encouragement of my friends in Romania, my parents for their love and understanding. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS………………………..………………………………………i Chapter 1 INTRODUCTION .............................................................................................. 1 1. Background: Structure and Nomenclature of Porphyrins ........................................... 1 2. Electrochemistry of Metallo-Porphyrin Complexes ................................................... 6 2.1. Zinc Porphyrin Complexes .................................................................................... 10 2.2. Manganese Porphyrin Complexes ......................................................................... 10 2.3. Cobalt Porphyrin Complexes ................................................................................. 11 2.4. Iron Porphyrin Complexes ..................................................................................... 13 3. Studies of Porphyrin Complexes by Spectroscopical Techniques ............................ 16 3.1. Zinc Porphyrin Complexes................................................................................. 19 3.2. Manganese Porphyrin Complexes ...................................................................... 20 3.3. Cobalt Porphyrin Complexes ............................................................................. 24 3.4. Iron Porphyrin Complexes ................................................................................. 25 4. Vibrational Spectroscopy of Porphyrins ................................................................... 28 5. Spectroelectrochemical Studies of Porphinones ....................................................... 31 6. Objectives ................................................................................................................. 42 Chapter 2 EXPERIMENTAL STUDY OF PORPHINONES .......................................... 44 2.1. Chemicals: Reagents, Supporting electrolyte and Solvents ................................... 44 2.2. Equipment .............................................................................................................. 49 Chapter 3 SPECTROELECTROCHEMICAL STUDIES OF COBALT PORPHINONE COMPLEXES ................................................................................................................... 51 3.1. Voltammetry of Cobalt Porphinone Complexes .................................................... 52 3.2. UV-Visible of Cobalt Porphinone Complexes ...................................................... 56 3.3. Thin Layer FTIR of Cobalt Porphinone Complexes .............................................. 62 iii 3.4. Conclusions ............................................................................................................ 81 Chapter 4 SPECTROELECTROCHEMICAL STUDIES OF ZINC PORPHINONE COMPLEXES ................................................................................................................... 84 4.1. Voltammetry of Zinc Porphinone Complexes ....................................................... 84 4.2. Spectroelectrochemistry of Zinc Porphinone Complexes...................................... 88 4.3. Thin-layer FTIR of Zinc Porphinone Complexes .................................................. 92 4.4. Conclusions ............................................................................................................ 96 Chapter 5 SPECTROELECTROCHEMICAL STUDIES OF MANGANESE PORPHINONE COMPLEXES ...................................................................................... 100 5.1. Voltammetry of Manganese Porphinone Complexes .......................................... 101 5.2. Spectroelectrochemistry of Manganese Porphinone Complexes ......................... 105 5.3. Thin layer FTIR of Manganese Porphinone Complexes ..................................... 112 5.4. Conclusions .......................................................................................................... 118 5.5. X ray Analysis of Mn(III)OEPoneCl and Mn(III)OEPdioneCl ........................... 123 BIBLIOGRAPHY ....................................................................................................... 133 iv TABLE OF FIGURES Figure 1-1. Structures of Porphyrin ,Chlorin, Bacteriochlorin, and Isobacteriochlorin .... 5 87 Figure 1-2. UV-Visible absorption spectrum of TDCPPNi(II) in CH2Cl2 ......................... 18 Figure 1-3. Thin-layer visible spectroelectrochemistry of ZnTPP62 ................................. 20 Figure 1-4. Differential absorption spectra observed upon one-electron reduction of Mn(II)P ............................................................................................................................. 22 Figure 1-5. Thin-layer visible spectroelectrochemistry of Mn(III)TPP ............................ 23 Figure 1-6. Thin-layer visible spectroelectrochemistry of Mn(III)/(II)TPP: Mn(II)---, Mn(III)___105 .................................................................................................................... 23 Figure 1-7. Spectral change for reduction process of CoTPP with sodium metal in THF. ........................................................................................................................................... 24 Figure 1-8. Visible spectra obtained during the reduction of FeOEPCl in THF by OTTLE spectroelectrochemistry .................................................................................................... 27 Figure 1-9. Vacuum-tight thin-layer spectroelectrochemical cell with a platinum gauze working electrode. Parts of the cell are: WE-working electrode; (c) thin-layer chamber; (d) thickness of the thin-layer chamber (f) window; (9) AE-auxiliary electrode 146 ........ 33 Figure 1-10. IR spectroelectrochemical cell150 ................................................................. 35 Figure 1-11. Electronic absorption spectra of ZnOEP and its radical anion in THF156 .... 36 Figure 1-12. Visible spectra obtained during the reduction of FeOEPdione in THF by OTTLE spectroelectrochemistry. ...................................................................................... 38 Figure 1-13. Visible spectra obtained during the reduction of Fe(2,4-dioxoOEiBC)Cl in THF by OTTLE