IL-4 and IL-17A Cooperatively Promote Hydrogen Peroxide

Total Page:16

File Type:pdf, Size:1020Kb

IL-4 and IL-17A Cooperatively Promote Hydrogen Peroxide IL-4 and IL-17A Cooperatively Promote Hydrogen Peroxide Production, Oxidative DNA Damage, and Upregulation of Dual Oxidase 2 in Human Colon and Pancreatic This information is current as Cancer Cells of September 26, 2021. Yongzhong Wu, Mariam M. Konaté, Jiamo Lu, Hala Makhlouf, Rodrigo Chuaqui, Smitha Antony, Jennifer L. Meitzler, Michael J. Difilippantonio, Han Liu, Agnes Juhasz, Guojian Jiang, Iris Dahan, Krishnendu Roy and James H. Downloaded from Doroshow J Immunol published online 23 September 2019 http://www.jimmunol.org/content/early/2019/09/20/jimmun ol.1800469 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2019/09/20/jimmunol.180046 Material 9.DCSupplemental Why The JI? Submit online. by guest on September 26, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published September 23, 2019, doi:10.4049/jimmunol.1800469 The Journal of Immunology IL-4 and IL-17A Cooperatively Promote Hydrogen Peroxide Production, Oxidative DNA Damage, and Upregulation of Dual Oxidase 2 in Human Colon and Pancreatic Cancer Cells Yongzhong Wu,* Mariam M. Konate´,† Jiamo Lu,* Hala Makhlouf,† Rodrigo Chuaqui,† Smitha Antony,† Jennifer L. Meitzler,* Michael J. Difilippantonio,† Han Liu,† Agnes Juhasz,* Guojian Jiang,* Iris Dahan,† Krishnendu Roy,† and James H. Doroshow*,† Dual oxidase 2 (DUOX2) generates H2O2 that plays a critical role in both host defense and chronic inflammation. Previously, we demonstrated that the proinflammatory mediators IFN-g and LPS enhance expression of DUOX2 and its maturation factor DUOXA2 through STAT1- and NF-kB‒mediated signaling in human pancreatic cancer cells. Using a panel of colon and pancre- Downloaded from atic cancer cell lines, we now report the induction of DUOX2/DUOXA2 mRNA and protein expression by the TH2 cytokine IL-4. IL-4 activated STAT6 signaling that, when silenced, significantly decreased induction of DUOX2. Furthermore, the TH17 cytokine IL-17A combined synergistically with IL-4 to increase DUOX2 expression in both colon and pancreatic cancer cells mediated, at least in part, by signaling through NF-kB. The upregulation of DUOX2 was associated with a significant increase in the production of extracellular H2O2 and DNA damage—as indicated by the accumulation of 8-oxo-dG and gH2AX—which was suppressed by the NADPH oxidase inhibitor diphenylene iodonium and a DUOX2-specific small interfering RNA. The clinical relevance of these experiments is suggested by immunohistochemical, microarray, and quantitative RT-PCR studies of human colon and pancreatic http://www.jimmunol.org/ tumors demonstrating significantly higher DUOX2, IL-4R, and IL-17RA expression in tumors than in adjacent normal tissues; in pancreatic adenocarcinoma, increased DUOX2 expression is adversely associated with overall patient survival. These data suggest a functional association between DUOX2-mediated H2O2 production and induced DNA damage in gastrointestinal malignancies. The Journal of Immunology, 2019, 203: 000–000. ecent studies suggest that reactive oxygen species (ROS) of activation (7–9). DUOX2 is a membrane-localized glycopro- play an important role as mediators of inflammation- tein composed of six transmembrane helices bearing a cytosolic R related malignancies by enhancing tumor cell prolifera- C-terminal FAD/NADPH binding domain, two cytosolic EF-hands by guest on September 26, 2021 tion and angiogenesis (1–3). ROS are produced in human tumors for calcium binding, and an extracellular N-terminal peroxidase-like by a variety of mechanisms, including by members of the mi- domain. In the presence of its cognate maturation factor DUOXA2, tochondrial electron transport chain (4) and the NADPH oxidase these structural components regulate the transfer of electrons from (NOX) gene family (5, 6). NADPH to molecular oxygen to generate H2O2 (7, 10–12), which is The seven NOX family members share certain structural homol- important for the synthesis of thyroid hormone (13) and plays an ogies while retaining distinct tissue specificities and mechanisms important host defense role against pathogens in the airway and gastrointestinal mucosal epithelia (10, 14, 15). *Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Increasing evidence suggests an etiologic role for DUOX2 in Institute, National Institutes of Health, Bethesda, MD 20892; and †Division of Cancer gastrointestinal malignancies; it is overexpressed in premalignant Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 chronic inflammatory states of the colon (16, 17), adenomatous large intestinal polyps (18), and in chronic pancreatitis (19) as well as ORCIDs: 0000-0003-1393-0998 (H.M.); 0000-0002-4676-7034 (M.J.D.); 0000- 0003-0541-0714 (K.R.). early stages of pancreatic ductal adenocarcinoma (PDAC) (20). The Received for publication March 27, 2018. Accepted for publication August 27, 2019. proinflammatory microenvironment of these diseases, including This work was supported by the Division of Cancer Treatment and Diagnosis and the overexpression of TH17 and TH2 cytokines (IL-17A and IL-4/IL-13) Center for Cancer Research, National Cancer Institute, National Institutes of Health. and their corresponding receptors, has been demonstrated to sig- The content of this publication does not necessarily reflect the views or policies of the nificantly alter epithelial tumor cell proliferation, survival, and Department of Health and Human Services, nor does mention of trade names, com- mercial products, or organizations imply endorsement by the U.S. Government. metastatic potential (21–24). Furthermore, prior studies from our Address correspondence and reprint requests to Dr. James H. Doroshow, Division of group demonstrated that LPS and the TH1 cytokine IFN-g stimulate Cancer Treatment and Diagnosis, National Cancer Institute, Building 31, Room 3A- DUOX2 expression and activity in pancreatic cancer cells by acti- 44, 31 Center Drive, National Institutes of Health, Bethesda, MD 20892. E-mail vating signaling through NF-kB and STAT1 (19, 25, 26). address: [email protected] In the present work, we found significant upregulation of The online version of this article contains supplemental material. DUOX2 and DUOXA2 in surgically resected colon cancer spec- Abbreviations used in this article: DPI, diphenylene iodonium; gH2AX, histone H2AX phosphorylation at serine 139; IHC, immunohistochemical, immunohistochemistry; imens compared with adjacent normal colonic epithelium and NAC, N-acetyl- L-cysteine; NOX, NADPH oxidase; 8-oxo-dG, 8-oxo-7,8-dihydro- have shown that DUOX2 expression is significantly associated 29-deoxyguanosine; PDAC, pancreatic ductal adenocarcinoma; PEG-catalase, with poor prognosis in pancreatic cancer clinical samples from catalase/polyethylene glycol; ROS, reactive oxygen species; siRNA, small interfering RNA; TCGA, The Cancer Genome Atlas; WCE, whole-cell extract. The Cancer Genome Atlas (TCGA). To understand the potential This article is distributed under The American Association of Immunologists, Inc., role of DUOX2 in adenocarcinomas of the pancreas and colon, we Reuse Terms and Conditions for Author Choice articles. examined the mechanisms of proinflammatory cytokine-related www.jimmunol.org/cgi/doi/10.4049/jimmunol.1800469 2 IL-4 AND IL-17A ENHANCE DUOX2-RELATED DNA DAMAGE ROS production by DUOX2 in human pancreatic and colonic tumors (31). RNA expression levels for 11 oxidases or related proteins cancer cells. We report in this study that IL-4—alone or in com- were expressed for the 23 colon adenocarcinoma samples relative to the bination with IL-17A—strongly induces DUOX2/DUOXA2 mRNA pool of five normal colon mucosae from noncancer patients (31). Unsu- pervised clustering analysis with BRB-ArrayTools (32) was used to gen- and DUOX protein expression, leading to significantly increased erate a heat map. extracellular H2O2 accumulation and ROS-related DNA dam- For other comparative analyses between normal and malignant tissues, age. DUOX2 upregulation by IL-4 occurred as a consequence of primary human colon and pancreatic cancers and adjacent nonmalignant STAT6 activation and translocation to the nucleus, suggesting a tissue samples were acquired from the National Cancer Institute–sponsored Cooperative Human Tissue Network (Eastern, Mid-Western, and Mid- role for STAT6 in the transcriptional regulation of DUOX2 fol- Atlantic Divisions) in compliance with the Office of Human Subjects lowing proinflammatory stimulation. Enhanced expression of Research at the National Institutes of Health, Bethesda, MD. Specimens DUOX2 by IL-17A appears to be a consequence of NF-kB– were selected without regard to age, race/ancestry, or sex and were ob- related signal transduction. These
Recommended publications
  • Levels of Interleukin-2, Interferon- , and Interleukin-4 In
    Levels of Interleukin-2, Interferon-␥, and Interleukin-4 in Bronchoalveolar Lavage Fluid From Patients With Mycoplasma Pneumonia: Implication of Tendency Toward Increased Immunoglobulin E Production Young Yull Koh, MD*; Yang Park, MD*; Hoan Jong Lee, MD*; and Chang Keun Kim, MD‡ ABSTRACT. Objective. In connection with the possi- ABBREVIATIONS. IgE, immunoglobulin E; TH1, T helper type 1; ble relationship between Mycoplasma infection and the TH2, T helper type 2; IFN, interferon; IL, interleukin; BAL, bron- onset of asthma, several studies have shown not only a choalveolar lavage; FB, fiber-optic bronchoscopy; SD, standard high level of serum total immunoglobulin E (IgE) but deviation. also the production of IgE specific to Mycoplasma or common allergens during the course of Mycoplasma in- fection. It has been suggested that the balance of T helper esults of several studies over the past decade type 1 (TH1)/T helper type 2 (TH2) immune response have provided evidence linking Mycoplasma may regulate the synthesis of IgE. The objective of this Rinfection with asthma exacerbation and have study was to investigate the pattern of cytokine response raised the possibility that Mycoplasma infection is a (TH1 or TH2) during an episode of acute lower respira- factor in the pathogenesis of asthma. An acute exac- tory tract infection caused by Mycoplasma pneumoniae. erbation of wheezing in asthmatic participants in Study Design. Using a bronchoalveolar lavage (BAL) association with Mycoplasma infection has been well- with flexible bronchoscopy procedure, this study deter- 1,2 mined the levels of interleukin (IL)-2, interferon (IFN)-␥ documented. In addition, Mycoplasma pneumoniae (TH1), and IL-4 (TH2) in the supernatant of BAL fluid as has been found in the lower airways of chronic, well as the BAL cellular profiles of patients with Myco- stable asthmatics with a greater frequency than in -These results were com- control participants,3 suggesting a pathogenic mech .(14 ؍ plasma pneumonia (n pared with those of patients with pneumococcal pneu- anism in chronic asthma.
    [Show full text]
  • Modulation of the Inflammatory Response After Spinal Cord Injury
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en MODULATION OF THE INFLAMMATORY RESPONSE AFTER SPINAL CORD INJURY Presented by Jesús Amo Aparicio ACADEMIC DISSERTATION To obtain the degree of PhD in Neuroscience by the Universitat Autònoma de Barcelona 2019 Directed by Dr. Rubèn López Vales Tutorized by Dr. Xavier Navarro Acebes INDEX SUMMARY Page 7 INTRODUCTION Page 13 - Spinal cord Page 15 - Spinal cord injury Page 17 - Incidence and causes Page 18 - Types of SCI Page 18 - Biological events after SCI Page 20 - Studying SCI Page 24 - Animal models Page 24 - Lesion models Page 24 - Current therapies for SCI Page 25 - Basic principles of the immune system Page 27 - Innate immune response Page 27 - Adaptive immune response Page 28 - Inflammatory response Page 29 - Inflammatory response after SCI Page 30 - Modulation of injury environment Page 36 - Interleukin 1 Page 36 - Interleukin 37 Page 40 - Interleukin 13 Page 44 OBJECTIVES Page 47 MATERIALS AND METHODS Page 51
    [Show full text]
  • IL-1Β Induces the Rapid Secretion of the Antimicrobial Protein IL-26 From
    Published June 24, 2019, doi:10.4049/jimmunol.1900318 The Journal of Immunology IL-1b Induces the Rapid Secretion of the Antimicrobial Protein IL-26 from Th17 Cells David I. Weiss,*,† Feiyang Ma,†,‡ Alexander A. Merleev,x Emanual Maverakis,x Michel Gilliet,{ Samuel J. Balin,* Bryan D. Bryson,‖ Maria Teresa Ochoa,# Matteo Pellegrini,*,‡ Barry R. Bloom,** and Robert L. Modlin*,†† Th17 cells play a critical role in the adaptive immune response against extracellular bacteria, and the possible mechanisms by which they can protect against infection are of particular interest. In this study, we describe, to our knowledge, a novel IL-1b dependent pathway for secretion of the antimicrobial peptide IL-26 from human Th17 cells that is independent of and more rapid than classical TCR activation. We find that IL-26 is secreted 3 hours after treating PBMCs with Mycobacterium leprae as compared with 48 hours for IFN-g and IL-17A. IL-1b was required for microbial ligand induction of IL-26 and was sufficient to stimulate IL-26 release from Th17 cells. Only IL-1RI+ Th17 cells responded to IL-1b, inducing an NF-kB–regulated transcriptome. Finally, supernatants from IL-1b–treated memory T cells killed Escherichia coli in an IL-26–dependent manner. These results identify a mechanism by which human IL-1RI+ “antimicrobial Th17 cells” can be rapidly activated by IL-1b as part of the innate immune response to produce IL-26 to kill extracellular bacteria. The Journal of Immunology, 2019, 203: 000–000. cells are crucial for effective host defense against a wide and neutrophils.
    [Show full text]
  • The Cross-Talk Between Neurons and Microglia Through Interleukin-4 After Ischemic Injury
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 8-2018 The Cross-Talk Between Neurons and Microglia Through Interleukin-4 After Ischemic Injury Shun-Ming Ting Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Medicine and Health Sciences Commons Recommended Citation Ting, Shun-Ming, "The Cross-Talk Between Neurons and Microglia Through Interleukin-4 After Ischemic Injury" (2018). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 892. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/892 This Thesis (MS) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. THE CROSS-TALK BETWEEN NEURONS AND MICROGLIA THROUGH INTERLEUKIN-4 AFTER ISCHEMIC INJURY by Shun-Ming Ting, M.S. APPROVED: ______________________________ Jaroslaw Aronowski, Ph.D. Advisory
    [Show full text]
  • Evolutionary Divergence and Functions of the Human Interleukin (IL) Gene Family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W
    UPDATE ON GENE COMPLETIONS AND ANNOTATIONS Evolutionary divergence and functions of the human interleukin (IL) gene family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W. Nebert3* and Vasilis Vasiliou1 1Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA 2Department of Clinical Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA 3Department of Environmental Health and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267–0056, USA *Correspondence to: Tel: þ1 513 821 4664; Fax: þ1 513 558 0925; E-mail: [email protected]; [email protected] Date received (in revised form): 22nd September 2010 Abstract Cytokines play a very important role in nearly all aspects of inflammation and immunity. The term ‘interleukin’ (IL) has been used to describe a group of cytokines with complex immunomodulatory functions — including cell proliferation, maturation, migration and adhesion. These cytokines also play an important role in immune cell differentiation and activation. Determining the exact function of a particular cytokine is complicated by the influence of the producing cell type, the responding cell type and the phase of the immune response. ILs can also have pro- and anti-inflammatory effects, further complicating their characterisation. These molecules are under constant pressure to evolve due to continual competition between the host’s immune system and infecting organisms; as such, ILs have undergone significant evolution. This has resulted in little amino acid conservation between orthologous proteins, which further complicates the gene family organisation. Within the literature there are a number of overlapping nomenclature and classification systems derived from biological function, receptor-binding properties and originating cell type.
    [Show full text]
  • Expression of Interleukin-4 but Not of Interleukin-10 from a Replicative Herpes Simplex Virus Type 1 Viral Vector Precludes Experimental Allergic Encephalomyelitis
    Gene Therapy (2001) 8, 769–777 2001 Nature Publishing Group All rights reserved 0969-7128/01 $15.00 www.nature.com/gt RESEARCH ARTICLE Expression of interleukin-4 but not of interleukin-10 from a replicative herpes simplex virus type 1 viral vector precludes experimental allergic encephalomyelitis E Broberg1,2,3, N Seta¨la¨ 1,3,MRo¨ytta¨4, A Salmi1, J-P Era¨linna1,5,BHe6, B Roizman6 and V Hukkanen1,2 Departments of 1Virology, 4Pathology, 5Neurology and 2MediCity Research Laboratory, University of Turku, Turku; 3Turku Graduate School of Biomedical Sciences, Turku, Finland; and 6The Marjorie B Kovler Viral Oncology Laboratories, University of Chicago, Chicago, IL, USA We have used interleukin (IL)-4 and -10-producing HSV-1 any infection, mice infected with backbone virus R3659 and ␥ 134.5 deletion viruses in gene therapy of a BALB/c model mock-infected mice. Weights and symptoms of the mice of experimental allergic encephalomyelitis (EAE), a T cell- were recorded daily and the tissue specimens were col- mediated demyelinating disease of the central nervous sys- lected at specific time-points. The results indicate that the tem. It is known that in EAE of mice the Th2-type cytokines intracranial infection with IL-4-producing virus (1) precludes are down-regulated and the Th1-type cytokines up-regulated EAE symptoms, (2) protects the spinal cord from massive during the onset and relapse of the disease. Therefore, we leukocyte infiltrations and (3) prevents demyelination and tested two HSV-1 recombinants expressing the Th2-type axonal loss. The IL-10-expressing virus R8308 did not have cytokines IL-4 and IL-10.
    [Show full text]
  • Enhancement by Interleukin 4 of Interleukin 2- Or Antibody-Induced Proliferation of Lymphocytes from Interleukin 2-Treated Cancer Patients1
    ICANCER RESEARCH 50. 1160-1 164. Februar} 15. 1990) Enhancement by Interleukin 4 of Interleukin 2- or Antibody-induced Proliferation of Lymphocytes from Interleukin 2-treated Cancer Patients1 Jonathan Treisman, Carl M. Higuchi, John A. Thompson, Steven Gillis, Catherine G. Lindgren, Donald E. Kern, Stanley R. Ridell, Philip D. Greenberg, and Alexander I efer Department of Medicine, Division of Medical Oncolog); University of Washington School of Medicine, Seattle. Has/tinglan 9X195 fJ. T., C. M. H.,J. A. T., C, G. L., D. E. K., S. R. R., P. D. G., A. F.]; and Immunex Corporation, Seattle, H'ashington 98101 [S. G.J ABSTRACT IL-2-activated cells for therapy are usually generated by ob taining PBMC from cancer patients shortly after systemic IL- Systemic interleukin 2 (IL-2) and IL-2-activated lymphocytes have 2 therapy and culturing them with IL-2 in vitro. The cells thus induced tumor regression in some cancer patients. The IL-2-activated cells have usually been generated by obtaining peripheral blood mono- generated for infusion are phenotypically and functionally het nuclear cells (PB1V1C)from cancer patients shortly after systemic IL-2 erogeneous and contain cells with LAK activity (5, 7), as well therapy and culturing them with IL-2 in vitro. In an effort to augment as other cells which may mediate or contribute to antitumor the ex vivogeneration of such cells preactivated in vivo, we examined the responses (8). In an effort to enhance the generation of such proliferative responses of PBIVIC from IL-2-treated cancer patients to cells i/i vitro, several agents which induce a proliferative re several proliferative signals including IL-2, interleukin 4 (II -4).
    [Show full text]
  • IL-21 in Conjunction with Anti-CD40 and IL-4 Constitutes a Potent Polyclonal B Cell Stimulator for Monitoring Antigen-Specific Memory B Cells
    cells Article IL-21 in Conjunction with Anti-CD40 and IL-4 Constitutes a Potent Polyclonal B Cell Stimulator for Monitoring Antigen-Specific Memory B Cells Fridolin Franke 1,2, Greg A. Kirchenbaum 1 , Stefanie Kuerten 2 and Paul V. Lehmann 1,* 1 Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA; [email protected] (F.F.); [email protected] (G.A.K.) 2 Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; [email protected] * Correspondence: [email protected]; Tel.: +1-216-965-6311 Received: 3 December 2019; Accepted: 12 February 2020; Published: 13 February 2020 Abstract: Detection of antigen-specific memory B cells for immune monitoring requires their activation, and is commonly accomplished through stimulation with the TLR7/8 agonist R848 and IL-2. To this end, we evaluated whether addition of IL-21 would further enhance this TLR-driven stimulation approach; which it did not. More importantly, as most antigen-specific B cell responses are T cell-driven, we sought to devise a polyclonal B cell stimulation protocol that closely mimics T cell help. Herein, we report that the combination of agonistic anti-CD40, IL-4 and IL-21 affords polyclonal B cell stimulation that was comparable to R848 and IL-2 for detection of influenza-specific memory B cells. An additional advantage of anti-CD40, IL-4 and IL-21 stimulation is the selective activation of IgM+ memory B cells, as well as the elicitation of IgE+ ASC, which the former fails to do. Thereby, we introduce a protocol that mimics physiological B cell activation through helper T cells, including induction of all Ig classes, for immune monitoring of antigen-specific B cell memory.
    [Show full text]
  • IL-4 Abrogates TH17 Cell-Mediated Inflammation by Selective Silencing of IL-23 in Antigen-Presenting Cells
    IL-4 abrogates TH17 cell-mediated inflammation by selective silencing of IL-23 in antigen-presenting cells Emmanuella Guenovaa,b,c,1,2, Yuliya Skabytskaa,1, Wolfram Hoetzeneckera,b,c,1, Günther Weindla,d, Karin Sauera, Manuela Thama, Kyu-Won Kime, Ji-Hyeon Parke, Ji Hae Seoe,f, Desislava Ignatovac, Antonio Cozzioc, Mitchell P. Levesquec, Thomas Volza,g, Martin Köberlea,g, Susanne Kaeslera, Peter Thomash, Reinhard Mailhammeri,3, Kamran Ghoreschia, Knut Schäkelj, Boyko Amarovk, Martin Eichnerl, Martin Schallera, Rachael A. Clarkb, Martin Röckena,2, and Tilo Biedermanna,g,2 aDepartment of Dermatology, Eberhard Karls University, 72076 Tübingen, Germany; dInstitute of Pharmacy, Department of Pharmacology and Toxicology, Freie Universität, 14195 Berlin, Germany; eNeuroVascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea; fDepartment of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742, Republic of Korea; cDepartment of Dermatology, University Hospital of Zürich, 8091 Zürich, Switzerland; hDepartment of Dermatology and Allergology, Ludwig Maximilians University, 80337 Munich, Germany; iInstitute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany; jDepartment of Dermatology, Heidelberg University Hospital, 69115 Heidelberg, Germany; kInstitute
    [Show full text]
  • Suppresses Interleukin 1 Production but Up-Regulates Gene Expression and Synthesis of Interleukin 1 Receptor Antagonist EDOUARD VANNIER, LAURIE C
    Proc. Nail. Acad. Sci. USA Vol. 89, pp. 4076-4080, May 1992 Medical Sciences Coordinated antiinflammatory effects of interleukin 4: Interleukin 4 suppresses interleukin 1 production but up-regulates gene expression and synthesis of interleukin 1 receptor antagonist EDOUARD VANNIER, LAURIE C. MILLER, AND CHARLES A. DINARELLO* Departments of Medicine and Pediatrics, Tufts University School of Medicine and New England Medical Center, Boston, MA 02111 Communicated by Anthony Cerami, January 23, 1992 (received for review December 4, 1991) ABSTRACT Interleukin 1 receptor antagonist (IL-lra), a occupancy of its receptor (16, 17). This IL-1 inhibitor has naturally occurring polypeptide with amino acid sequence been recently cloned, expressed, and characterized (18-20). homology to interleukin la (IL-la) and interleukin 113 (IL-1.8), Because it binds to both IL-1 receptors (18, 21) without prevents Escherichia coli-induced shock and death. Both IL-i agonist activity (22), and inhibits IL-1 binding and biological and IL-lra are produced by monocytes stimulated with lipo- activities (18, 23, 24), the IL-1 inhibitor has been renamed the polysaccharide (LPS). Because interleukin 4 (IL-4) suppresses IL-1 receptor antagonist (IL-lra). Human IL-lra has 19% IL-1 production, we investigated whether IL-4 modulated amino acid homology to human IL-la and 26% homology to IL-ira synthesis in LPS-stimulated human peripheral blood human IL-ip (19) and is thought to be a member of the IL-1 mononuclear cells. IL-113 and IL-lra were measured by specific gene family (25). IL-4 suppresses IL-1 and other monocyte- RIAs.
    [Show full text]
  • Associations of Interleukin-1 (IL-1)
    Kari Luotola ASSOCIATIONS OF INTERLEUKIN-1 (IL-1) GENE VARIATION AND IL-1 RECEPTOR ANTAGONIST PHENOTYPES WITH IMMUNOLOGICAL RESPONSES, METABOLIC DYSREGULATION AND TYPE 2 DIABETES ACADEMIC DISSERTATION To be presented, with the permission of the Medical Faculty, University of Helsinki, for public examination in Auditorium 2 at Biomedicum on May 28th 2011, at 12 noon Department of Medicine, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland Helsinki 2011 Copyright © 2011 Kari Luotola Original publications reprinted with permission ISBN 978-952-92-9017-8 (paperback) ISBN 978-952-10-6966-6 (PDF) http://helda.helsinki.fi Yliopistopaino Helsinki, Finland 2011 2 Supervised by Professor Veikko Salomaa, MD, PhD National Institute for Health and Welfare, Department of Chronic Disease Prevention, Helsinki, Finland Reviewed by Professor Jorma Viikari, MD, PhD Department of Internal Medicine, Turku University Hospital, Turku, Finland Professor Markku Savolainen, MD, PhD Department of Internal Medicine, University of Oulu and Oulu University Hospital, Oulu, Finland Opponent Professor Olli Raitakari, MD, PhD Department of Clinical Physiology, Turku University Central Hospital and University of Turku, Turku, Finland 3 … The wind it was so insistent With tales of a stormy south … I walked out this morning It was like a veil had been removed from before my eyes For the first time I saw the work of heaven … And inside every turning leaf Is the pattern of an older tree The shape of our future The shape of all our history And
    [Show full text]
  • Regulation of IL-17A Responses in Human Airway Smooth Muscle Cells
    Kwofie et al. Respiratory Research (2015) 16:14 DOI 10.1186/s12931-014-0164-4 RESEARCH Open Access Regulation of IL-17A responses in human airway smooth muscle cells by Oncostatin M Karen Kwofie1, Matthew Scottˆ, Rebecca Rodrigues1, Jessica Guerette1, Katherine Radford2, Parameswaran Nair2 and Carl D Richards1,3* Abstract Background: Regulation of human airway smooth muscle cells (HASMC) by cytokines contributes to chemotactic factor levels and thus to inflammatory cell accumulation in lung diseases. Cytokines such as the gp130 family member Oncostatin M (OSM) can act synergistically with Th2 cytokines (IL-4 and IL-13) to modulate lung cells, however whether IL-17A responses by HASMC can be altered is not known. Objective: To determine the effects of recombinant OSM, or other gp130 cytokines (LIF, IL-31, and IL-6) in regulating HASMC responses to IL-17A, assessing MCP-1/CCL2 and IL-6 expression and cell signaling pathways. Methods: Cell responses of primary HASMC cultures were measured by the assessment of protein levels in supernatants (ELISA) and mRNA levels (qRT-PCR) in cell extracts. Activation of STAT, MAPK (p38) and Akt pathways were measured by immunoblot. Pharmacological agents were used to assess the effects of inhibition of these pathways. Results: OSM but not LIF, IL-31 or IL-6 could induce detectable responses in HASMC, elevating MCP-1/CCL2, IL-6 levels and activation of STAT-1, 3, 5, p38 and Akt cell signaling pathways. OSM induced synergistic action with IL-17A enhancing MCP-1/CCL-2 and IL-6 mRNA and protein expression, but not eotaxin-1 expression, while OSM in combination with IL-4 or IL-13 synergistically induced eotaxin-1 and MCP-1/CCL2.
    [Show full text]