Spanner: Google's Globally Distributed Database

Total Page:16

File Type:pdf, Size:1020Kb

Spanner: Google's Globally Distributed Database Spanner: Google's Globally Distributed Database (presented by Philipp Moritz) Why is this workload interesting? ● SQL → NoSQL → NewSQL ● Large scale transactional databases ● Eventual consistency is not good enough (?): – Managing global money/warehouses/resources – Auctions, especially Google's advertisement platform – Social networks, Twitter – MapReduce over a globally changing dataset ● We need external consistency: T(e1(commit)) < T(e2(start)) → s1 < s2 Concepts ● Main idea: – Get externally consistent view of globally distributed database – Spanner = BigTable with timestamps + Paxos + TrueTime ● Details: – Globally distributed for locality and fault-tolerance – Automatic load balancing between datacenters – Semirelational + SQL like query language (cf. Dremel) – Versioning – Full control over ● How far data is from user (read latency) ● How far replicas are from each other (write latency) ● How many replicas (durability, availability, throughput) Paxos in a Nutshell ● Algorithm for finding consensus in a distributed system TrueTime ● Goal: Provide globally synchronized time with sharp error bounds ● Do not trust synchronization via NTP ● With GPS and “commodity” atomic clocks, Google created their own time standard ● TrueTime API: – TT.now(): Interval [earliest, latest] – TT.after(t): true if t has definitely passed – TT.before(t): true if t has definitely not arrived ● Spanner implements algorithms to make sure these guarantees are respected by the machines (non-conformists are evicted) ● Time accuracy on the order of 10ms Spanservers Interplay of Paxos and TrueTime ● Guarantee externally consistent transactions Evaluation Discussion ● Tradeoff: Complexity of the System vs. Importance of Guarantees ● Is eventual consistency good enough if the operations we care about are fast enough? ● If not: Can we isolate a small subset of data for which we care about consistency and store it on a single server? ● Open Source implementation of similar ideas: https://github.com/cockroachdb/cockroach .
Recommended publications
  • ACID Compliant Distributed Key-Value Store
    ACID Compliant Distributed Key-Value Store #1 #2 #3 Lakshmi Narasimhan Seshan ,​ Rajesh Jalisatgi ,​ Vijaeendra Simha G A # ​ ​ ​ ​1l​ [email protected] # ​2r​ [email protected] #3v​ [email protected] Abstract thought that would be easier to implement. All Built a fault-tolerant and strongly-consistent key/value storage components run http and grpc endpoints. Http endpoints service using the existing RAFT implementation. Add ACID are for debugging/configuration. Grpc Endpoints are transaction capability to the service using a 2PC variant. Build used for communication between components. on the raftexample[1] (available as part of etcd) to add atomic Replica Manager (RM): RM is the service discovery transactions. This supports sharding of keys and concurrent transactions on sharded KV Store. By Implementing a part of the system. RM is initiated with each of the transactional distributed KV store, we gain working knowledge Replica Servers available in the system. Users have to of different protocols and complexities to make it work together. instantiate the RM with the number of shards that the user wants the key to be split into. Currently we cannot Keywords— ACID, Key-Value, 2PC, sharding, 2PL Transaction dynamically change while RM is running. New Replica ​ ​ Servers cannot be added or removed from once RM is I. INTRODUCTION ​ up and running. However Replica Servers can go down Distributed KV stores have become a norm with the and come back and RM can detect this. Each Shard advent of microservices architecture and the NoSql Leader updates the information to RM, while the DTM revolution. Initially KV Store discarded ACID properties leader updates its information to the RM.
    [Show full text]
  • F1 Query: Declarative Querying at Scale
    F1 Query: Declarative Querying at Scale Bart Samwel John Cieslewicz Ben Handy Jason Govig Petros Venetis Chanjun Yang Keith Peters Jeff Shute Daniel Tenedorio Himani Apte Felix Weigel David Wilhite Jiacheng Yang Jun Xu Jiexing Li Zhan Yuan Craig Chasseur Qiang Zeng Ian Rae Anurag Biyani Andrew Harn Yang Xia Andrey Gubichev Amr El-Helw Orri Erling Zhepeng Yan Mohan Yang Yiqun Wei Thanh Do Colin Zheng Goetz Graefe Somayeh Sardashti Ahmed M. Aly Divy Agrawal Ashish Gupta Shiv Venkataraman Google LLC [email protected] ABSTRACT 1. INTRODUCTION F1 Query is a stand-alone, federated query processing platform The data processing and analysis use cases in large organiza- that executes SQL queries against data stored in different file- tions like Google exhibit diverse requirements in data sizes, la- based formats as well as different storage systems at Google (e.g., tency, data sources and sinks, freshness, and the need for custom Bigtable, Spanner, Google Spreadsheets, etc.). F1 Query elimi- business logic. As a result, many data processing systems focus on nates the need to maintain the traditional distinction between dif- a particular slice of this requirements space, for instance on either ferent types of data processing workloads by simultaneously sup- transactional-style queries, medium-sized OLAP queries, or huge porting: (i) OLTP-style point queries that affect only a few records; Extract-Transform-Load (ETL) pipelines. Some systems are highly (ii) low-latency OLAP querying of large amounts of data; and (iii) extensible, while others are not. Some systems function mostly as a large ETL pipelines. F1 Query has also significantly reduced the closed silo, while others can easily pull in data from other sources.
    [Show full text]
  • Containers at Google
    Build What’s Next A Google Cloud Perspective Thomas Lichtenstein Customer Engineer, Google Cloud [email protected] 7 Cloud products with 1 billion users Google Cloud in DACH HAM BER ● New cloud region Germany Google Cloud Offices FRA Google Cloud Region (> 50% latency reduction) 3 Germany with 3 zones ● Commitment to GDPR MUC VIE compliance ZRH ● Partnership with MUC IoT platform connects nearly Manages “We found that Google Ads has the best system for 50 brands 250M+ precisely targeting customer segments in both the B2B with thousands of smart data sets per week and 3.5M and B2C spaces. It used to be hard to gain the right products searches per month via IoT platform insights to accurately measure our marketing spend and impacts. With Google Analytics, we can better connect the omnichannel customer journey.” Conrad is disrupting online retail with new Aleš Drábek, Chief Digital and Disruption Officer, Conrad Electronic services for mobility and IoT-enabled devices. Solution As Conrad transitions from a B2C retailer to an advanced B2B and Supports B2C platform for electronic products, it is using Google solutions to grow its customer base, develop on a reliable cloud infrastructure, Supports and digitize its workplaces and retail stores. Products Used 5x Mobile-First G Suite, Google Ads, Google Analytics, Google Chrome Enterprise, Google Chromebooks, Google Cloud Translation API, Google Cloud the IoT connections vs. strategy Vision API, Google Home, Apigee competitors Industry: Retail; Region: EMEA Number of Automate Everything running
    [Show full text]
  • Spanner: Becoming a SQL System
    Spanner: Becoming a SQL System David F. Bacon Nathan Bales Nico Bruno Brian F. Cooper Adam Dickinson Andrew Fikes Campbell Fraser Andrey Gubarev Milind Joshi Eugene Kogan Alexander Lloyd Sergey Melnik Rajesh Rao David Shue Christopher Taylor Marcel van der Holst Dale Woodford Google, Inc. ABSTRACT this paper, we focus on the “database system” aspects of Spanner, Spanner is a globally-distributed data management system that in particular how query execution has evolved and forced the rest backs hundreds of mission-critical services at Google. Spanner of Spanner to evolve. Most of these changes have occurred since is built on ideas from both the systems and database communi- [5] was written, and in many ways today’s Spanner is very different ties. The first Spanner paper published at OSDI’12 focused on the from what was described there. systems aspects such as scalability, automatic sharding, fault tol- A prime motivation for this evolution towards a more “database- erance, consistent replication, external consistency, and wide-area like” system was driven by the experiences of Google developers distribution. This paper highlights the database DNA of Spanner. trying to build on previous “key-value” storage systems. The pro- We describe distributed query execution in the presence of reshard- totypical example of such a key-value system is Bigtable [4], which ing, query restarts upon transient failures, range extraction that continues to see massive usage at Google for a variety of applica- drives query routing and index seeks, and the improved blockwise- tions. However, developers of many OLTP applications found it columnar storage format.
    [Show full text]
  • Grpc - a Solution for Rpcs by Google Distributed Systems Seminar at Charles University in Prague, Nov 2016 Jan Tattermusch - Grpc Software Engineer
    gRPC - A solution for RPCs by Google Distributed Systems Seminar at Charles University in Prague, Nov 2016 Jan Tattermusch - gRPC Software Engineer About me ● Software Engineer at Google (since 2013) ● Working on gRPC since Q4 2014 ● Graduated from Charles University (2010) Contacts ● jtattermusch on GitHub ● Feedback to [email protected] @grpcio Motivation: gRPC Google has an internal RPC system, called Stubby ● All production applications use RPCs ● Over 1010 RPCs per second in total ● 4 generations over 13 years (since 2003) ● APIs for C++, Java, Python, Go What's missing ● Not suitable for external use (tight coupling with internal tools & infrastructure) ● Limited language & platform support ● Proprietary protocol and security ● No mobile support @grpcio What's gRPC ● HTTP/2 based RPC framework ● Secure, Performant, Multiplatform, Open Multiplatform ● Idiomatic APIs in popular languages (C++, Go, Java, C#, Node.js, Ruby, PHP, Python) ● Supports mobile devices (Android Java, iOS Obj-C) ● Linux, Windows, Mac OS X ● (web browser support in development) OpenSource ● developed fully in open on GitHub: https://github.com/grpc/ @grpcio Use Cases Build distributed services (microservices) Service 1 Service 3 ● In public/private cloud ● Google's own services Service 2 Service 4 Client-server communication ● Mobile ● Web ● Also: Desktop, embedded devices, IoT Access APIs (Google, OSS) @grpcio Key Features ● Streaming, Bidirectional streaming ● Built-in security and authentication ○ SSL/TLS, OAuth, JWT access ● Layering on top of HTTP/2
    [Show full text]
  • Database Software Market: Billy Fitzsimmons +1 312 364 5112
    Equity Research Technology, Media, & Communications | Enterprise and Cloud Infrastructure March 22, 2019 Industry Report Jason Ader +1 617 235 7519 [email protected] Database Software Market: Billy Fitzsimmons +1 312 364 5112 The Long-Awaited Shake-up [email protected] Naji +1 212 245 6508 [email protected] Please refer to important disclosures on pages 70 and 71. Analyst certification is on page 70. William Blair or an affiliate does and seeks to do business with companies covered in its research reports. As a result, investors should be aware that the firm may have a conflict of interest that could affect the objectivity of this report. This report is not intended to provide personal investment advice. The opinions and recommendations here- in do not take into account individual client circumstances, objectives, or needs and are not intended as recommen- dations of particular securities, financial instruments, or strategies to particular clients. The recipient of this report must make its own independent decisions regarding any securities or financial instruments mentioned herein. William Blair Contents Key Findings ......................................................................................................................3 Introduction .......................................................................................................................5 Database Market History ...................................................................................................7 Market Definitions
    [Show full text]
  • Economic and Social Impacts of Google Cloud September 2018 Economic and Social Impacts of Google Cloud |
    Economic and social impacts of Google Cloud September 2018 Economic and social impacts of Google Cloud | Contents Executive Summary 03 Introduction 10 Productivity impacts 15 Social and other impacts 29 Barriers to Cloud adoption and use 38 Policy actions to support Cloud adoption 42 Appendix 1. Country Sections 48 Appendix 2. Methodology 105 This final report (the “Final Report”) has been prepared by Deloitte Financial Advisory, S.L.U. (“Deloitte”) for Google in accordance with the contract with them dated 23rd February 2018 (“the Contract”) and on the basis of the scope and limitations set out below. The Final Report has been prepared solely for the purposes of assessment of the economic and social impacts of Google Cloud as set out in the Contract. It should not be used for any other purposes or in any other context, and Deloitte accepts no responsibility for its use in either regard. The Final Report is provided exclusively for Google’s use under the terms of the Contract. No party other than Google is entitled to rely on the Final Report for any purpose whatsoever and Deloitte accepts no responsibility or liability or duty of care to any party other than Google in respect of the Final Report and any of its contents. As set out in the Contract, the scope of our work has been limited by the time, information and explanations made available to us. The information contained in the Final Report has been obtained from Google and third party sources that are clearly referenced in the appropriate sections of the Final Report.
    [Show full text]
  • Implementing and Testing Cockroachdb on Kubernetes
    Implementing and testing CockroachDB on Kubernetes Albert Kasperi Iho Supervisors: Ignacio Coterillo Coz, Ricardo Brito Da Rocha Abstract This report will describe implementing CockroachDB on Kubernetes, a sum- mer student project done in 2019. The report addresses the implementation, monitoring, testing and results of the project. In the implementation and mon- itoring parts, a closer look to the full pipeline will be provided, with the intro- duction of all the frameworks used and the biggest problems that were faced during the project. After that, the report describes the testing process of Cock- roachDB, what tools were used in the testing and why. The results of testing will be presented after testing with the conclusion of results. Keywords CockroachDB; Kubernetes; benchmark. Contents 1 Project specification . 2 2 Implementation . 2 2.1 Kubernetes . 2 2.2 CockroachDB . 3 2.3 Setting up Kubernetes in CERN environment . 3 3 Monitoring . 3 3.1 Prometheus . 4 3.2 Prometheus Operator . 4 3.3 InfluxDB . 4 3.4 Grafana . 4 3.5 Scraping and forwarding metrics from the Kubernetes cluster . 4 4 Testing CockroachDB on Kubernetes . 5 4.1 SQLAlchemy . 5 4.2 Pgbench . 5 4.3 CockroachDB workload . 6 4.4 Benchmarking CockroachDB . 6 5 Test results . 6 5.1 SQLAlchemy . 6 5.2 Pgbench . 6 5.3 CockroachDB workload . 7 5.4 Conclusion . 7 6 Acknowledgements . 7 1 Project specification The core goal of the project was taking a look into implementing a database framework on top of Kuber- netes, the challenges in implementation and automation possibilities. Final project pipeline included a CockroachDB cluster running in Kubernetes with Prometheus monitoring both of them.
    [Show full text]
  • Spanner: Google's Globally-Distributed Database
    Spanner: Google's Globally-Distributed Database Corbett, Dean, et al. Jinliang Wei CMU CSD October 20, 2013 Jinliang Wei (CMU CSD) Spanner: Google's Globally-Distributed Database Corbett,October 20,Dean, 2013 et 1 al./ 21 What? - Key Features I Globally distributed I Versioned data I SQL transactions + key-value read/writes I External consistency I Automatic data migration across machines (even across datacenters) for load balancing and fautl tolerance. Jinliang Wei (CMU CSD) Spanner: Google's Globally-Distributed Database Corbett,October 20,Dean, 2013 et 2 al./ 21 External Consistency I Equivalent to linearizability I If a transaction T1 commits before another transaction T2 starts, then T1's commit timestamp is smaller than T 2. I Any read that sees T2 must see T1. I The strongest consistency guarantee that can be achieved in practice (Strict consistency is stronger, but not achievable in practice). Jinliang Wei (CMU CSD) Spanner: Google's Globally-Distributed Database Corbett,October 20,Dean, 2013 et 3 al./ 21 Why Spanner? I BigTable I Good performance I Does not support transaction across rows. I Hard to use. I Megastore I Support SQL transactions. I Many applications: Gmail, Calendar, AppEngine... I Poor write throughput. I Need SQL transactions + high throughput. Jinliang Wei (CMU CSD) Spanner: Google's Globally-Distributed Database Corbett,October 20,Dean, 2013 et 4 al./ 21 Spanserver Software Stack Figure: Spanner Server Software Stack Jinliang Wei (CMU CSD) Spanner: Google's Globally-Distributed Database Corbett,October 20,Dean, 2013 et 5 al./ 21 Spanserver Software Stack Cont. I Spanserver maintains data and serves client requests.
    [Show full text]
  • Scalable Crowd-Sourcing of Video from Mobile Devices
    Scalable Crowd-Sourcing of Video from Mobile Devices Pieter Simoens†, Yu Xiao‡, Padmanabhan Pillai•, Zhuo Chen, Kiryong Ha, Mahadev Satyanarayanan December 2012 CMU-CS-12-147 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 †Carnegie Mellon University and Ghent University ‡Carnegie Mellon University and Aalto University •Intel Labs Abstract We propose a scalable Internet system for continuous collection of crowd-sourced video from devices such as Google Glass. Our hybrid cloud architecture for this system is effectively a CDN in reverse. It achieves scalability by decentralizing the cloud computing infrastructure using VM-based cloudlets. Based on time, location and content, privacy sensitive information is automatically removed from the video. This process, which we refer to as denaturing, is executed in a user-specific Virtual Machine (VM) on the cloudlet. Users can perform content-based searches on the total catalog of denatured videos. Our experiments reveal the bottlenecks for video upload, denaturing, indexing and content-based search and provide valuable insight on how parameters such as frame rate and resolution impact the system scalability. Copyright 2012 Carnegie Mellon University This research was supported by the National Science Foundation (NSF) under grant numbers CNS-0833882 and IIS-1065336, by an Intel Science and Technology Center grant, by the Department of Defense (DoD) under Contract No. FA8721-05-C-0003 for the operation of the Software Engineering Institute (SEI), a federally funded research and development center, and by the Academy of Finland under grant number 253860. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily represent the views of the NSF, Intel, DoD, SEI, Academy of Finland, University of Ghent, Aalto University, or Carnegie Mellon University.
    [Show full text]
  • How Financial Service Companies Can Successfully Migrate Critical
    How Financial Service Companies Can Successfully Migrate Critical Applications to the Cloud Chapter 1: Why every bank should aspire to be the Google of FinServe PAGE 3 Chapter 2: Reducing latency and other delays that are detrimental to FSIs PAGE 6 Chapter 3: A look to the future of transaction services in the face of modernization PAGE 9 Copyright © 2021 RTInsights. All rights reserved. All other trademarks are the property of their respective companies. The information contained in this publication has been obtained from sources believed to be reliable. NACG LLC and RTInsights disclaim all warranties as to the accuracy, completeness, or adequacy of such information and shall have no liability for errors, omissions or inadequacies in such information. The information expressed herein is subject to change without notice. Copyright (©) 2021 RTInsights How Financial Service Companies Can Successfully Migrate Critical Applications to the Cloud 2 Chapter 1: Why every bank should aspire to be the Google of FinServe Introduction Fintech companies are disrupting the staid world of traditional banking. Financial services institutions (FSIs) are trying to keep pace, be competitive, and become relevant by modernizing operations by leveraging the same technologies as the aggressive fintech startups. Such efforts include a move to cloud and the increased use of data to derive real-time insights for decision-making and automation. While businesses across most industries are making similar moves, FSIs have different requirements than most companies and thus must address special challenges. For example, keeping pace with changing customer desires and market conditions is driving the need for more flexible and highly scalable options when it comes to developing, deploying, maintaining, and updating applications.
    [Show full text]
  • Develop and Deploy Apps More Easily with Cloud Spanner and Cloud Bigtable Updates | Google Cloud Blog
    8/23/2020 Develop and deploy apps more easily with Cloud Spanner and Cloud Bigtable updates | Google Cloud Blog Blog Menu D ATAB ASES Develop and deploy apps more easily with Cloud Spanner and Cloud Bigtable updates FinDde aenp tai rStricivlaes..t.ava Product Manager, Cloud Spanner Misha Brukman Latest storiPersoduct Manager, Cloud Bigtable October 11, 2018 Products Topics About One of our goals at Google Cloud is to offer all the database choices that you want as managed services in order to remove operational complexity and toil from your day. RSS Feed We’ve got a full range of managed database services to address a variety of your workload needs. We’re always working to add features to our databases to make your https://cloud.google.cwomo/rbklogb/puroildduicntsg/datapbpassese/daesveielorp-and-deploy-apps-more-easily-with-cloud-spanner-and-cloud-bigtable-updates 1/6 8/23/2020 Develop and deploy apps more easily with Cloud Spanner and Cloud Bigtable updates | Google Cloud Blog work building apps easier. Today at Next London ‘18, we’re excited to announce the general availability of two important new features for two of our cloud-native database offerings: Cloud Spanner Blog and Cloud Bigtable. Menu Cloud Spanner: We’re adding enhancements to Cloud Spanner’s SQL capabilities to make it easier to read and write data in Cloud Spanner databases using SQL, and use off-the-shelf drivers and tooling. Cloud Spanner’s API now supports INSERT, UPDATE, and DELETE SQL statements. Cloud Bigtable: We’re offering Key Visualizer so you can see key access patterns in heatmap format to optimize your Cloud Bigtable schemas for improved performance.
    [Show full text]