Choroid Plexus Carcinoma in an Adolescent Male: a Case Report Patel Zeeshan Jameel* , Ashish Varma, Pooja Kumari, Keta Vagha, Jayant Vagha and Sachin Damke

Total Page:16

File Type:pdf, Size:1020Kb

Choroid Plexus Carcinoma in an Adolescent Male: a Case Report Patel Zeeshan Jameel* , Ashish Varma, Pooja Kumari, Keta Vagha, Jayant Vagha and Sachin Damke Jameel et al. J Med Case Reports (2021) 15:184 https://doi.org/10.1186/s13256-021-02801-w CASE REPORT Open Access Choroid plexus carcinoma in an adolescent male: a case report Patel Zeeshan Jameel* , Ashish Varma, Pooja Kumari, Keta Vagha, Jayant Vagha and Sachin Damke Abstract Introduction/background: Although central nervous system tumors are the most common etiology of malignan- cies in the pediatric age group, choroid plexus carcinomas are rare, with an annual incidence rate of 0.10 per 100,000 children. Case presentation: We report the case of an adolescent male belonging to central India who had presented with a history of persistent headache, projectile vomiting, neck stifness, and an episode of generalized tonic-clonic seizure. Neurological examination was suggestive of a space-occupying lesion. Further neuroimaging was suggestive of a large left-sided choroid plexus carcinoma, later confrmed on pathological examination. Gross total resection was achieved and followed by radiation therapy. His recovery was satisfactory without any major events despite sufering from such a malignancy with a poor prognosis. Conclusion: In the absence of a global consensus on choroid plexus carcinoma management, our patient under- went a successful gross total resection and received postoperative radiotherapy. He made a satisfactory recovery with a further plan to review with gadolinium-enhanced neuroimaging at a later date. We conclude that, when possible, achieving gross total resection is of utmost importance. Keywords: Choroid plexus carcinoma, Brain tumor, Gross total resection Introduction CPC is an exceptionally rare intracranial neoplasm Central nervous system (CNS) tumors are the most characterized histologically by friable papillary or cauli- common etiology of cancer in the pediatric age group fower-like appearance, increased mitotic fgures, pleo- (0–19 years) with an incidence rate of 5.57 per 100,000 morphic nuclei, and necrosis [3]. CPC was found to be population [1]. Among them, choroid plexus tumors more common among males and signifcantly associ- (CPTs) have an average annual age-adjusted incidence ated with younger age (median age 1 year) at diagnosis rate of 0.10 per 100,000 children, being most common in comparison with CPP [4]. Te clinical presentation in the age group 0–4 years [1]. Overall, CNS tumors may is determined by the age of onset, as well as location have grave consequences, with a mortality rate of 0.65 and size of the tumor. Current management strategies, per 100,000 children.1 As per the World Health Organi- although not standardized, include gross total resection zation (WHO) classifcation, CPTs are further subclassi- of the tumor followed by chemotherapy and radiation fed into choroid plexus papilloma (CPP; WHO grade I), therapy (RT). atypical choroid plexus papilloma (WHO grade II), and Here, we describe a rare case of pediatric CPC in the choroid plexus carcinoma (CPC; WHO grade III) [2]. lateral ventricle of an adolescent male and briefy review the current management strategies. *Correspondence: [email protected] Department of Paediatrics, Jawaharlal Nehru Medical College, Sawangi (Meghe), Wardha, Maharashtra 442001, India © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Jameel et al. J Med Case Reports (2021) 15:184 Page 2 of 5 Case presentation cells expressing cytokeratin (focal) and P53 (difuse) but A 14-year-old adolescent male belonging to central India did not express synaptophysin, glial fbrillary acidic pro- presented to our tertiary care health facility in central tein (GFAP), or epithelial membrane antigen (EMA). India with a history of persistent headache for 2 weeks, Also, MIB-1 nuclear labeling was increased markedly, projectile vomiting for 5 days, neck stifness for 5 days, with the index being approximately 40% in areas of and a single episode of generalized tonic-clonic seizure (GTCS) lasting for 10 minutes. Papilledema was present. Systemic examination showed right-sided hemiparesis (power 2/5) with exaggerated deep tendon refexes and a positive Babinski sign suggestive of an intracranial space- occupying lesion (SOL). After initial stabilization, brain magnetic resonance imaging (MRI) revealed a heterogeneously enhancing mass (6.2 × 5.2 × 4 cm), located in the left lateral ventri- cle extending difusely into the ipsilateral parietooccipi- tal region with perilesional edema with a midline shift of 6 mm (Fig. 1). Tere were no signs of spinal cord involve- ment. Magnetic resonance (MR) spectroscopy showed reduced N-acetyl-aspartate (NAA) and increased cho- line, with a lactate peak suggestive of a malignant mass. Gross total excision of the tumor was achieved with coagulation of the choroid plexus. Intraoperative fnd- ings revealed a soft, cystic, necrotic, and highly vascular tumor with intraventricular extension. Histopathologi- cal examination revealed crowded and branched papillae merging to form sheets of tumor cells disrupted by areas of necrosis with tumor cells exhibiting nuclear pleomor- phism (multilobulated, multinucleated hyperchromatic Fig. 2 Histological examination showing crowded and branched nuclei). Mitoses were readily identifed (15–20/10 hpf). papillae merging to form sheets of tumor cells disrupted by areas Surrounding brain parenchyma infltration was also of necrosis with tumor cells exhibiting nuclear pleomorphism with noted (Fig. 2). Immunohistochemistry showed tumor readily identifable mitoses Fig. 1 a T2 weighted image (T2WI) showing heterogeneous space occupying lesion (SOL) with necrotic areas with epicenter in left trigone of lateral ventricle infltrating into adjacent white matter with surrounding vasogenic edema. (b) Postcontrast T1WI showing heterogeneous enhancement with multiple nonenhancing necrotic areas Jameel et al. J Med Case Reports (2021) 15:184 Page 3 of 5 highest proliferative activity. Hence, a diagnosis of cho- Surgery remains to be the cornerstone of management, roid plexus carcinoma (CPC) was rendered. and the completeness of resection infuences patient sur- Te patient’s postoperative recovery was satisfactory vival. Achieving gross total resection (GTR) is the most with improved power (5/5 on the right side) and resolu- decisive factor for a patient’s long-term survival and tion of all symptoms. Te patient was planned for adju- prognosis. Various studies have determined that patients vant radiotherapy. He received 59 Gy of cranial radiation who have undergone GTR have signifcantly better sur- in 33 fractions using intensity-modulated radiation ther- vival rates [5, 6]. Furthermore, Mallick et al. [7] observed apy (IMRT). Follow-up imaging after 3 months showed that progression-free survival was signifcantly higher for no residual neoplastic lesion with no metastatic lesion patients with GTR in comparison with subtotal resec- elsewhere on CNS imaging (Fig. 3). Te further manage- tion (60 months versus 11 months) after eliminating the ment plan includes close follow-up for the next 6 months impact of adjuvant therapy. In addition, the extent of with neuroimaging again 1 year postsurgery. surgical resection remained a signifcant factor afecting survival [7]. Despite the merits of GTR, it is often dif- cult to achieve complete resection and it has increased Discussion morbidity. Te large size, high vascularity, difuse infl- Choroid plexus carcinoma (CPC) is a rare cause of a trative nature, and excessive friability of CPC present a hemispheric cerebral tumor arising from lateral ventri- formidable challenge for complete resection. In the pedi- cles in children. Te possible diferential diagnosis for atric population, blood loss may be life threatening as the such a hemispheric brain tumor includes choroid plexus entire circulating blood volume may be lost during the papilloma (CPP), ependymoma, atypical teratoid rhab- resection of these vascular tumors. Te surgical approach doid tumor, glioma, astrocytoma, and primitive neuroe- planned should allow good visual access to vascular sup- ctodermal tumor (PNET). Radiopathological correlation ply and maximal exposure of the tumor mass. An efec- with tissue immunohistochemistry is of essence in difer- tive intraoperative surgical strategy is to identify and entiating and establishing a confrmatory diagnosis. ligate the feeding choroidal vessel, thus facilitating the en Te extremely low incidence of CPC in children has bloc tumor mass removal. In patients with large tumors been a major obstacle in the development of standard- where the tumor is resected in
Recommended publications
  • Neurofibromatosis Type 2 (NF2)
    International Journal of Molecular Sciences Review Neurofibromatosis Type 2 (NF2) and the Implications for Vestibular Schwannoma and Meningioma Pathogenesis Suha Bachir 1,† , Sanjit Shah 2,† , Scott Shapiro 3,†, Abigail Koehler 4, Abdelkader Mahammedi 5 , Ravi N. Samy 3, Mario Zuccarello 2, Elizabeth Schorry 1 and Soma Sengupta 4,* 1 Department of Genetics, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA; [email protected] (S.B.); [email protected] (E.S.) 2 Department of Neurosurgery, University of Cincinnati, Cincinnati, OH 45267, USA; [email protected] (S.S.); [email protected] (M.Z.) 3 Department of Otolaryngology, University of Cincinnati, Cincinnati, OH 45267, USA; [email protected] (S.S.); [email protected] (R.N.S.) 4 Department of Neurology, University of Cincinnati, Cincinnati, OH 45267, USA; [email protected] 5 Department of Radiology, University of Cincinnati, Cincinnati, OH 45267, USA; [email protected] * Correspondence: [email protected] † These authors contributed equally. Abstract: Patients diagnosed with neurofibromatosis type 2 (NF2) are extremely likely to develop meningiomas, in addition to vestibular schwannomas. Meningiomas are a common primary brain tumor; many NF2 patients suffer from multiple meningiomas. In NF2, patients have mutations in the NF2 gene, specifically with loss of function in a tumor-suppressor protein that has a number of synonymous names, including: Merlin, Neurofibromin 2, and schwannomin. Merlin is a 70 kDa protein that has 10 different isoforms. The Hippo Tumor Suppressor pathway is regulated upstream by Merlin. This pathway is critical in regulating cell proliferation and apoptosis, characteristics that are important for tumor progression.
    [Show full text]
  • Risk Factors for Gliomas and Meningiomas in Males in Los Angeles County1
    [CANCER RESEARCH 49, 6137-6143. November 1, 1989] Risk Factors for Gliomas and Meningiomas in Males in Los Angeles County1 Susan Preston-Martin,2 Wendy Mack, and Brian E. Henderson Department of Preventive Medicine, University of Southern California School of Medicine, Los Angeles, California 90033 ABSTRACT views with proxy respondents, we were unable to include a large proportion of otherwise eligible cases because they were deceased or Detailed job histories and information about other suspected risk were too ill or impaired to participate in an interview. The Los Angeles factors were obtained during interviews with 272 men aged 25-69 with a County Cancer Surveillance Program identified the cases (26). All primary brain tumor first diagnosed during 1980-1984 and with 272 diagnoses had been microscopically confirmed. individually matched neighbor controls. Separate analyses were con A total of 478 patients were identified. The hospital and attending ducted for the 202 glioma pairs and the 70 meningioma pairs. Meningi- physician granted us permission to contact 396 (83%) patients. We oma, but not glioma, was related to having a serious head injury 20 or were unable to locate 22 patients, 38 chose not to participate, and 60 more years before diagnosis (odds ratio (OR) = 2.3; 95% confidence were aphasie or too ill to complete the interview. We interviewed 277 interval (CI) = 1.1-5.4), and a clear dose-response effect was observed patients (74% of the 374 patients contacted about the study or 58% of relating meningioma risk to number of serious head injuries (/' for trend the initial 478 patients).
    [Show full text]
  • Central Nervous System Tumors General ~1% of Tumors in Adults, but ~25% of Malignancies in Children (Only 2Nd to Leukemia)
    Last updated: 3/4/2021 Prepared by Kurt Schaberg Central Nervous System Tumors General ~1% of tumors in adults, but ~25% of malignancies in children (only 2nd to leukemia). Significant increase in incidence in primary brain tumors in elderly. Metastases to the brain far outnumber primary CNS tumors→ multiple cerebral tumors. One can develop a very good DDX by just location, age, and imaging. Differential Diagnosis by clinical information: Location Pediatric/Young Adult Older Adult Cerebral/ Ganglioglioma, DNET, PXA, Glioblastoma Multiforme (GBM) Supratentorial Ependymoma, AT/RT Infiltrating Astrocytoma (grades II-III), CNS Embryonal Neoplasms Oligodendroglioma, Metastases, Lymphoma, Infection Cerebellar/ PA, Medulloblastoma, Ependymoma, Metastases, Hemangioblastoma, Infratentorial/ Choroid plexus papilloma, AT/RT Choroid plexus papilloma, Subependymoma Fourth ventricle Brainstem PA, DMG Astrocytoma, Glioblastoma, DMG, Metastases Spinal cord Ependymoma, PA, DMG, MPE, Drop Ependymoma, Astrocytoma, DMG, MPE (filum), (intramedullary) metastases Paraganglioma (filum), Spinal cord Meningioma, Schwannoma, Schwannoma, Meningioma, (extramedullary) Metastases, Melanocytoma/melanoma Melanocytoma/melanoma, MPNST Spinal cord Bone tumor, Meningioma, Abscess, Herniated disk, Lymphoma, Abscess, (extradural) Vascular malformation, Metastases, Extra-axial/Dural/ Leukemia/lymphoma, Ewing Sarcoma, Meningioma, SFT, Metastases, Lymphoma, Leptomeningeal Rhabdomyosarcoma, Disseminated medulloblastoma, DLGNT, Sellar/infundibular Pituitary adenoma, Pituitary adenoma,
    [Show full text]
  • Choroid Plexus Tumors: a Review
    UC San Diego UC San Diego Previously Published Works Title Perinatal (fetal and neonatal) choroid plexus tumors: a review. Permalink https://escholarship.org/uc/item/0sm7q5q7 Journal Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery, 35(6) ISSN 0256-7040 Authors Crawford, John R Isaacs, Hart Publication Date 2019-06-01 DOI 10.1007/s00381-019-04135-x Peer reviewed eScholarship.org Powered by the California Digital Library University of California Child's Nervous System (2019) 35:937–944 https://doi.org/10.1007/s00381-019-04135-x REVIEW ARTICLE Perinatal (fetal and neonatal) choroid plexus tumors: a review John R. Crawford1,2,3 & Hart Isaacs Jr3,4 Received: 13 September 2018 /Accepted: 20 March 2019 /Published online: 5 April 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Introduction The object of this review is to describe the choroid plexus tumors (CPTs) occurring in the fetus and neonate with regard to clinical presentation, location, pathology, treatment, and outcome. Materials and methods Case histories and clinical outcomes were reviewed from 93 cases of fetal and neonatal tumors obtained from the literature and our own institutional experience from 1980 to 2016. Results Choroid plexus papilloma (CPP) is the most common tumor followed by choroid plexus carcinoma (CPC) and atypical choroid plexus papilloma (ACPP). Hydrocephalus and macrocephaly are the presenting features for all three tumors. The lateral ventricles are the main site of tumor origin followed by the third and fourth ventricles, respectively. CPTs of the fetus are detected most often near the end of the third trimester of pregnancy by fetal ultrasound.
    [Show full text]
  • Survival and Functional Outcome of Childhood Spinal Cord Low-Grade Gliomas
    J Neurosurg Pediatrics 4:000–000,254–261, 2009 Survival and functional outcome of childhood spinal cord low-grade gliomas Clinical article KATRIN SCHEINEMANN, M.D.,1 UTE BARTELS, M.D.,2 ANNIE HUANG, M.D., PH.D.,2 CYNTHIA HAWKINS, M.D., PH.D.,3 ABHAYA V. KULKARNI, M.D., PH.D.,4 ERIC BOUFFET, M.D.,2 AND URI TABORI, M.D.2 1Division of Hematology/Oncology, McMaster Children’s Hospital, Hamilton; and Divisions of 2Hematology/ Oncology, 3Pathology, and 4Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada Object. Intramedullary spinal cord low-grade gliomas (LGGs) are rare CNS neoplasms in pediatric patients, and there is little information on therapy for and outcome of these tumors in this population. Furthermore, most patient series combine adult and pediatric patients or high- and low-grade tumors, resulting in controversial data regarding optimal treatment of these children. To clarify these issues, the authors performed a regional population-based study of spinal cord LGGs in pediatric patients. Methods.$OOSHGLDWULFSDWLHQWVZLWK/**VWUHDWHGGXULQJWKH05LPDJLQJHUD ² ZHUHLGHQWLÀHGLQ the comprehensive database of the Hospital for Sick Children in Toronto. Data on demographics, pathology, treat- ment details, and outcomes were collected. Results. Spinal cord LGGs in pediatric patients constituted 29 (4.6%) of 635 LGGs. Epidemiological and clini- cal data in this cohort were different than in patients with other spinal tumors and strikingly similar to data from pediatric patients with intracranial LGGs. The authors observed an age peak at 2 years and a male predominance in patients with these tumors. Histological testing revealed a Grade I astrocytoma in 86% of tumors.
    [Show full text]
  • Risk-Adapted Therapy for Young Children with Embryonal Brain Tumors, High-Grade Glioma, Choroid Plexus Carcinoma Or Ependymoma (Sjyc07)
    SJCRH SJYC07 CTG# - NCT00602667 Initial version, dated: 7/25/2007, Resubmitted to CPSRMC 9/24/2007 and 10/6/2007 (IRB Approved: 11/09/2007) Activation Date: 11/27/2007 Amendment 1.0 dated January 23, 2008, submitted to CPSRMC: January 23, 2008, IRB Approval: March 10, 2008 Amendment 2.0 dated April 16, 2008, submitted to CPSRMC: April 16, 2008, (IRB Approval: May 13, 2008) Revision 2.1 dated April 29, 2009 (IRB Approved: April 30, 2009 ) Amendment 3.0 dated June 22, 2009, submitted to CPSRMC: June 22, 2009 (IRB Approved: July 14, 2009) Activated: August 11, 2009 Amendment 4.0 dated March 01, 2010 (IRB Approved: April 20, 2010) Activated: May 3, 2010 Amendment 5.0 dated July 19, 2010 (IRB Approved: Sept 17, 2010) Activated: September 24, 2010 Amendment 6.0 dated August 27, 2012 (IRB approved: September 24, 2012) Activated: October 18, 2012 Amendment 7.0 dated February 22, 2013 (IRB approved: March 13, 2013) Activated: April 4, 2013 Amendment 8.0 dated March 20, 2014. Resubmitted to IRB May 20, 2014 (IRB approved: May 22, 2014) Activated: May 30, 2014 Amendment 9.0 dated August 26, 2014. (IRB approved: October 14, 2014) Activated: November 4, 2014 Un-numbered revision dated March 22, 2018. (IRB approved: March 27, 2018) Un-numbered revision dated October 22, 2018 (IRB approved: 10-24-2018) RISK-ADAPTED THERAPY FOR YOUNG CHILDREN WITH EMBRYONAL BRAIN TUMORS, HIGH-GRADE GLIOMA, CHOROID PLEXUS CARCINOMA OR EPENDYMOMA (SJYC07) Principal Investigator Amar Gajjar, M.D. Division of Neuro-Oncology Department of Oncology Section Coordinators David Ellison, M.D., Ph.D.
    [Show full text]
  • Astrocytoma: a Hormone-Sensitive Tumor?
    International Journal of Molecular Sciences Review Astrocytoma: A Hormone-Sensitive Tumor? Alex Hirtz 1, Fabien Rech 1,2,Hélène Dubois-Pot-Schneider 1 and Hélène Dumond 1,* 1 Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; [email protected] (A.H.); [email protected] (F.R.); [email protected] (H.D.-P.-S.) 2 Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000 Nancy, France * Correspondence: [email protected]; Tel.: +33-372746115 Received: 29 October 2020; Accepted: 27 November 2020; Published: 30 November 2020 Abstract: Astrocytomas and, in particular, their most severe form, glioblastoma, are the most aggressive primary brain tumors and those with the poorest vital prognosis. Standard treatment only slightly improves patient survival. Therefore, new therapies are needed. Very few risk factors have been clearly identified but many epidemiological studies have reported a higher incidence in men than women with a sex ratio of 1:4. Based on these observations, it has been proposed that the neurosteroids and especially the estrogens found in higher concentrations in women’s brains could, in part, explain this difference. Estrogens can bind to nuclear or membrane receptors and potentially stimulate many different interconnected signaling pathways. The study of these receptors is even more complex since many isoforms are produced from each estrogen receptor encoding gene through alternative promoter usage or splicing, with each of them potentially having a specific role in the cell. The purpose of this review is to discuss recent data supporting the involvement of steroids during gliomagenesis and to focus on the potential neuroprotective role as well as the mechanisms of action of estrogens in gliomas.
    [Show full text]
  • High-Grade Glioma/Glioblastoma Multiforme: Is There a Role for Photodynamic Therapy?
    S-31 Supplement High-Grade Glioma/Glioblastoma Multiforme: Is There a Role for Photodynamic Therapy? Presented by Harry T. Whelan, MD, Medical College of Wisconsin, Milwaukee, Wisconsin Abstract backward glance at the origins of PDT for brain tumors, In the United States, the 5-year survival rate for patients of all ages describes the clinical challenges to its use in the skull, with all types of brain tumors is approximately 20%, with the scale skewed toward even poorer survival in patients with gliomas. Al- and outlines the objectives of his phase I study for PDT though surgery and radiotherapy are primary treatment options, in children with brain cancer, the second most common surgery is rarely curative and radiotherapy has had little impact childhood cancer after leukemia. on overall survival. Predominantly studied in adults with advanced Gliomas are among the most challenging of brain high-grade gliomas, photodynamic therapy (PDT) represents tumor subtypes. The location of a benign tumor in the a paradigmatic shift in the treatment of brain tumors. With no eloquent areas of the brain could potentially render it clear standard of care for brain tumors, PDT may emerge as a po- tential alternative, although challenges regarding its clinical use inoperable, the presence of a blood–brain barrier limits remain and studies confirming its promise are necessary. JNCCN( the ability of systemically administered medications to 2012;10[Suppl 2]:S31–S34) reach the target site, and the intricate neuronal net- work makes targeted therapy challenging. Patients with high-grade gliomas (HGGs) in particular have a generally poor prognosis, and surgery is rarely curative.
    [Show full text]
  • Impact of Adjuvant Radiotherapy in Patients with Central Neurocytoma: a Multicentric International Analysis
    cancers Article Impact of Adjuvant Radiotherapy in Patients with Central Neurocytoma: A Multicentric International Analysis Laith Samhouri 1,†, Mohamed A. M. Meheissen 2,3,† , Ahmad K. H. Ibrahimi 4, Abdelatif Al-Mousa 4, Momen Zeineddin 5, Yasser Elkerm 3,6, Zeyad M. A. Hassanein 2,3 , Abdelsalam Attia Ismail 2,3, Hazem Elmansy 3,6, Motasem M. Al-Hanaqta 7 , Omar A. AL-Azzam 8, Amr Abdelaziz Elsaid 2,3 , Christopher Kittel 1, Oliver Micke 9, Walter Stummer 10, Khaled Elsayad 1,*,‡ and Hans Theodor Eich 1,‡ 1 Department of Radiation Oncology, University Hospital Münster, Münster 48149, Germany; [email protected] (L.S.); [email protected] (C.K.); [email protected] (H.T.E.) 2 Alexandria Clinical Oncology Department, Alexandria University, Alexandria 21500, Egypt; [email protected] (M.A.M.M.); [email protected] (Z.M.A.H.); [email protected] (A.A.I.); [email protected] (A.A.E.) 3 Specialized Universal Network of Oncology (SUN), Alexandria 21500, Egypt; [email protected] (Y.E.); [email protected] (H.E.) 4 Department of Radiotherapy and Radiation Oncology, King Hussein Cancer Center, Amman 11942, Jordan; [email protected] (A.K.H.I.); [email protected] (A.A.-M.) 5 Department of Pediatrics, King Hussein Cancer Center, Amman 11942, Jordan; [email protected] 6 Cancer Management and Research Department, Medical Research Institute, Alexandria University, Alexandria 21500, Egypt 7 Military Oncology Center, Royal Medical Services, Amman 11942, Jordan; [email protected] 8 Princess Iman Research Center, King Hussein Medical Center, Royal Medical Services, Amman 11942, Jordan; Citation: Samhouri, L.; Meheissen, [email protected] 9 M.A.M.; Ibrahimi, A.K.H.; Al-Mousa, Department of Radiotherapy and Radiation Oncology, Franziskus Hospital Bielefeld, A.; Zeineddin, M.; Elkerm, Y.; 33699 Bielefeld, Germany; [email protected] 10 Department of Neurosurgery, University Hospital Münster, 48149 Münster, Germany; Hassanein, Z.M.A.; Ismail, A.A.; [email protected] Elmansy, H.; Al-Hanaqta, M.M.; et al.
    [Show full text]
  • The CNS and the Brain Tumor Microenvironment: Implications for Glioblastoma Immunotherapy
    International Journal of Molecular Sciences Review The CNS and the Brain Tumor Microenvironment: Implications for Glioblastoma Immunotherapy Fiona A. Desland and Adília Hormigo * Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, Department of Neurology, Box 1137, 1 Gustave L. Levy Pl, New York, NY 10029-6574, USA; fi[email protected] * Correspondence: [email protected] Received: 28 August 2020; Accepted: 29 September 2020; Published: 5 October 2020 Abstract: Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor in adults. Its aggressive nature is attributed partly to its deeply invasive margins, its molecular and cellular heterogeneity, and uniquely tolerant site of origin—the brain. The immunosuppressive central nervous system (CNS) and GBM microenvironments are significant obstacles to generating an effective and long-lasting anti-tumoral response, as evidenced by this tumor’s reduced rate of treatment response and high probability of recurrence. Immunotherapy has revolutionized patients’ outcomes across many cancers and may open new avenues for patients with GBM. There is now a range of immunotherapeutic strategies being tested in patients with GBM that target both the innate and adaptive immune compartment. These strategies include antibodies that re-educate tumor macrophages, vaccines that introduce tumor-specific dendritic cells, checkpoint molecule inhibition, engineered T cells, and proteins that help T cells engage directly with tumor cells. Despite this, there is still much ground to be gained in improving the response rates of the various immunotherapies currently being trialed. Through historical and contemporary studies, we examine the fundamentals of CNS immunity that shape how to approach immune modulation in GBM, including the now revamped concept of CNS privilege.
    [Show full text]
  • Arrocase Spinal Glioma
    Spinal Cord Glioma Timothy Malouff, MD Faculty: Jennifer Peterson, MD Mayo Clinic Florida Jacksonville, FL February 19, 2020 Case • 22 year old female with no relevant PMH presented with a one month history of mid- back pain and a small area of numbness on her knee. • ROS: Positive for gradually progressive bilateral lower extremity weakness and paresthesia. – No bladder or bowel dysfunction. – No saddle anesthesia February 19, 2020 Case • SH: No previous surgeries • FH: No family history of cancer or neurologic disorders. • SH: Nonsmoker, no alcohol use, no drug use • Medications: None • Exam: 3/5 strength in the bilateral lower extremities, otherwise unremarkable February 19, 2020 Case • Given her continued progressive symptoms despite conservative treatment with physical therapy, an MRI was obtained February 19, 2020 Case • MR of the thoracic spine – T11-T12 centrally located intramedullary expanding lesion with well defined borders and mild heterogeneous enhancement – Radiographically consistent with ependymoma • MR of the brain, cervical spine, and lumbar spine were negative February 19, 2020 MRI T2 imaging: Centrally located mass with well defined borders Most consistent with ependymoma February 19, 2020 Workup (NCCN v3.2019) • Spine MRI (cervical, thoracic, and lumbar) • CT myelogram if MRI is contraindicated February 19, 2020 Treatment options (per NCCN) Observation Asymptomatic Maximum safe Well resection defined/circumscribed on MRI Maximum safe Symptomatic resection Intramedullary tumors Observation Asymptomatic Biopsy Poorly
    [Show full text]
  • Last Updated March 2020 NF1 Mutations: Neurofibromatosis Type 1
    Last Updated March 2020 NF1 Mutations: Neurofibromatosis Type 1 (NF1) Neurofibromatosis Type 1 (NF1) is a neurocutaneous condition with extremely variable clinical features that increase in frequency with age. Features include multiple cafe-au-lait spots (“birth marks”), axillary and inguinal freckling, Lisch nodules (benign tumors of the iris), optic gliomas, and cutaneous neurofibromas. While most of the tumors seen within NF1 are benign, they can cause complications that require management. Additionally, individuals with NF1 have an increased risk for various malignancies. NF1 Cancer/ Tumor Risks Neurofibromas: Nerve tumor that arise from the nerve sheath (cells surrounding the nerves). Cutaneous neurofibromas: Individuals with NF1 will usually develop multiple benign cutaneous or subcutaneous neurofibromas by adulthood. Though these are benign, but can be disfiguring. Plexiform neurofibromas: About 50% of people with NF1 will have plexiform neurofibromas, most of which occur internally and are not usually clinically apparent.1 Most plexiform neurofibromas are slow growing, but rapid growth can be life threatening or cause disfigurement. Malignant peripheral nerve sheath tumors (MPNST): Deeper subcutaneous and plexiform neurofibromas may undergo malignant change to MPNST in up to 16% of people with NF1.2,3 These tumors occur at younger ages and have poorer prognosis than in individuals without NF1 who have MPNST. Glioma/Central Nervous System (CNS) Tumors: Gliomas are tumors that arise from the glial cells that surround nerve cells. The most common tumors apart from benign neurofibromas in people with NF1 are optic nerve gliomas and brain tumors. The frequency of optic glioma is estimated to be between 5-25%.4 It is also estimated that 4% of individuals with NF1 will develop brainstem tumors.5 Approximately 20% of individuals with childhood optic glioma will develop subsequent CNS gliomas.
    [Show full text]