EEG--Electroencephalography Harold S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Electroencephalography (EEG)-Based Brain Computer Interfaces for Rehabilitation
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2012 Electroencephalography (EEG)-based brain computer interfaces for rehabilitation Dandan Huang Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Biomedical Engineering and Bioengineering Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2761 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. School of Engineering Virginia Commonwealth University This is to certify that the dissertation prepared by Dandan Huang entitled “Electroencephalography (EEG)-based brain computer interfaces for rehabilitation” has been approved by her committee as satisfactory completion of the dissertation requirement for the degree of Doctoral of Philosophy. Ou Bai, Ph.D., Director of Dissertation, School of Engineering Ding-Yu Fei, Ph.D., School of Engineering Azhar Rafiq, M.D., School of Medicine Martin L. Lenhardt, Ph.D., School of Engineering Kayvan Najarian, Ph.D., School of Engineering Gerald Miller, Ph.D., Chair, Department of Biomedical Engineering, School of Engineering Rosalyn Hobson, Ph.D., Associate Dean of Graduate Studies, School of Engineering Charles J. Jennett, Ph.D., Dean, School of Engineering F. Douglas Boudinot, Ph.D., Dean of the Graduate School ______________________________________________________________________ Date © Dandan Huang 2012 All Rights Reserved ELECTROENCEPHALOGRAPHY-BASED BRAIN-COMPUTER INTERFACES FOR REHABILITATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University. -
Status Epilepticus: Pathophysiology, Epidemiology, and Outcomes
Arch Dis Child 1998;79:73–77 73 CURRENT TOPIC Arch Dis Child: first published as 10.1136/adc.79.1.73 on 1 July 1998. Downloaded from Status epilepticus: pathophysiology, epidemiology, and outcomes Rod C Scott, Robert A H Surtees, Brian G R Neville Convulsive status epilepticus (CSE) is the most consciousness being regained between the sei- common neurological medical emergency and zures. This gives the impression that status epi- continues to be associated with significant lepticus is always convulsive and is a single morbidity and mortality. Our approach to the entity. There are, however, as many types of epilepsies in childhood has been clarified by the status epilepticus as there are types of seizures, broad separation into benign and malignant and this definition is now probably outdated. syndromes. The factors that suggest a poorer To show that status epilepticus is a complex outcome in terms of seizures, cognition, and disorder, Shorvon has proposed the following behaviour include the presence of multiple sei- definition. Status epilepticus is a disorder in zure types, an additional, particularly cognitive which epileptic activity persists for 30 minutes disability, the presence of identifiable cerebral or more, causing a wide spectrum of clinical pathology, a high rate of seizures, an early age symptoms, and with a highly variable patho- of onset, poor response to antiepileptic drugs, physiological, anatomical, and aetiological and the occurrence of CSE.1 basis.2 CSE needs diVerent definitions for Convulsive status epilepticus is not a syn- diVerent purposes. Many seizures that last for drome in the same sense as febrile convulsions, five minutes will continue for at least 20 benign rolandic epilepsy, and infantile poly- minutes, and so treatment is required for most morphic epilepsy. -
Status Epilepticus: Initial Management
DATE: July 2018 TEXAS CHILDREN’S HOSPITAL EVIDENCE-BASED OUTCOMES CENTER Initial Management of Status Epilepticus Evidence-Based Guideline Definition: Status Epilepticus (SE) is a disease process Diagnostic Evaluation resulting in prolonged seizures of longer than 5 minutes. (1) The NOTE: Central nervous system (CNS) infection should be cause of SE can stem from the malfunction of the response to excluded. terminate a seizure or from the commencement of the mechanisms that result in prolonged seizures. (2) If SE History: Assess for continues for longer than 30 minutes, there can be permanent Seizure onset neurological damage, including neuronal death, neuronal Known seizure disorder injury, and alteration of neuronal networks. (2,3) Ingestion Fever (e.g., signs of serious infection) Epidemiology: Convulsive status epilepticus (CSE) is the Medications (4) most common neurological emergency seen in childhood. It o Received prior to presentation (e.g., type, dose, is also among the top five reasons for admission to the PICU at dosage, route) Texas Children’s Hospital and is the third most common o Current anticonvulsant medications reason for transport calls. SE is a medical emergency and is o Use of psychopharmacologic medications associated with an overall mortality rate of 8% in children and Toxic/Subtherapeutic anticonvulsant levels (4,5) o 30% in adults. Among children, the overall incidence of SE Nonadherence and/or recent change (4-6) o is approximately 1 to 6 per 10,000/year. The incidence Vagus Nerve Stimulation (VNS) appears to be higher in children under 1 year of age with over Metabolic abnormalities 50% of cases occurring in children under 3 years. -
Is It a Convulsion Or Dopamine Deficiency? a Case of Epilepsy in Dihydropteridine Reductase Deficiency
Letter to the editor pISSN 2635-909X • eISSN 2635-9103 Ann Child Neurol 2020;28(2):72-74 https://doi.org/10.26815/acn.2019.00304 Is It a Convulsion or Dopamine Deficiency? A Case of Epilepsy in Dihydropteridine Reductase Deficiency Jisu Ryoo, MD, Eun Sook Suh, MD, Jeongho Lee, MD Department of Pediatrics, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea Received: December 20, 2019 Dihydropteridine reductase (DHPR) deficiency A 15-year-old man was admitted to Soon- Revised: February 13, 2020 Accepted: March 2, 2020 is a severe form of hyperphenylalaninemia due chunhyang University Seoul Hospital. At the age to impaired renewal of a substance known as tet- of 3 months, he experienced the first seizure, Corresponding author: rahydrobiopterin (BH4), caused by mutations in characterized by brief psychomotor arrest and Jeongho Lee, MD the quinoid dihydropteridine reductase (QDPR) right hand tremor. He had no family history of Department of Pediatrics, gene [1]. If little or no BH4 is available to facili- seizures or genetic disorders. Brain magnetic res- Soonchunhyang University Seoul tate processing phenylalanine (Phe), this amino onance imaging (MRI) and EEG showed nor- Hospital, Soonchunhyang University College of Medicine, 59 acid can accumulate in the blood and other tis- mal results. The seizures were not controlled by Daesagwan- ro, Yongsan-gu, Seoul sues, and the levels of neurotransmitters (dopa- antiepileptic drugs, including topiramate, val- 04401, Korea mine, serotonin) and the folate in cerebrospinal proate, and lamotrigine; therefore, he discontin- Tel: +82-2-709-9341 fluid also decrease [1]. Symptoms such as mental ued the medication. -
A National Review of Amplitude Integrated Electroencephalography (Aeeg) A
Issue: Ir Med J; Vol 113; No. 9; P192 A National Review of Amplitude Integrated Electroencephalography (aEEG) A. Jenkinson1, M.A. Boyle2, D. Sweetman1 1. The National Maternity Hospital, Dublin. 2. The Rotunda Hospital, Dublin. Dear Sir, The use of amplitude integrated encephalography (aEEG) has become well integrated into routine care in the neonatal intensive care unit (NICU), to monitor brain function where encephalopathy or seizures are suspected.1 Early aEEG abnormalities and their rate of resolution have clinical and prognostic significance in severely ill newborns with altered levels of consciousness. 2 The most common use of aEEG is in infants with neonatal encephalopathy undergoing therapeutic hypothermia (TH). While TH is performed in tertiary centres, local and regional centres play an important role in the diagnosis and initial management of these infants. The Therapeutic Hypothermia Working Group National Report from 2018 reported that 28/69 (40%) of infants requiring Therapeutic Hypothermia were outborn in local or regional units requiring transfer.3 The report also highlighted that early and accurate aEEG interpretation is important in the care of these infants with many seizures being sub-clinical or electrographic without clinical correlation. We performed a national audit on aEEG in neonatal services in Ireland, surveying 18 neonatal units that are divided into Level 1 (Local), Level 2 (Regional) and Level 3 (Tertiary). One unit was excluded from our study as it provides a continuous EEG monitoring service on a 24-hour basis as part of the Neonatal Brain Research Group. Our findings showed that while no Level 1 unit had aEEG, it is widely available in Level 2 and Level 3 units [3/4 (75%) and 3/3 (100%)] respectively. -
Using Amplitude-Integrated EEG in Neonatal Intensive Care
Journal of Perinatology (2010) 30, S73–S81 r 2010 Nature America, Inc. All rights reserved. 0743-8346/10 www.nature.com/jp REVIEW Using amplitude-integrated EEG in neonatal intensive care JD Tao and AM Mathur Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA monitoring can be applied, for example, to infants admitted with The implementation of amplitude-integrated electroencephalography encephalopathy, seizures or other brain malformations. Both term (aEEG) has enhanced the neurological monitoring of critically ill infants. and preterm infants may benefit from the clinical application of Limited channel leads are applied to the patient and data are displayed in a aEEG findings. Much similar to continuous monitoring of vital semilogarithmic, time-compressed scale. Several classifications are currently signs, bedside aEEG can help guide decision-making in real time in use to describe patient tracings, incorporating voltage criteria, pattern for infants admitted to the NICU. This article will review the recognition, cyclicity, and the presence or absence of seizures. In term history, classification and application of aEEG in both term and neonates, aEEG has been used to determine the prognosis and treatment for preterm infants. those affected by hypoxic–ischemic encephalopathy, seizures, meningitis and even congenital heart disease. Its application as inclusion criteria for therapeutic hypothermia remains controversial. In preterm infants, Background normative values and patterns corresponding to gestational age are being 2 established. As these standards emerge, the predictive value of aEEG Starting in the 1960s, Maynard et al., developed the first use of increases, especially in the setting of preterm brain injury and an instrument to study cerebral activity in resuscitated patients with intraventricular hemorrhage. -
Electroencephalography Source Connectivity: Toward High Time/Space Resolution Brain Networks
Electroencephalography source connectivity: toward high time/space resolution brain networks Hassan M.1, 2 and Wendling F.1, 2 1 University of Rennes 1, LTSI, F-35000 Rennes, France 2INSERM, U1099, F-35000 Rennes, France Abstract— The human brain is a large-scale network which function depends on dynamic interactions between spatially-distributed regions. In the rapidly-evolving field of network neuroscience, two yet unresolved challenges are potential breakthroughs. First, functional brain networks should be estimated from noninvasive and easy to use neuroimaging techniques. Second, the time/space resolution of these techniques should be high enough to assess the dynamics of identified networks. Emerging evidence suggests that Electroencephalography (EEG) source connectivity method may offer solutions to both issues provided that scalp EEG signals are appropriately processed. Therefore, the performance of EEG source connectivity method strongly depends on signal processing (SP) that involves various methods such as preprocessing techniques, inverse solutions, statistical couplings between signals and network science. The main objective of this tutorial-like review is to provide an overview on EEG source connectivity. We describe the major contributions that the SP community brought to this research field. We emphasize the methodological issues that need to be carefully addressed to obtain relevant results and we stress the current limitations that need further investigation. We also report results obtained in concrete applications, in both normal and pathological brain states. Future directions in term of signal processing methods and applications are eventually provided. Index Terms— EEG signal processing, functional brain networks, EEG source connectivity, statistical couplings, inverse solutions. 1 I. INTRODUCTION Over the past decades, neuroscience research has significantly improved our understanding of the normal brain. -
BIDS-EEG: an Extension to the Brain Imaging Data Structure (BIDS) Specification for Electroencephalography
BIDS-EEG: an extension to the Brain Imaging Data Structure (BIDS) Specification for electroencephalography Cyril R Perneta,∗, Stefan Appelhoffb,∗, Guillaume Flandinc, Christophe Phillipsd, Arnaud Delormee,f, Robert Oostenveldg,h aThe University of Edinburgh, Centre for Clinical Brain Sciences (CCBS), Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB bCenter for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany cWellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK dGIGA Institute, University of Liège, Liège, Belgium eSCCN, INC, UCSD, La Jolla, CA 95404, USA fCerco, CNRS/UPS, Toulouse, France gRadboud University, Donders Institute for Brain, Cognition and Behaviour. P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands hNatMEG, Karolinska Institutet, Stockholm, Sweden Abstract The Brain Imaging Data Structure (BIDS) project is a quickly evolving effort among the human brain imaging research community to create standards allowing researchers to readily organize and share study data within and between laboratories. The first BIDS standard was proposed for the MRI/fMRI research community and has now been widely adopted. More recently a magnetoencephalography (MEG) data extension, BIDS-MEG, has been published. Here we present an extension to BIDS for electroencephalography (EEG) data, BIDS-EEG, along with tools and references to a series of public EEG datasets organized using this new standard. Keywords: Electroencephalography, EEG, Brain Imaging Data Structure (BIDS), BIDS-EEG, standardization, datasets, formatting, archive Introduction Electroencephalography (EEG) is now almost a century old, with its first application in humans in the 1920s (Berger, 1929). EEG records the electric potential fluctuations at the scalp, primarily from locally synchronous post-synaptic activity in the apical dendrites of pyramidal cells in the cortex. -
Magnetoencephalography: Clinical and Research Practices
brain sciences Review Magnetoencephalography: Clinical and Research Practices Jennifer R. Stapleton-Kotloski 1,2,*, Robert J. Kotloski 3,4 ID , Gautam Popli 1 and Dwayne W. Godwin 1,5 1 Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; [email protected] (G.P.); [email protected] (D.W.G.) 2 Research and Education, W. G. “Bill” Hefner Salisbury VAMC, Salisbury, NC 28144, USA 3 Department of Neurology, William S Middleton Veterans Memorial Hospital, Madison, WI 53705, USA; [email protected] 4 Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA 5 Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA * Correspondence: [email protected]; Tel.: +1-336-716-5243 Received: 28 June 2018; Accepted: 11 August 2018; Published: 17 August 2018 Abstract: Magnetoencephalography (MEG) is a neurophysiological technique that detects the magnetic fields associated with brain activity. Synthetic aperture magnetometry (SAM), a MEG magnetic source imaging technique, can be used to construct both detailed maps of global brain activity as well as virtual electrode signals, which provide information that is similar to invasive electrode recordings. This innovative approach has demonstrated utility in both clinical and research settings. For individuals with epilepsy, MEG provides valuable, nonredundant information. MEG accurately localizes the irritative zone associated with interictal spikes, often detecting epileptiform activity other methods cannot, and may give localizing information when other methods fail. These capabilities potentially greatly increase the population eligible for epilepsy surgery and improve planning for those undergoing surgery. MEG methods can be readily adapted to research settings, allowing noninvasive assessment of whole brain neurophysiological activity, with a theoretical spatial range down to submillimeter voxels, and in both humans and nonhuman primates. -
Noninvasive Electroencephalography Equipment for Assistive, Adaptive, and Rehabilitative Brain–Computer Interfaces: a Systematic Literature Review
sensors Systematic Review Noninvasive Electroencephalography Equipment for Assistive, Adaptive, and Rehabilitative Brain–Computer Interfaces: A Systematic Literature Review Nuraini Jamil 1 , Abdelkader Nasreddine Belkacem 2,* , Sofia Ouhbi 1 and Abderrahmane Lakas 2 1 Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; [email protected] (N.J.); sofi[email protected] (S.O.) 2 Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; [email protected] * Correspondence: [email protected] Abstract: Humans interact with computers through various devices. Such interactions may not require any physical movement, thus aiding people with severe motor disabilities in communicating with external devices. The brain–computer interface (BCI) has turned into a field involving new elements for assistive and rehabilitative technologies. This systematic literature review (SLR) aims to help BCI investigator and investors to decide which devices to select or which studies to support based on the current market examination. This examination of noninvasive EEG devices is based on published BCI studies in different research areas. In this SLR, the research area of noninvasive Citation: Jamil, N.; Belkacem, A.N.; BCIs using electroencephalography (EEG) was analyzed by examining the types of equipment used Ouhbi, S.; Lakas, A. Noninvasive for assistive, adaptive, and rehabilitative BCIs. For this SLR, candidate studies were selected from Electroencephalography Equipment the IEEE digital library, PubMed, Scopus, and ScienceDirect. The inclusion criteria (IC) were limited for Assistive, Adaptive, and to studies focusing on applications and devices of the BCI technology. -
Dynamic Analysis of Human Brain in the Pain State by Electroencephalography
Dynamic Analysis of Human Brain in the Pain State by Electroencephalography Mahsa Tavasoli Islamic Azad University Tehran North Branch zahra einalou ( [email protected] ) Islamic Azad University Tehran North Branch Reza Akhondzadeh Jondi Shapoor University of Medical Sciences: Ahvaz Jondishapour University of Medical Sciences Research note Keywords: Cold pressor test, EEG, Pain, Phasic pain, RQA Posted Date: March 2nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-275018/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Dynamic Analysis of Human Brain in the Pain State by Electroencephalography Mahsa Tavasoli1, Zahra Einalou1*, Reza Akhondzadeh2 *1 Department of Biomedical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran Email: [email protected] 2 Department of Anesthesiology, Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran Email: [email protected] Corresponding Author: Zahra Einalou Department of Biomedical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran Email: [email protected] Tel: 00989121754711 1 Abstract Objective: Pain is an unpleasant sensation that is important in all therapeutic conditions. So far, some studies have focused on pain assessment and cognition through different tests and methods. Considering the occurrence of pain causes, along with the activation of a long network in brain regions, recognizing the dynamical changes of the brain in pain states is helpful for pain detection using the electroencephalogram (EEG) signal. Therefore, the present study addressed the above-mentioned issue by applying EEG at the time of inducing phasic pain. Results: Phasic pain was produced using coldness and then dynamical features via EEG were analyzed by the Recurrence Quantification Analysis (RQA) method, and finally, the Rough neural network classifier was utilized for achieving accuracy regarding detecting and categorizing pain and non-pain states, which was 95.25 4%. -
Q5: What Is the Added Advantage of Doing an Electroencephalography (EEG) in People with Convulsive Epilepsy in Non- Specialist S
Role of EEG in management of convulsive epilepsy Q5: What is the added advantage of doing an electroencephalography (EEG) in people with convulsive epilepsy in non- specialist settings in low and middle income countries? Background The EEG is a technical instrument that can be used to support the diagnosis of seizures, classify epilepsy and to provide information on risk factors for seizure recurrence. Epilepsy is, by definition, a clinical condition characterized by two or more unprovoked seizures 24 hours apart (ILAE, 1993). However, this diagnostic and prognostic aid has several limitations which need to be emphasized in light of the available literature. An evidence-based approach is thus needed to put the EEG into a correct perspective. For this reason, the main indications of the EEG (i.e., use in support for the diagnosis of seizures and epilepsy, recognition of specific epilepsy syndromes to predict efficacy and tolerability of treatment, and prognostic value) must be assessed separately. In this light, the validity, reliability and overall utility of the EEG must be assessed with reference to different settings, especially LAMIC. Population/Intervention(s)/Comparison/Outcomes (PICO) Population: children and adults with epilepsy from population-based and clinic-based settings Interventions: EEG Comparison: not applicable Outcomes: appropriate diagnosis management (seizure recurrence, mortality, adverse effects) sensitivity, specificity and predictive values of EEG for the diagnosis of epilepsy risk of seizure recurrence after the