Public Engagement, Storytelling and Complexity in Maths Communication
Total Page:16
File Type:pdf, Size:1020Kb
Dipartimento di Scienze Pure e Applicate Corso di Dottorato: Scienze di Base e Applicazioni Curriculum Scienze della Complessità – ciclo XXX Ph.D. Thesis Public Engagement, Storytelling and Complexity in Maths Communication Supervisor Candidate Prof. Gian Italo Bischi Prof. Andrea Capozucca Dottorato in Scienze della Complessità Ciclo XXX – A.A. 2016/2017 Settore Scientifico Disciplinare MAT/04 – SECS-S/06 To Francesca who made all of this possible Contents List of figures .................................................................................................................. v List of tables .................................................................................................................. vii Acknowledgements .................................................................................................................. viii Chapter 1 Introduction ............................................................................................. 1 Chapter 2 Articles in Lettera Matematica Pristem .................................................. 10 2.1 Article 1: Chris Budd ....................................................................... 10 2.2 Article 2: Alex Bellos ...................................................................... 25 2.3 Article 3: Andrew Jeffrey ................................................................ 38 Chapter 3 From Science Communication to Mathematics Communication ........... 52 3.1 Why to communicate? ..................................................................... 52 3.2 Who have to communicate? ............................................................. 53 3.3 What types of communication? ....................................................... 54 3.4 How to communicate? ..................................................................... 56 3.5 Who is the public? ........................................................................... 57 3.6 Popularization .................................................................................. 59 3.7 From science communication to mathematics communication ....... 61 3.7.1 Symbolism: a facilitation or a complication? ........................ 63 3.7.2 How much rigour? ................................................................. 65 3.8 How to reinforce the message .......................................................... 67 3.8.1 The language .......................................................................... 67 3.8.2 Popularization ........................................................................ 68 3.8.3 Informal communication ........................................................ 70 3.8.4 Teaching ................................................................................. 71 3.9 Tips for mathematics communication .............................................. 74 Chapter 4 Public Engagement and Outreach ........................................................... 77 4.1 Science festivals ............................................................................... 78 4.1.1 Bath Taps into Science ........................................................... 79 4.1.2 Big Bang Fair ......................................................................... 80 4.1.3 What I learned ........................................................................ 81 4.2 How I put into in practice ................................................................ 82 4.2.1 FermHAmente Science Festival ............................................. 82 4.2.2 A proposal for a Maths/Science Communication Course ...... 85 4.2.3 Unicam Science Outreach ...................................................... 87 iii 4.2.4 VereMath Street ..................................................................... 89 4.2.4.1 The 2015 Edition ....................................................... 89 4.2.4.2 The 2016 Edition ....................................................... 91 4.2.5 Scienza in Vacanza ................................................................ 93 4.2.6 Science Cafes ......................................................................... 94 Chapter 5 Storytelling and Laboratorial Approach ................................................. 98 5.1 How communication can improve teaching .................................... 99 5.1.1 Popularization ........................................................................ 99 5.1.2 Storytelling ............................................................................. 100 5.1.3 Laboratory as learning environment ...................................... 104 5.2 How I put into practice .................................................................... 105 5.2.1 The book “Il tranello e la soluzione matematica” .................. 105 5.2.1.1 Synopsis .................................................................... 105 5.2.1.2 About the book .......................................................... 106 5.2.1.3 Aims of the book ....................................................... 108 5.2.1.4 Why a story and not a handbook ............................... 110 5.2.1.5 Interdisciplinary approach ......................................... 110 5.2.1.6 What the story wants to convey and how .................. 110 5.2.1.7 The book as a teaching tool ....................................... 111 5.2.2 Math-Dance laboratorial activities ......................................... 113 5.2.2.1 Physical problem solving: Math+Dance ................... 114 5.2.2.2 Background information on Pattern Play .................. 114 5.2.2.3 Why Math and Dance? .............................................. 114 5.2.2.4 Math-Dance activities: an example ........................... 115 Chapter 6 Communicating Complexity ................................................................... 118 6.1 FOTCAB Project: Communicating Complexity .............................. 120 6.1.1 Implementing and developing the project .............................. 121 6.1.2 Project Outline ....................................................................... 122 6.1.3 Listen to the Logistic Map ..................................................... 123 Chapter 7 Conclusions ............................................................................................. 129 Appendix A Ten Laws of Human Communication ..................................................... 134 Appendix B Festival Survey fac-simile ....................................................................... 135 Appendix C Before/After Questionnaires ................................................................... 136 Appendix D Logistic Map Song Score ........................................................................ 139 References ................................................................................................................ 141 iv List of figures Figure 2.1 Prof Chris Budd in his office Figure 2.2 The cartoon with the British “champions” of the communication of mathematics (in the foreground, from the left, Zeeman, Stewart and Du Sautoy can be recognized) on a wall of Prof Budd’s office Figure 2.3 Prof Budd’s cartoon Figure 2.4 From the left Prof Budd, Andrew Ross and Andrea Capozucca Figure 2.5 Margarida Dolan, who teaches science communication and public engagement to undergraduates and graduates, with one of her student Figure 2.6 The pub The Raven in Bath Figure 2.7 Prof Budd is honoured with OBE at Windsor Castle (from the left Sue, Prof Budd’s wife, Prof Budd, his daughter Bryony and his mother Jillian) Figure 2.8 The Department of Engineering’s stand about electricity at the School Science Fair within Bath Taps into Science Figure 2.9 The Department of Biology’s stand at the School Science Fair within Bath Taps into Science Figure 2.10 The Royal Casino organized by the Mathematics Communication Group at the School Science Fair within Bath Taps into Science Figure 2.11 A general view on some of the stands at the School Science Fair within Bath Taps into Science Figure 2.12 Stands full of visitors in the central pavillon at the Family Science Fair Figure 2.13 The stand of the Department of Natural Science at the Family Science Fair Figure 2.14 The audience waiting for the beginning of Andrew Ross’s “chemistry show” at the Family Science Fair Figure 2.15 Gracelands Café: outside Figure 2.16 Alex Bellos at Gracelands Café during the interview Figure 2.17 Alex in India interviewing the head of Vedic maths Figure 2.18 Giving a talk at the Glastonbury Festival Figure 2.19 Alex and his elliptical pool table Figure 2.20 A book launch in Brazil for Alex’s Adventures in Numberland Figure 2.21 A prize ceremony (best non-fiction book at the British book awards for Alex’s Adventures in Numberland) Figure 2.22 Andrew Jeffrey with some students at the end of a show Figure 2.23 Andrew Jeffrey during a magic show Figure 2.24 Andrew Jeffrey during the 2007 award ceremony of the Sussex Magic Circle Competition Figure 2.25 Two images from Andrew Jeffrey's Magic of Maths! Show Figure 3.1 Public Engagement Triangle Figure 4.1 Scientists and the public have different communication styles. While scientists often v start by placing a particular topic or their research in a historical context, the public wants to know the key point at the start. Photo from https://www.aaas.org/page/communicating-engage Figure 4.2 Visitors and me struggling with the Soap Bubble Wires at the IMA Stand, Big Bang Fair Birmingham Figure 4.3 From left to right: Andrea Capozucca, Silvia Benvenuti, Agata A. Timón Garcia- Longoria,