Inventors, Technologists and Entrepreneurs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Education and Research Solutions Brief
Education and Research Solutions Brief Data Integrity, Performance, Flexibility, and Lower Total Cost of Storage Whether a university department or a large research lab, higher education and research institutions need to provide an IT infrastructure that will allow users to store, retrieve, and analyze data generated by their user groups whether on campus, around the world, or from outer space. Enter: Nexenta Nexenta software-only products solve accessibility, storage performance, and data management In summary: bottlenecks and do so cost effectively. Nexenta provides a cost optimized, hardware independent Why Choose Nexenta? storage platform to safely keep data and make it accessible from anywhere. It delivers superior performance running on industry standard x86 reference architectures from leading hardware • Total Flexibility on hardware choice vendors such as Dell, HP, SuperMicro, Cisco, Quanta, and others. • Lowest total cost for storage • Highest levels of data integrity • Improved data performance With Nexenta, Research Institutes can meet higher levels of: Data Integrity: the large, complex, and sometimes sensitive data sets at higher education and research institutions require the utmost in data reliability. Using the proven ZFS file system, NexentaStor provides unparalleled levels of reliability against data corruption and bit rot Revolutionize your data storage. which has become a growing issue as the amount of data has exploded; and ZFS copy-on- write delivers 100% data integrity. Choose Nexenta Performance: User groups at these institutions put high demands on their data. High levels of Software-Defined Storage memory caching in its ZFS technology allow NexentaStor to deliver superior I/O for the fastest Request a proof-of-concept at access to content. -
A Software Defined Radio Testbed for Research in Dynamic Spectrum Access
A SOFTWARE DEFINED RADIO TESTBED FOR RESEARCH IN DYNAMIC SPECTRUM ACCESS A Thesis Submitted to the Faculty of Purdue University by David A. Clendenen In Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering May 2012 Purdue University Fort Wayne, Indiana ii For my uncle, Jeffrey Davis, who instilled in me from a young age the desire to learn how things work and inspired me to become an electrical engineer. iii ACKNOWLEDGMENTS I first thank Dr. Todor Cooklev for providing me with the opportunity to expand my engineering background to the world of wireless communications and software defined radio. I appreciate his patience and flexibility in working with me as I balanced my career, graduate courses and this research. Next, I thank my graduate committee; Dr. Chao Chen and Dr. Yanfei Liu and my thesis format advisor, Barbara Lloyd for their support and direction in my thesis writing. I also thank Dr. Elizabeth Thompson for first informing me of the National Science Foundation grant and Dr. Donald Mueller and Dr. Carlos Raez for selecting me as a recipient for the grant. I would also like to thank my colleagues at Regal Beloit and my manager, Dr. Roger Becerra, whose support and flexibility allowed me to accomplish my professional and educational goals. I thank my parents for always encouraging me and instilling in me the value of hard work. Most importantly I thank my wife, Tish, for her encouragement and understanding throughout my graduate studies. Above all else, without her support none of this would have been possible. -
Software Libre Para Una Sociedad Libre
Software libre para una sociedad libre Richard M. Stallman Software libre para una sociedad libre Richard M. Stallman Introducción de Lawrence Lessig Diciembre 2004 Versión 1.0 Software libre para una sociedad libre Richard M. Stallman Título original: Free Software, Free Society: Selected Essays of Richard M. Stallman (GNU Press, 2002) Primera edición en castellano (en papel): Noviembre 2004 Traducción principal: Jaron Rowan, Diego Sanz Paratcha y Laura Trinidad Edición: Traficantes de Sueños c/ Hortaleza 19, 1o Dcha. 28004 Madrid. Tlfno: +34 1 5320928 http://traficantes.net c Copyright 2004 de los artículos de este libro, Richard M. Stallman c Copyright 2004 de la Introducción, Lawrence Lessig c Copyright 2004 de la Edición, Traficantes de Sueños Se permite la copia, ya sea de uno o más artículos completos de esta obra o del conjunto de la edición, en cualquier formato, mecánico o digital, siempre y cuando no se modifique el contenido de los textos, se respete su autoría y esta nota se mantenga. ISBN: 84-933555-1-8 Depósito Legal: M-44298-2004 Edición digital a cargo de: Miquel Vidal <[email protected]>. Esta edición electrónica se ha realizado íntegramente con software libre, mediante el procesador LATEX 2ε, GNU Emacs y AUCTEX. 3 Traficantes de Sueños Traficantes de Sueños no es una casa editorial, ni siquiera una editorial independiente que contempla la publicación de una colección variable de textos críticos. Es, por el contrario, un proyecto, en el sentido estricto de «apuesta», que se dirige a cartografíar las líneas constituyentes de otros órdenes de vida. La construcción teórica y práctica de la caja de herramientas que, con palabras propias, puede componer el ciclo de luchas de las próximas décadas. -
Internet of Things Spectrum Monitoring and Localization
MQP 2A18 Internet of Things Spectrum Monitoring and Localization A Major Qualifying Project Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science By: _________________________________ Lauren Getz _________________________________ William Schwartz _________________________________ Katherine Smith Project Advisors: ____________________________________________ Professor Stephen J. Bitar, Electrical & Computer Engineering- Advisor-of-Record ____________________________________________ Professor Michael J. Ciaraldi, Computer Science -Co-Advisor ____________________________________________ Professor Alexander M. Wyglinski, Electrical & Computer Engineering- Co-Advisor Abstract A system which localizes indoor sub-1GHz transmission signals provides a low cost and effective alternative to traditional signal sensing and localization. The system uses a pre-existing WiFi network, PlutoSDRs, and a web server to visualize the estimated location of the transmitted signals. The system achieved 2.5-meter accuracy under ideal conditions satisfying the goal of 3- meter accuracy set forth by the team. i Acknowledgements We would like to thank our advisors, Stephen Bitar, Michael Ciaraldi, and Alex Wyglinski for their mentorship throughout the duration of this project. ii Executive Summary Implementing localization with SDR devices is more cost effective and more accurate than other spectrum sensing products currently on the market. With the development of Internet of Things (IoT), many smart devices are increasingly using wireless communication, making localization of these devices an important security measure. Using the PlutoSDR, signals were effectively localized within 3-meter accuracy on the 900MHz band. Problem Statement IoT devices can pose a threat to a secure network. Since there are a lot of known IoT vulnerabilities [1], many malicious actors will target them in order to gain access to an otherwise secure network. -
Nexentastor 5.X Reference Architecture- Supermicro
NexentaStor 5.x ReFerence Architecture May 2019 Copyright © 2019 Nexenta Systems, ALL RIGHTS RESERVED www.nexenta.com NexentaStor 5.x ReFerence Architecture- Supermicro TabLe oF Contents Table of Contents ............................................................................................................................ 2 Preface ............................................................................................................................................ 3 Intended Audience ................................................................................................................................................................................. 3 Comments .................................................................................................................................................................................................. 3 Copyright, Trademarks, and Compliance ..................................................................................................................................... 3 1 Supermicro X11 Reference Architectures ................................................................................... 4 1.1 Supermicro X11 All-Flash Configurations ....................................................................................................................... 4 1.1.1 Supermicro X11 All-Flash – 24 Bay SC216 .................................................................................................................... 4 1.2 Supermicro X11 Hybrid Configurations -
Nexentastor Installation Guide 4.0.4 FP1
NexentaStor Installation Guide 4.0.4 FP1 Date: June, 2016 Subject: NexentaStor Installation Guide Software: NexentaStor Software Version: 4.0.4 FP1 Part Number: 2000-nxs-4.0.4 FP1-0000012-B Copyright © 2016 Nexenta Systems, ALL RIGHTS RESERVED www.nexenta.com NexentaStor Installation Guide Copyright © 2016 Nexenta SystemsTM, ALL RIGHTS RESERVED Notice: No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or stored in a database or retrieval system for any purpose, without the express written permission of Nexenta Systems (hereinafter referred to as “Nexenta”). Nexenta reserves the right to make changes to this document at any time without notice and assumes no responsibility for its use. Nexenta products and services only can be ordered under the terms and conditions of Nexenta Systems’ applicable agreements. All of the features described in this document may not be available currently. Refer to the latest product announcement or contact your local Nexenta Systems sales office for information on feature and product availability. This document includes the latest information available at the time of publication. Nexenta, NexentaStor, NexentaEdge, and NexentaConnect are registered trademarks of Nexenta Systems in the United States and other countries. All other trademarks, service marks, and company names in this document are properties of their respective owners. Product Versions Applicable to this Documentation: Product Versions supported NexentaStorTM 4.0.4 FP1 Copyright © 2016 Nexenta Systems, ALL RIGHTS RESERVED ii www.nexenta.com NexentaStor Installation Guide Contents Preface . .vii 1 Introduction . .1 About NexentaStor . .1 NexentaStor Advantages . -
Nexentastor Hardware Reference Architectures
NexentaStor 5.x Hardware Certification List (HCL) Nexenta Certification Team Dec 2019 Table of Contents 1 Overview .................................................................................................................................. 7 1.1 Introduction ............................................................................................................................................................................... 7 1.2 NexentaStor Solutions ........................................................................................................................................................... 7 1.2.1 Reference Architectures (RA) ............................................................................................................................................. 7 1.2.2 Certified Solutions (CS) .......................................................................................................................................................... 7 1.3 Common Pre-Requisites ....................................................................................................................................................... 8 2 Cisco Reference Architectures ................................................................................................... 9 2.1 Cisco All-Flash Configurations ........................................................................................................................................... 9 2.1.1 Cisco C240 and HGST 2U24 All-Flash ............................................................................................................................. -
Meet Nexenta
Who we are Meet Nexenta is the Global Leader in Open Source-driven Software-Defined Storage. We lead the market in combining our Open Source-driven Software with the most innovative industry standard hardware to provide you the ability to maximize the potential of the storage in your data center. Nexenta. Today, Nexenta Software-Defined Storage manages over 2.0 Exabytes of storage. What we do “Our decision to go with Nexenta Nexenta provides you with the functionality, flexibility and performance that you want at a significantly lower TCO than hardware appliance vendors, will save the university around $9 delivering greater value that satisfies both your current and future data million over a five year period. ‘Tier 1’ center needs. By providing a software-only storage solution, including a rich storage vendors would have charged feature set across your complete protocol’s needs (block, file, and object), Nexenta enables you to deliver a Software-Defined infrastructure to your 3 to 3.5 times more than the amount legacy and next generation applications, while giving you the freedom to negotiated with Nexenta and yet the choose the platform you want to run on. functionality was basically the same.” What makes us different Patrick J.A. Hopewell Our vision. It’s focused on promoting and delivering the true benefits Director, Enterprise Infrastructure Solutions of Software-Defined Everything. We use our vision to promote and University of Toronto drive open partnerships with our customers and partners, including server hardware, networking, SSDs, HDDs, cloud platforms, application infrastructure, business analytics, and everything else considered part of an IT infrastructure. -
Introducing a New Product
illumos SVOSUG Update Presented by Garrett D'Amore Nexenta Systems, Inc. August 26, 2010 What's In A Name? illumos = illum + OS = “Light + OS” Light as in coming from the Sun... OS as in Operating System Note: illumos not Illumos or IllumOS “illumos” trademark application in review. Visual branding still under consideration. Not All of OpenSolaris is Open Source ● Critical components closed source – libc_i18n (needed for working C library) – NFS lock manager – Portions of crypto framework – Numerous critical drivers (e.g. mpt) ● Presents challenges to downstream dependents – Nexenta, Belenix, SchilliX, etc. – See “Darwin” and “MacOS X” for the worst case What's Good ● The Technology! – ZFS, DTrace, Crossbow, Zones, etc. ● The People – World class engineers! – Great community of enthusiasts – Vibrant ecosystem ● The Code is Open – Well most of it, at least illumos – the Project ● Derivative (child) of OS/Net (aka ON) – Solaris/OpenSolaris kernel and foundation – 100% ABI compatible with Solaris ON – Now a real fork of ON, but will merge when code available from Oracle ● No closed code – Open source libc, kernel, and drivers! ● Repository for other “experimental” innovations – Can accept changes from contributors that might not be acceptable to upstream illumos – the Ecosystem ● illumos-gate is just ON – Focused on “Core Foundation Blocks” – Flagship project ● Expanding to host other affiliated projects – Umbrella organization – X11 components? – Desktop components? – C++ Runtime? – Distributions? illumos – the Community ● Stands independently -
A Technical Summary
A Technical Summary Table A.1. Kerberos administrative ACL (MIT) Allow Deny Operation a A Add principals or policies d D Delete principals or policies m M Modify principals or policies c C Change passwords i I Inquiry the database l L List principals or policies s S Set key for principals * or x Allow all privileges Table A.2. Kerberos kadmin password policies (MIT) Option Meaning -history Minimum count of unusable old passwords -maxlife Maximum allowed lifetime -minclasses Minimum character classes -minlength Minimum password length -minlife Minimum lifetime 380 A Technical Summary Table A.3. LDAP access control list levels Level Privilege Coding Explanation none =0 No access at all auth =x Permits authentication attempt compare =cx Permits comparison search =scx Permits search filter application read =rscx Permits search result inspection write =wrscx Permits modification or deletion Table A.4. The OpenAFS access control list attributes Permission Meaning l List contents (lookup) i Create new files or directories (insert) d Delete files or directories a Change ACL attributes of directories (administer) r Read contents of files w Modify contents of files (write) k Lock files for reading read Equivalent to rl write Equivalent to rlidwk (no administrative rights) all Equivalent to rlidwka none Remove all ACL permissions Table A.5. The OpenAFS @sys names (excerpt) @sys Architecture alpha dux40 Digital UNIX 4 on an Alpha alpha dux50 Digital UNIX 5 on an Alpha i386 linux24 Linux Kernel 2.4 on Intel and compatible i386 linux26 Linux Kernel 2.6 on Intel and compatible i386 nt40 Microsoft Windows NT and later on Intel and compatible ppc darwin70 Apple MacOS X 10.3 on a PowerPC Macintosh ppc darwin80 Apple MacOS X 10.4 on a PowerPC Macintosh ppc darwin90 Apple MacOS X 10.5 on a PowerPC Macintosh rs aix52 IBM AIX 5.2 on a pSeries rs aix53 IBM AIX 5.3 on a pSeries sgi 65 SGI Irix 6.5 on a MPIS x86 darwin80 Apple MacOS X 10.4 on an Intel Macintosh x86 darwin90 Apple MacOS X 10.5 on an Intel Macintosh A Technical Summary 381 Table A.6. -
Nexentaedge Datasheet
NexentaEdge Datasheet Multi-Service Scale-Out Storage Software NexentaEdge provides scale-out Block, File and Object (S3 & Swift) storage services delivering cluster-wide inline deduplication and compression at chunk level to deliver enterprise grade data integrity. Quick Erasure Coding and shared namespace between NFS and object data provide best in class performance with low touch operating model. Next Generation Scale-Out Architecture NexentaEdge is a truly distributed, scale-out architecture, Standard servers consisting of four or more physicalservers interconnected using NexentaEdge NexentaEdge NexentaEdge a dedicated 10 Gigabit Ethernet (10 GbE) network for cluster communication. The connected servers form a cluster that maintains NexentaEdge NexentaEdge NexentaEdge redundancy and resilience of data throughout the system using strong All-flash, hybrid or all-disk cryptographic checksums for data integrity, and replication NexentaEdge NexentaEdge NexentaEdge technology to ensure hardware-level redundancy. NexentaEdge runs on shared nothing clusters of industry standard Linux servers. See the NexentaEdge Configuration Guidelines for Multi-service Scale-Out Block, File & Object more information. Supporting Platforms for Converged Infrastructures NexentaEdge is ideally suited to support use cases from Enterprise and Next Generation Clouds, Object Applications, and large Object-Based Archives. NexentaEdge clusters can be deployed as either all-flash, hybrid, or all-disk configurations. Enterprise Clouds Next Gen Clouds & Object Apps Object Archive All-Flash Hybrid All HDD iSCSI, Native Block, NFS, S3 and Swift S3, Swift, NFS High Performance Scalability Inline Deduplication & Compression Quick EC Ease of operation Data integrity Visit us online at nexenta.com NexentaEdge System Requirements & Feature Highlights Key Features of NexentaEdge NexentaEdge software provides flexibility in hardware configuration and brings unparalleled simplicity to your daily user experience regardless of your deployment size. -
Convert Radio-Waves to Alert Using SDR, AWS Lambda and Amazon Transcribe API
AEGAEUM JOURNAL ISSN NO: 0776-3808 Convert Radio-waves to alert using SDR, AWS Lambda and Amazon Transcribe API Ark Vrajlal Balar & Dr. Kamaljit I. Lakhtaria Department of Computer Science, Rollwala Computer Center, Gujarat University Abstract- Communication is essential and the major aspect Conversations and commands conveyed over the radio nowadays. The most used and authentic communication method link could be transcripted, it would be an add-on is radio communication. Conversations and commands conveyed advantage for its users. over the radio link can be transcripted, so that the receiver can 2. Linux, is a family of open source Unix-like operating have a log of the conversation. From the generated transcript systems based on the Linux kernel, an operating system conversations are read again to find if any significant words or kernel first released on September 17, 1991, by Linus commands are conveyed. If specific commands are conveyed; it Torvalds. Linux is typically packaged in a Linux can be used for creating an alert or for logging. distribution.A common feature of Unix-like systems, Linux includes traditional specific-purpose Index Terms- Radio, radio communication, sdr, aws, programming languages targeted at scripting, text transcription, reading, alert. processing and system configuration and management in general. Linux distributions support shell script. A scripting or script language is a programming I. INTRODUCTION language for a special run-time environment that Communication is the important aspect nowadays. automates the execution of tasks; the tasks could Communication takes place in everything, everywhere. The most alternatively be executed one-by-one by a human used and authentic communication method is radio operator.