Unsupervised Grammar Induction with Depth-Bounded PCFG

Total Page:16

File Type:pdf, Size:1020Kb

Unsupervised Grammar Induction with Depth-Bounded PCFG Unsupervised Grammar Induction with Depth-bounded PCFG Lifeng Jin Finale Doshi-Velez Timothy Miller Department of Linguistics Harvard University Boston Children’s Hospital & The Ohio State University [email protected] Harvard Medical School [email protected] [email protected] William Schuler Lane Schwartz Department of Linguistics Department of Linguistics The Ohio State University University of Illinois at Urbana-Champaign [email protected] [email protected] Abstract et al., 2009) converged to weak modes of a very multimodal distribution of grammars. There has There has been recent interest in applying been recent interest in applying cognitively- or cognitively- or empirically-motivated bounds empirically-motivated bounds on recursion depth to on recursion depth to limit the search space of grammar induction models (Ponvert et al., limit the search space of grammar induction mod- 2011; Noji and Johnson, 2016; Shain et els (Ponvert et al., 2011; Noji and Johnson, 2016; al., 2016). This work extends this depth- Shain et al., 2016). Ponvert et al. (2011) and Shain bounding approach to probabilistic context- et al. (2016) in particular report benefits for depth free grammar induction (DB-PCFG), which bounds on grammar acquisition using hierarchical has a smaller parameter space than hierar- sequence models, but either without the capacity to chical sequence models, and therefore more learn full grammar rules (e.g. that a noun phrase fully exploits the space reductions of depth- may consist of a noun phrase followed by a preposi- bounding. Results for this model on grammar acquisition from transcribed child-directed tional phrase), or with a very large parameter space speech and newswire text exceed or are com- that may offset the gains of depth-bounding. This petitive with those of other models when eval- work extends the depth-bounding approach to di- uated on parse accuracy. Moreover, gram- rectly induce probabilistic context-free grammars,1 mars acquired from this model demonstrate a which have a smaller parameter space than hier- consistent use of category labels, something archical sequence models, and therefore arguably which has not been demonstrated by other ac- make better use of the space reductions of depth- quisition models. bounding. This approach employs a procedure for deriving a sequence model from a PCFG (van Schi- 1 Introduction jndel et al., 2013), developed in the context of a su- pervised learning model, and adapts it to an unsu- Grammar acquisition or grammar induction (Car- pervised setting. roll and Charniak, 1992) has been of interest to lin- guists and cognitive scientists for decades. This task Results for this model on grammar acquisi- is interesting because a well-performing acquisition tion from transcribed child-directed speech and model can serve as a good baseline for examin- newswire text exceed or are competitive with those ing factors of grounding (Zettlemoyer and Collins, of other models when evaluated on parse accu- 2005; Kwiatkowski et al., 2010), or as a piece of racy. Moreover, grammars acquired from this model evidence (Clark, 2001; Zuidema, 2003) about the demonstrate a consistent use of category labels, as Distributional Hypothesis (Harris, 1954) against the shown in a noun phrase discovery task, something poverty of the stimulus (Chomsky, 1965). Unfor- which has not been demonstrated by other acquisi- tunately, previous attempts at inducing unbounded tion models. context-free grammars (Johnson et al., 2007; Liang 1https://github.com/lifengjin/db-pcfg 211 Transactions of the Association for Computational Linguistics, vol. 6, pp. 211–224, 2018. Action Editor: Xavier Carreras. Submission batch: 9/2017; Revision batch: 12/2017; Published 4/2018. c 2018 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license. Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00016 by guest on 25 September 2021 2 Related work complete phrase structure grammars (Ponvert et al., 2011) or do so at the expense of large parameter sets This paper describes a Bayesian Dirichlet model of (Shain et al., 2016). Other work implements depth depth-bounded probabilistic context-free grammar bounds on left-corner configurations of dependency (PCFG) induction. Bayesian Dirichlet models have grammars (Noji and Johnson, 2016), but the use of been applied to the related area of latent variable a dependency grammar makes the system impracti- PCFG induction (Johnson et al., 2007; Liang et al., cal for addressing questions of how category types 2009), in which subtypes of categories like noun such as noun phrases may be learned. Unlike these, phrases and verb phrases are induced on a given tree the model described in this paper induces a PCFG structure. The model described in this paper is given directly and then bounds it with a model-to-model only words and not only induces categories for con- transform, which yields a smaller space of learn- stituents but also tree structures. able parameters and directly models the acquisition There are a wide variety of approaches to of category types as labels. grammar induction outside the Bayesian modeling Some induction models learn semantic gram- paradigm. The CCL system (Seginer, 2007a) uses mars from text annotated with semantic predicates deterministic scoring systems to generate bracketed (Zettlemoyer and Collins, 2005; Kwiatkowski et output of raw text. UPPARSE (Ponvert et al., 2011) al., 2012). There is evidence humans use semantic uses a cascade of HMM chunkers to produce syn- bootstrapping during grammar acquisition (Naigles, tactic structures. BMMM+DMV (Christodoulopou- 1990), but these models typically rely on a set of los et al., 2012) combines an unsupervised part- pre-defined universals, such as combinators (Steed- of-speech (POS) tagger BMMM and an unsuper- man, 2000), which simplify the induction task. In vised dependency grammar inducer DMV (Klein order to help address the question of whether such and Manning, 2004). The BMMM+DMV system universals are indeed necessary for grammar induc- alternates between phases of inducing POS tags and tion, the model described in this paper does not inducing dependency structures. A large amount assume any strong universals except independently work (Klein and Manning, 2002; Klein and Man- motivated limits on working memory. ning, 2004; Bod, 2006; Berg-kirkpatrick et al., 2010; Gillenwater et al., 2011; Headden et al., 2009; Bisk 3 Background and Hockenmaier, 2013; Scicluna and de la Higuera, 2014; Jiang et al., 2016; Han et al., 2017) has Like Noji and Johnson (2016) and Shain et al. been on grammar induction with input annotated (2016), the model described in this paper de- with POS tags, mostly for dependency grammar in- fines bounding depth in terms of memory ele- duction. Although POS tags can also be induced, ments required in a left-corner parse. A left-corner this separate induction has been criticized (Pate and parser (Rosenkrantz and Lewis, 1970; Johnson- Johnson, 2016) for missing an opportunity to lever- Laird, 1983; Abney and Johnson, 1991; Resnik, age information learned in grammar induction to es- 1992) uses a stack of memory elements to store timate POS tags. Moreover, most of these mod- derivation fragments during incremental processing. els explore a search space that includes syntactic Each derivation fragment represents a disjoint con- analyses that may be extensively center embedded nected component of phrase structure a/b consist- and therefore are unlikely to be produced by hu- ing of a top sign a lacking a bottom sign b yet to man speakers. Unlike most of these approaches, the come. For example, Figure 1 shows the deriva- model described in this paper uses cognitively moti- tion fragments in a traversal of a phrase structure vated bounds on the depth of human recursive pro- tree for the sentence The cart the horse the man cessing to constrain its search of possible trees for bought pulled broke. Immediately before process- input sentences. ing the word man, the traversal has recognized three Some previous work uses depth bounds in the fragments of tree structure: two from category NP form of sequence models (Ponvert et al., 2011; to category RC (covering the cart and the horse) Shain et al., 2016), but these either do not produce and one from category NP to category N (cover- 212 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00016 by guest on 25 September 2021 S Johnson-Laird (1983) terms, to shift with or without match and to predict with or without NP VP match). Probabilities from these distributions are then mul- NP RC tiplied together to define a transition model M over hidden states: D N NP VP M[qt 1,qt] = P(qt qt 1) (1a) − | − NP RC def 1..D 1..D = P( ft pt jt at bt qt 1) (1b) | − = P( ft qt 1) D N NP VP | − P(pt qt 1 ft) · | − D N P( jt qt 1 ft pt) · | − 1..D P(at qt 1 ft pt jt) cart horse man the the the · | − broke bought pulled 1..D 1..D P(bt qt 1 ft pt jt at ). (1c) · | − Figure 1: Derivation fragments before the word man in For example, just after the word horse is rec- a left-corner traversal of the sentence The cart the horse ognized in Figure 1, the parser store contains two the man bought pulled broke. derivation fragments yielding the cart and the horse, both with top category NP and bottom category RC. ing the). Derivation fragments at every time step The parser then decides to fork out the next word the are numbered top-down by depth d to a maximum based on the bottom category RC of the last deriva- depth of D. A left-corner parser requires more tion fragment on the store. Then the parser gener- derivation fragments — and thus more memory — ates a preterminal category D for this word based on to process center-embedded constructions than to this fork decision and the bottom category of the last process left- or right-embedded constructions, con- derivation fragment on the store.
Recommended publications
  • Unsupervised Recurrent Neural Network Grammars
    Unsupervised Recurrent Neural Network Grammars Yoon Kim Alexander Rush Lei Yu Adhiguna Kuncoro Chris Dyer G´abor Melis Code: https://github.com/harvardnlp/urnng 1/36 Language Modeling & Grammar Induction Goal of Language Modeling: assign high likelihood to held-out data Goal of Grammar Induction: learn linguistically meaningful tree structures without supervision Incompatible? For good language modeling performance, need little independence assumptions and make use of flexible models (e.g. deep networks) For grammar induction, need strong independence assumptions for tractable training and to imbue inductive bias (e.g. context-freeness grammars) 2/36 Language Modeling & Grammar Induction Goal of Language Modeling: assign high likelihood to held-out data Goal of Grammar Induction: learn linguistically meaningful tree structures without supervision Incompatible? For good language modeling performance, need little independence assumptions and make use of flexible models (e.g. deep networks) For grammar induction, need strong independence assumptions for tractable training and to imbue inductive bias (e.g. context-freeness grammars) 2/36 This Work: Unsupervised Recurrent Neural Network Grammars Use a flexible generative model without any explicit independence assumptions (RNNG) =) good LM performance Variational inference with a structured inference network (CRF parser) to regularize the posterior =) learn linguistically meaningful trees 3/36 Background: Recurrent Neural Network Grammars [Dyer et al. 2016] Structured joint generative model of sentence x and tree z pθ(x; z) Generate next word conditioned on partially-completed syntax tree Hierarchical generative process (cf. flat generative process of RNN) 4/36 Background: Recurrent Neural Network Language Models Standard RNNLMs: flat left-to-right generation xt ∼ pθ(x j x1; : : : ; xt−1) = softmax(Wht−1 + b) 5/36 Background: RNNG [Dyer et al.
    [Show full text]
  • Deep Learning for Source Code Modeling and Generation: Models, Applications and Challenges
    Deep Learning for Source Code Modeling and Generation: Models, Applications and Challenges TRIET H. M. LE, The University of Adelaide HAO CHEN, The University of Adelaide MUHAMMAD ALI BABAR, The University of Adelaide Deep Learning (DL) techniques for Natural Language Processing have been evolving remarkably fast. Recently, the DL advances in language modeling, machine translation and paragraph understanding are so prominent that the potential of DL in Software Engineering cannot be overlooked, especially in the field of program learning. To facilitate further research and applications of DL in this field, we provide a comprehensive review to categorize and investigate existing DL methods for source code modeling and generation. To address the limitations of the traditional source code models, we formulate common program learning tasks under an encoder-decoder framework. After that, we introduce recent DL mechanisms suitable to solve such problems. Then, we present the state-of-the-art practices and discuss their challenges with some recommendations for practitioners and researchers as well. CCS Concepts: • General and reference → Surveys and overviews; • Computing methodologies → Neural networks; Natural language processing; • Software and its engineering → Software notations and tools; Source code generation; Additional Key Words and Phrases: Deep learning, Big Code, Source code modeling, Source code generation 1 INTRODUCTION Deep Learning (DL) has recently emerged as an important branch of Machine Learning (ML) because of its incredible performance in Computer Vision and Natural Language Processing (NLP) [75]. In the field of NLP, it has been shown that DL models can greatly improve the performance of many classic NLP tasks such as semantic role labeling [96], named entity recognition [209], machine translation [256], and question answering [174].
    [Show full text]
  • GRAINS: Generative Recursive Autoencoders for Indoor Scenes
    GRAINS: Generative Recursive Autoencoders for INdoor Scenes MANYI LI, Shandong University and Simon Fraser University AKSHAY GADI PATIL, Simon Fraser University KAI XU∗, National University of Defense Technology SIDDHARTHA CHAUDHURI, Adobe Research and IIT Bombay OWAIS KHAN, IIT Bombay ARIEL SHAMIR, The Interdisciplinary Center CHANGHE TU, Shandong University BAOQUAN CHEN, Peking University DANIEL COHEN-OR, Tel Aviv University HAO ZHANG, Simon Fraser University Bedrooms Living rooms Kitchen Fig. 1. We present a generative recursive neural network (RvNN) based on a variational autoencoder (VAE) to learn hierarchical scene structures, enabling us to easily generate plausible 3D indoor scenes in large quantities and varieties (see scenes of kitchen, bedroom, office, and living room generated). Using the trained RvNN-VAE, a novel 3D scene can be generated from a random vector drawn from a Gaussian distribution in a fraction of a second. We present a generative neural network which enables us to generate plau- learned distribution. We coin our method GRAINS, for Generative Recursive sible 3D indoor scenes in large quantities and varieties, easily and highly Autoencoders for INdoor Scenes. We demonstrate the capability of GRAINS efficiently. Our key observation is that indoor scene structures are inherently to generate plausible and diverse 3D indoor scenes and compare with ex- hierarchical. Hence, our network is not convolutional; it is a recursive neural isting methods for 3D scene synthesis. We show applications of GRAINS network or RvNN. Using a dataset of annotated scene hierarchies, we train including 3D scene modeling from 2D layouts, scene editing, and semantic a variational recursive autoencoder, or RvNN-VAE, which performs scene scene segmentation via PointNet whose performance is boosted by the large object grouping during its encoding phase and scene generation during quantity and variety of 3D scenes generated by our method.
    [Show full text]
  • Unsupervised Recurrent Neural Network Grammars
    Unsupervised Recurrent Neural Network Grammars Yoon Kimy Alexander M. Rushy Lei Yu3 Adhiguna Kuncoroz;3 Chris Dyer3 Gabor´ Melis3 yHarvard University zUniversity of Oxford 3DeepMind fyoonkim,[email protected] fleiyu,akuncoro,cdyer,[email protected] Abstract The standard setup for unsupervised structure p (x; z) Recurrent neural network grammars (RNNG) learning is to define a generative model θ are generative models of language which over observed data x (e.g. sentence) and unob- jointly model syntax and surface structure by served structure z (e.g. parse tree, part-of-speech incrementally generating a syntax tree and sequence), and maximize the log marginal like- P sentence in a top-down, left-to-right order. lihood log pθ(x) = log z pθ(x; z). Success- Supervised RNNGs achieve strong language ful approaches to unsupervised parsing have made modeling and parsing performance, but re- strong conditional independence assumptions (e.g. quire an annotated corpus of parse trees. In context-freeness) and employed auxiliary objec- this work, we experiment with unsupervised learning of RNNGs. Since directly marginal- tives (Klein and Manning, 2002) or priors (John- izing over the space of latent trees is in- son et al., 2007). These strategies imbue the learn- tractable, we instead apply amortized varia- ing process with inductive biases that guide the tional inference. To maximize the evidence model to discover meaningful structures while al- lower bound, we develop an inference net- lowing tractable algorithms for marginalization; work parameterized as a neural CRF con- however, they come at the expense of language stituency parser. On language modeling, unsu- modeling performance, particularly compared to pervised RNNGs perform as well their super- vised counterparts on benchmarks in English sequential neural models that make no indepen- and Chinese.
    [Show full text]
  • Semantic Analysis of Multi Meaning Words Using Machine Learning and Knowledge Representation by Marjan Alirezaie
    Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com Institutionen f¨or datavetenskap Department of Computer and Information Science Final Thesis Semantic Analysis Of Multi Meaning Words Using Machine Learning And Knowledge Representation by Marjan Alirezaie LiU/IDA-EX-A- -11/011- -SE 2011-04-10 Link¨opings universitet Link¨opings universitet SE-581 83 Link¨opings, Sweden 581 83 Link¨opings Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com Final Thesis Semantic Analysis Of Multi Meaning Words Using Machine Learning And Knowledge Representation by Marjan Alirezaie LiU/IDA-EX-A- -11/011- -SE Supervisor, Examiner : Professor Erik Sandewall Dept. of Computer and Information Science at Link¨opings Universitet Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com Simpo PDF Merge and Split Unregistered Version - http://www.simpopdf.com Abstract The present thesis addresses machine learning in a domain of natural- language phrases that are names of universities. It describes two approaches to this problem and a software implementation that has made it possible to evaluate them and to compare them. In general terms, the system's task is to learn to 'understand' the signif- icance of the various components of a university name, such as the city or region where the university is located, the scientific disciplines that are studied there, or the name of a famous person which may be part of the university name. A concrete test for whether the system has acquired this understanding is when it is able to compose a plausible university name given some components that should occur in the name.
    [Show full text]
  • Max-Margin Synchronous Grammar Induction for Machine Translation
    Max-Margin Synchronous Grammar Induction for Machine Translation Xinyan Xiao and Deyi Xiong∗ School of Computer Science and Technology Soochow University Suzhou 215006, China [email protected], [email protected] Abstract is not elegant theoretically. It brings an undesirable gap that separates modeling and learning in an SMT Traditional synchronous grammar induction system. estimates parameters by maximizing likeli- Therefore, researchers have proposed alternative hood, which only has a loose relation to trans- lation quality. Alternatively, we propose a approaches to learning synchronous grammars di- max-margin estimation approach to discrim- rectly from sentence pairs without word alignments, inatively inducing synchronous grammars for via generative models (Marcu and Wong, 2002; machine translation, which directly optimizes Cherry and Lin, 2007; Zhang et al., 2008; DeNero translation quality measured by BLEU. In et al., 2008; Blunsom et al., 2009; Cohn and Blun- the max-margin estimation of parameters, we som, 2009; Neubig et al., 2011; Levenberg et al., only need to calculate Viterbi translations. 2012) or discriminative models (Xiao et al., 2012). This further facilitates the incorporation of Theoretically, these approaches describe how sen- various non-local features that are defined on the target side. We test the effectiveness of our tence pairs are generated by applying sequences of max-margin estimation framework on a com- synchronous rules in an elegant way. However, they petitive hierarchical phrase-based system. Ex- learn synchronous grammars by maximizing likeli- periments show that our max-margin method hood,1 which only has a loose relation to transla- significantly outperforms the traditional two- tion quality (He and Deng, 2012).
    [Show full text]
  • Compound Probabilistic Context-Free Grammars for Grammar Induction
    Compound Probabilistic Context-Free Grammars for Grammar Induction Yoon Kim Chris Dyer Alexander M. Rush Harvard University DeepMind Harvard University Cambridge, MA, USA London, UK Cambridge, MA, USA [email protected] [email protected] [email protected] Abstract non-parametric models (Kurihara and Sato, 2006; Johnson et al., 2007; Liang et al., 2007; Wang and We study a formalization of the grammar in- Blunsom, 2013), and manually-engineered fea- duction problem that models sentences as be- tures (Huang et al., 2012; Golland et al., 2012) to ing generated by a compound probabilistic context free grammar. In contrast to traditional encourage the desired structures to emerge. formulations which learn a single stochastic We revisit these aforementioned issues in light grammar, our context-free rule probabilities of advances in model parameterization and infer- are modulated by a per-sentence continuous ence. First, contrary to common wisdom, we latent variable, which induces marginal de- find that parameterizing a PCFG’s rule probabil- pendencies beyond the traditional context-free ities with neural networks over distributed rep- assumptions. Inference in this grammar is resentations makes it possible to induce linguis- performed by collapsed variational inference, tically meaningful grammars by simply optimiz- in which an amortized variational posterior is placed on the continuous variable, and the la- ing log likelihood. While the optimization prob- tent trees are marginalized with dynamic pro- lem remains non-convex, recent work suggests gramming. Experiments on English and Chi- that there are optimization benefits afforded by nese show the effectiveness of our approach over-parameterized models (Arora et al., 2018; compared to recent state-of-the-art methods Xu et al., 2018; Du et al., 2019), and we in- for grammar induction from words with neu- deed find that this neural PCFG is significantly ral language models.
    [Show full text]
  • Grammar Induction
    Grammar Induction Regina Barzilay MIT October, 2005 Three non-NLP questions 1. Which is the odd number out? 625,361,256,197,144 2. Insert the missing letter: B,E,?,Q,Z 3. Complete the following number sequence: 4, 6, 9, 13 7, 10, 15, ? How do you solve these questions? • Guess a pattern that generates the sequence Insert the missing letter: B,E,?,Q,Z 2,5,?,17, 26 k2 + 1 • Select a solution based on the detected pattern k = 3 ! 10th letter of the alphabet ! J More Patterns to Decipher: Byblos Script Image removed for copyright reasons. More Patterns to Decipher: Lexicon Learning Ourenemiesareinnovativeandresourceful,andsoarewe. Theyneverstopthinkingaboutnewwaystoharmourcountry andourpeople,andneitherdowe. Which is the odd word out? Ourenemies . Enemies . We . More Patterns to Decipher: Natural Language Syntax Which is the odd sentence out? The cat eats tuna. The cat and the dog eats tuna. Today • Vocabulary Induction – Word Boundary Detection • Grammar Induction – Feasibility of language acquisition – Algorithms for grammar induction Vocabulary Induction Task: Unsupervised learning of word boundary segmentation • Simple: Ourenemiesareinnovativeandresourceful,andsoarewe. Theyneverstopthinkingaboutnewwaystoharmourcountry andourpeople,andneitherdowe. • More ambitious: Image of Byblos script removed for copyright reasons. Word Segmentation (Ando&Lee, 2000) Key idea: for each candidate boundary, compare the frequency of the n-grams adjacent to the proposed boundary with the frequency of the n-grams that straddle it. S ? S 1 2 T I N G E V I D t 1 t 2 t3 For N = 4, consider the 6 questions of the form: ”Is #(si ) � #(tj )?”, where #(x) is the number of occurrences of x Example: Is “TING” more frequent in the corpus than ”INGE”? Algorithm for Word Segmentation s n non-straddling n-grams to the left of location k 1 s n non-straddling n-grams to the right of location k 2 tn straddling n-gram with j characters to the right of location k j I� (y; z) indicator function that is 1 when y � z, and 0 otherwise.
    [Show full text]
  • Dependency Grammar Induction with a Neural Variational Transition
    The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19) Dependency Grammar Induction with a Neural Variational Transition-Based Parser Bowen Li, Jianpeng Cheng, Yang Liu, Frank Keller Institute for Language, Cognition and Computation School of Informatics, University of Edinburgh 10 Crichton Street, Edinburgh EH8 9AB, UK fbowen.li, jianpeng.cheng, [email protected], [email protected] Abstract Though graph-based models achieve impressive results, their inference procedure requires O(n3) time complexity. Dependency grammar induction is the task of learning de- Meanwhile, features in graph-based models must be decom- pendency syntax without annotated training data. Traditional graph-based models with global inference achieve state-of- posable over substructures to enable dynamic programming. the-art results on this task but they require O(n3) run time. In comparison, transition-based models allow faster infer- Transition-based models enable faster inference with O(n) ence with linear time complexity and richer feature sets. time complexity, but their performance still lags behind. Although relying on local inference, transition-based mod- In this work, we propose a neural transition-based parser els have been shown to perform well in supervised parsing for dependency grammar induction, whose inference proce- (Kiperwasser and Goldberg 2016; Dyer et al. 2015). How- dure utilizes rich neural features with O(n) time complex- ever, unsupervised transition parsers are not well-studied. ity. We train the parser with an integration of variational in- One exception is the work of Rasooli and Faili (2012), in ference, posterior regularization and variance reduction tech- which search-based structure prediction (Daume´ III 2009) is niques.
    [Show full text]
  • Are Pre-Trained Language Models Aware of Phrases?Simplebut Strong Baselinesfor Grammar Induction
    Published as a conference paper at ICLR 2020 ARE PRE-TRAINED LANGUAGE MODELS AWARE OF PHRASES?SIMPLE BUT STRONG BASELINES FOR GRAMMAR INDUCTION Taeuk Kim1, Jihun Choi1, Daniel Edmiston2 & Sang-goo Lee1 1Dept. of Computer Science and Engineering, Seoul National University, Seoul, Korea 2Dept. of Linguistics, University of Chicago, Chicago, IL, USA ftaeuk,jhchoi,[email protected], [email protected] ABSTRACT With the recent success and popularity of pre-trained language models (LMs) in natural language processing, there has been a rise in efforts to understand their in- ner workings. In line with such interest, we propose a novel method that assists us in investigating the extent to which pre-trained LMs capture the syntactic notion of constituency. Our method provides an effective way of extracting constituency trees from the pre-trained LMs without training. In addition, we report intriguing findings in the induced trees, including the fact that some pre-trained LMs outper- form other approaches in correctly demarcating adverb phrases in sentences. 1 INTRODUCTION Grammar induction, which is closely related to unsupervised parsing and latent tree learning, allows one to associate syntactic trees, i.e., constituency and dependency trees, with sentences. As gram- mar induction essentially assumes no supervision from gold-standard syntactic trees, the existing approaches for this task mainly rely on unsupervised objectives, such as language modeling (Shen et al., 2018b; 2019; Kim et al., 2019a;b) and cloze-style word prediction (Drozdov et al., 2019) to train their task-oriented models. On the other hand, there is a trend in the natural language pro- cessing (NLP) community of leveraging pre-trained language models (LMs), e.g., ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019), as a means of acquiring contextualized word represen- tations.
    [Show full text]
  • What Do Recurrent Neural Network Grammars Learn About Syntax?
    What Do Recurrent Neural Network Grammars Learn About Syntax? Adhiguna Kuncoro♠ Miguel Ballesteros} Lingpeng Kong♠ Chris Dyer♠♣ Graham Neubig♠ Noah A. Smith~ ♠School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA }IBM T.J. Watson Research Center, Yorktown Heights, NY, USA |DeepMind, London, UK ~Computer Science & Engineering, University of Washington, Seattle, WA, USA fakuncoro,lingpenk,[email protected] [email protected], [email protected], [email protected] Abstract data. In some sense, such models can be thought of as mini-scientists. Recurrent neural network grammars Neural networks, including RNNGs, are capa- (RNNG) are a recently proposed prob- ble of representing larger classes of hypotheses abilistic generative modeling family for than traditional probabilistic models, giving them natural language. They show state-of- more freedom to explore. Unfortunately, they tend the-art language modeling and parsing to be bad mini-scientists, because their parameters performance. We investigate what in- are difficult for human scientists to interpret. formation they learn, from a linguistic RNNGs are striking because they obtain state- perspective, through various ablations of-the-art parsing and language modeling perfor- to the model and the data, and by aug- mance. Their relative lack of independence as- menting the model with an attention sumptions, while still incorporating a degree of mechanism (GA-RNNG) to enable closer linguistically-motivated prior knowledge, affords inspection. We find that explicit modeling the model considerable freedom to derive its own of composition is crucial for achieving the insights about syntax. If they are mini-scientists, best performance. Through the attention the discoveries they make should be of particular mechanism, we find that headedness interest as propositions about syntax (at least for plays a central role in phrasal represen- the particular genre and dialect of the data).
    [Show full text]
  • A Survey of Unsupervised Dependency Parsing
    A Survey of Unsupervised Dependency Parsing Wenjuan Han1,∗ Yong Jiang2,∗ Hwee Tou Ng1, Kewei Tu3† 1Department of Computer Science, National University of Singapore 2Alibaba DAMO Academy, Alibaba Group 3School of Information Science and Technology, ShanghaiTech University [email protected] [email protected] [email protected] [email protected] Abstract Syntactic dependency parsing is an important task in natural language processing. Unsupervised dependency parsing aims to learn a dependency parser from sentences that have no annotation of their correct parse trees. Despite its difficulty, unsupervised parsing is an interesting research direction because of its capability of utilizing almost unlimited unannotated text data. It also serves as the basis for other research in low-resource parsing. In this paper, we survey existing approaches to unsupervised dependency parsing, identify two major classes of approaches, and discuss recent trends. We hope that our survey can provide insights for researchers and facilitate future research on this topic. 1 Introduction Dependency parsing is an important task in natural language processing that aims to capture syntactic information in sentences in the form of dependency relations between words. It finds applications in semantic parsing, machine translation, relation extraction, and many other tasks. Supervised learning is the main technique used to automatically learn a dependency parser from data. It requires the training sentences to be manually annotated with their correct parse trees. Such a training dataset is called a treebank. A major challenge faced by supervised learning is that treebanks are not al- ways available for new languages or new domains and building a high-quality treebank is very expensive and time-consuming.
    [Show full text]