Generating and Solving Imperfect Information Games

Total Page:16

File Type:pdf, Size:1020Kb

Generating and Solving Imperfect Information Games Generating and Solving Imperfect Information Games Daphne Koller Avi Pfeffer University of California University of California Berkeley, CA 94720 Berkeley, CA 94720 [email protected] [email protected] Abstract players. The only uncertainty is about future moves. In games such as poker, the players have imperfect information: they Work on game playing in AI has typically ignored have only partial knowledge about the current state of the games of imperfect information such as poker. In game. This can result in complex chains of reasoning such this paper, we present a framework for dealing with as: ªSince I have two aces showing, but she raised, then she such games. We point out several important issues is either bluf®ng or she has a good hand; but then if I raise that arise only in the context of imperfect infor- a lot, she may realize that I have at least a third ace, so she mation games, particularly the insuf®ciency of a might fold; so maybe I should underbid, but ¡ ¢ .º It should simple game tree model to represent the players' be fairly obvious that the standard techniques are inadequate information state and the need for randomization in for solving such games: no variant of the minimax algorithm the players' optimal strategies. We describe Gala, duplicates the type of complex reasoning we just described. an implemented system that provides the user with a In game theory [von Neumann and Morgenstern, 1947], on very natural and expressive language for describing games. From a game description, Gala creates an the other hand, virtually all of the work has focused on games with imperfect information. Game theory is mostly intended augmented game tree with information sets which to deal with games derived from ªreal life,º and particularly can be used by various algorithms in order to ®nd optimal strategies for that game. In particular, Gala from economic applications. In real life one rarely has perfect information. The insights developed by game theorists for implements the ®rst practical algorithm for ®nding such games also apply to the imperfect information games optimal randomized strategies in two-player imper- fect information competitive games [Koller et al., encountered in AI applications. 1994]. The running time of this algorithm is polyno- It is well-known in game theory that the notion of a strat- mial in the size of the game tree, whereas previous egy is necessarily different for games with imperfect informa- algorithms were exponential. We present exper- tion. In perfect information games, the optimal move for each imental results showing that this algorithm is also player is clearly de®ned: at every stage there is a ªrightº move ef®cient in practice and can therefore form the basis that is at least as good as any other move. But in imperfect for a game playing system. information games, the situation is not as straightforward. In the simple game of ªscissors-paper-stone,º any deterministic strategy is a losing one as soon as it is revealed to the other 1 Introduction players. Intuitively, in games where there is an information The idea of getting a computer to play a game has been around gap, it is usually to my advantage to keep my opponent in since the earliest days of computing. The fundamental idea is the dark. The only way to do that is by using randomized as follows: When it is the computer's turn to move, it creates strategies. Once randomized strategies are allowed, the exis- some part of the game tree starting at the current position, tence of ªoptimal strategiesº in imperfect information games evaluates the `leaves' of this partial tree using a heuristic can be proved. In particular, this means that there exists an evaluation function, and then does a minimax search of this optimal randomized strategy for poker, in much the same way tree to determine the optimal move at the root. This same as there exists an optimal deterministic strategy for chess. simple idea is still the core of most game-playing programs. Kuhn [1950] has shown for a simpli®ed poker game that the This paradigm has been successfully applied to a large class optimal strategy does, indeed, use randomization. of games, in particular chess, checkers, othello, backgammon, The optimality of a strategy has two consequences: the and go [Russell and Norvig, 1994, Ch. 5]. There have been far player cannot do better than this strategy if playing against fewer successful programs that play games such as poker or a good opponent, and furthermore the player does not do bridge. We claim that this is not an accident. These games fall worse even if his strategy is revealed to his opponent, i.e., the into two fundamentally different classes, and the techniques opponent gains no advantage from ®guring out the player's that apply to one do not usually apply to the other. strategy. This last feature is particularly important in the The essential difference lies in the information that is avail- context of game-playing programs, since they are vulnerable able to the players. In games such as chess or even backgam- to this form of attack: sometimes the code is accessible, and mon, the current state of the game is fully accessible to both in general, since they always play the same way, their strategy 1185 can be deduced by intensive testing. Given these important playing system for imperfect information games. bene®ts of randomized strategies in imperfect information games, it is somewhat surprising that none of the AI papers that deal with these games (e.g., [Blair et al., 1993; Gordon, 1993; 2 Some basic game theory Smith and Nau, 1993]) utilize such strategies. Game theory is the strategic analysis of interactive situations. In this work,we attempt to solve the computational problem Several aspects of a situation are modeled explicitly: the associated with imperfect information games: Given a concise players involved, the alternative actions that can be taken by description of a game, compute optimal strategies for that each player at various times, the dynamics of the situation, game. Two issues in particular must be addressed. First, the information available to players, and the outcomes at the how do we specify imperfect information games? Describing end. Given such a model, game theory provides the tools the dynamics of the players' information states in a concise to formally analyze the strategic interaction and recommend fashion is a nontrivialknowledge representation task. Second, `rational' strategies to the players. given a game tree with the appropriate structure, how do we The standard representation of a game in computer science ®nd optimal strategies for it? is a tree, in which each node is a possible state of the game, and We present an implemented system, called Gala, that ad- each edge is an action available to a player that takes the game dresses both these computational issues. Gala consists of four to a new state. At each node there is a single player whose turn components. The ®rst is a knowledge representation language it is to choose an action. The set of edges leading out of a node that allows a clear and concise speci®cation of imperfect in- are the choices available to that player. The player may be formation games. As our examples show, the description of chance or `nature', in which case the edges represent random a game in Gala is very similar to, and not much longer than, events. The leaves of the tree specify a payoff for each player. a natural language description of the rules of the game. The This representation is inadequate for games with imperfect second component of the system generates game trees from a information, because it does not specify the information states game description in the language. These game trees are aug- of the players. A player cannot distinguish between states of mented with information sets, a standard concept from game the game in which she has the same information. Thus, any theory that captures the information states of the players. decision taken by the player must be the same at all such The third component of the system addresses the issue of nodes. To encode this constraint, the game tree is augmented ®nding good strategies for such games. Obviously, the stan- with information sets. An information set contains a set of dard minimax-type algorithms cannot produce randomized nodes that are indistinguishable to a player at the time she has strategies. The game theoretic paradigm for solving games is to make a decision. based on taking the entire game tree, and transforming it into Figure 1 presents part of the game tree for a simpli®ed a matrix (called the normal or strategic form of the game). variant of poker described by Kuhn [1950]. The game has Various techniques, such as linear programming, can then be two players and a deck containing the three cards 1, 2, and applied to this matrix in order to construct optimal strategies. 3. Each player antes one dollar and is dealt one card. The Unfortunately, this matrix is typically exponential in the size ®gure shows the part of the game tree corresponding to the ¢ ¡ ¢ ¡ ¢ of the game tree, making the entire approach impractical for deals 2 ¡ 1 , 2 3 , and 1 3 . The game has three rounds. most games. In the ®rst round, the ®rst player can either bet an additional In recent work, Koller, Megiddo, and von Stengel [1994] dollar or pass. After hearing the ®rst player's bet, the second present an alternative approach to dealing with imperfect in- player decides whether to bet or pass.
Recommended publications
  • Lecture 4 Rationalizability & Nash Equilibrium Road
    Lecture 4 Rationalizability & Nash Equilibrium 14.12 Game Theory Muhamet Yildiz Road Map 1. Strategies – completed 2. Quiz 3. Dominance 4. Dominant-strategy equilibrium 5. Rationalizability 6. Nash Equilibrium 1 Strategy A strategy of a player is a complete contingent-plan, determining which action he will take at each information set he is to move (including the information sets that will not be reached according to this strategy). Matching pennies with perfect information 2’s Strategies: HH = Head if 1 plays Head, 1 Head if 1 plays Tail; HT = Head if 1 plays Head, Head Tail Tail if 1 plays Tail; 2 TH = Tail if 1 plays Head, 2 Head if 1 plays Tail; head tail head tail TT = Tail if 1 plays Head, Tail if 1 plays Tail. (-1,1) (1,-1) (1,-1) (-1,1) 2 Matching pennies with perfect information 2 1 HH HT TH TT Head Tail Matching pennies with Imperfect information 1 2 1 Head Tail Head Tail 2 Head (-1,1) (1,-1) head tail head tail Tail (1,-1) (-1,1) (-1,1) (1,-1) (1,-1) (-1,1) 3 A game with nature Left (5, 0) 1 Head 1/2 Right (2, 2) Nature (3, 3) 1/2 Left Tail 2 Right (0, -5) Mixed Strategy Definition: A mixed strategy of a player is a probability distribution over the set of his strategies. Pure strategies: Si = {si1,si2,…,sik} σ → A mixed strategy: i: S [0,1] s.t. σ σ σ i(si1) + i(si2) + … + i(sik) = 1. If the other players play s-i =(s1,…, si-1,si+1,…,sn), then σ the expected utility of playing i is σ σ σ i(si1)ui(si1,s-i) + i(si2)ui(si2,s-i) + … + i(sik)ui(sik,s-i).
    [Show full text]
  • SEQUENTIAL GAMES with PERFECT INFORMATION Example
    SEQUENTIAL GAMES WITH PERFECT INFORMATION Example 4.9 (page 105) Consider the sequential game given in Figure 4.9. We want to apply backward induction to the tree. 0 Vertex B is owned by player two, P2. The payoffs for P2 are 1 and 3, with 3 > 1, so the player picks R . Thus, the payoffs at B become (0, 3). 00 Next, vertex C is also owned by P2 with payoffs 1 and 0. Since 1 > 0, P2 picks L , and the payoffs are (4, 1). Player one, P1, owns A; the choice of L gives a payoff of 0 and R gives a payoff of 4; 4 > 0, so P1 chooses R. The final payoffs are (4, 1). 0 00 We claim that this strategy profile, { R } for P1 and { R ,L } is a Nash equilibrium. Notice that the 0 00 strategy profile gives a choice at each vertex. For the strategy { R ,L } fixed for P2, P1 has a maximal payoff by choosing { R }, ( 0 00 0 00 π1(R, { R ,L }) = 4 π1(R, { R ,L }) = 4 ≥ 0 00 π1(L, { R ,L }) = 0. 0 00 In the same way, for the strategy { R } fixed for P1, P2 has a maximal payoff by choosing { R ,L }, ( 00 0 00 π2(R, {∗,L }) = 1 π2(R, { R ,L }) = 1 ≥ 00 π2(R, {∗,R }) = 0, where ∗ means choose either L0 or R0. Since no change of choice by a player can increase that players own payoff, the strategy profile is called a Nash equilibrium. Notice that the above strategy profile is also a Nash equilibrium on each branch of the game tree, mainly starting at either B or starting at C.
    [Show full text]
  • Economics 201B Economic Theory (Spring 2021) Strategic Games
    Economics 201B Economic Theory (Spring 2021) Strategic Games Topics: terminology and notations (OR 1.7), games and solutions (OR 1.1-1.3), rationality and bounded rationality (OR 1.4-1.6), formalities (OR 2.1), best-response (OR 2.2), Nash equilibrium (OR 2.2), 2 2 examples × (OR 2.3), existence of Nash equilibrium (OR 2.4), mixed strategy Nash equilibrium (OR 3.1, 3.2), strictly competitive games (OR 2.5), evolution- ary stability (OR 3.4), rationalizability (OR 4.1), dominance (OR 4.2, 4.3), trembling hand perfection (OR 12.5). Terminology and notations (OR 1.7) Sets For R, ∈ ≥ ⇐⇒ ≥ for all . and ⇐⇒ ≥ for all and some . ⇐⇒ for all . Preferences is a binary relation on some set of alternatives R. % ⊆ From % we derive two other relations on : — strict performance relation and not  ⇐⇒ % % — indifference relation and ∼ ⇐⇒ % % Utility representation % is said to be — complete if , or . ∀ ∈ % % — transitive if , and then . ∀ ∈ % % % % can be presented by a utility function only if it is complete and transitive (rational). A function : R is a utility function representing if → % ∀ ∈ () () % ⇐⇒ ≥ % is said to be — continuous (preferences cannot jump...) if for any sequence of pairs () with ,and and , . { }∞=1 % → → % — (strictly) quasi-concave if for any the upper counter set ∈ { ∈ : is (strictly) convex. % } These guarantee the existence of continuous well-behaved utility function representation. Profiles Let be a the set of players. — () or simply () is a profile - a collection of values of some variable,∈ one for each player. — () or simply is the list of elements of the profile = ∈ { } − () for all players except . ∈ — ( ) is a list and an element ,whichistheprofile () .
    [Show full text]
  • Pure and Bayes-Nash Price of Anarchy for Generalized Second Price Auction
    Pure and Bayes-Nash Price of Anarchy for Generalized Second Price Auction Renato Paes Leme Eva´ Tardos Department of Computer Science Department of Computer Science Cornell University, Ithaca, NY Cornell University, Ithaca, NY [email protected] [email protected] Abstract—The Generalized Second Price Auction has for advertisements and slots higher on the page are been the main mechanism used by search companies more valuable (clicked on by more users). The bids to auction positions for advertisements on search pages. are used to determine both the assignment of bidders In this paper we study the social welfare of the Nash equilibria of this game in various models. In the full to slots, and the fees charged. In the simplest model, information setting, socially optimal Nash equilibria are the bidders are assigned to slots in order of bids, and known to exist (i.e., the Price of Stability is 1). This paper the fee for each click is the bid occupying the next is the first to prove bounds on the price of anarchy, and slot. This auction is called the Generalized Second Price to give any bounds in the Bayesian setting. Auction (GSP). More generally, positions and payments Our main result is to show that the price of anarchy is small assuming that all bidders play un-dominated in the Generalized Second Price Auction depend also on strategies. In the full information setting we prove a bound the click-through rates associated with the bidders, the of 1.618 for the price of anarchy for pure Nash equilibria, probability that the advertisement will get clicked on by and a bound of 4 for mixed Nash equilibria.
    [Show full text]
  • Extensive Form Games with Perfect Information
    Notes Strategy and Politics: Extensive Form Games with Perfect Information Matt Golder Pennsylvania State University Sequential Decision-Making Notes The model of a strategic (normal form) game suppresses the sequential structure of decision-making. When applying the model to situations in which players move sequentially, we assume that each player chooses her plan of action once and for all. She is committed to this plan, which she cannot modify as events unfold. The model of an extensive form game, by contrast, describes the sequential structure of decision-making explicitly, allowing us to study situations in which each player is free to change her mind as events unfold. Perfect Information Notes Perfect information describes a situation in which players are always fully informed about all of the previous actions taken by all players. This assumption is used in all of the following lecture notes that use \perfect information" in the title. Later we will also study more general cases where players may only be imperfectly informed about previous actions when choosing an action. Extensive Form Games Notes To describe an extensive form game with perfect information we need to specify the set of players and their preferences, just as for a strategic game. In addition, we also need to specify the order of the players' moves and the actions each player may take at each point (or decision node). We do so by specifying the set of all sequences of actions that can possibly occur, together with the player who moves at each point in each sequence. We refer to each possible sequence of actions (a1; a2; : : : ak) as a terminal history and to the function that denotes the player who moves at each point in each terminal history as the player function.
    [Show full text]
  • Games with Hidden Information
    Games with Hidden Information R&N Chapter 6 R&N Section 17.6 • Assumptions so far: – Two-player game : Player A and B. – Perfect information : Both players see all the states and decisions. Each decision is made sequentially . – Zero-sum : Player’s A gain is exactly equal to player B’s loss. • We are going to eliminate these constraints. We will eliminate first the assumption of “perfect information” leading to far more realistic models. – Some more game-theoretic definitions Matrix games – Minimax results for perfect information games – Minimax results for hidden information games 1 Player A 1 L R Player B 2 3 L R L R Player A 4 +2 +5 +2 L Extensive form of game: Represent the -1 +4 game by a tree A pure strategy for a player 1 defines the move that the L R player would make for every possible state that the player 2 3 would see. L R L R 4 +2 +5 +2 L -1 +4 2 Pure strategies for A: 1 Strategy I: (1 L,4 L) Strategy II: (1 L,4 R) L R Strategy III: (1 R,4 L) Strategy IV: (1 R,4 R) 2 3 Pure strategies for B: L R L R Strategy I: (2 L,3 L) Strategy II: (2 L,3 R) 4 +2 +5 +2 Strategy III: (2 R,3 L) L R Strategy IV: (2 R,3 R) -1 +4 In general: If N states and B moves, how many pure strategies exist? Matrix form of games Pure strategies for A: Pure strategies for B: Strategy I: (1 L,4 L) Strategy I: (2 L,3 L) Strategy II: (1 L,4 R) Strategy II: (2 L,3 R) Strategy III: (1 R,4 L) Strategy III: (2 R,3 L) 1 Strategy IV: (1 R,4 R) Strategy IV: (2 R,3 R) R L I II III IV 2 3 L R I -1 -1 +2 +2 L R 4 II +4 +4 +2 +2 +2 +5 +1 L R III +5 +1 +5 +1 IV +5 +1 +5 +1 -1 +4 3 Pure strategies for Player B Player A’s payoff I II III IV if game is played I -1 -1 +2 +2 with strategy I by II +4 +4 +2 +2 Player A and strategy III by III +5 +1 +5 +1 Player B for Player A for Pure strategies IV +5 +1 +5 +1 • Matrix normal form of games: The table contains the payoffs for all the possible combinations of pure strategies for Player A and Player B • The table characterizes the game completely, there is no need for any additional information about rules, etc.
    [Show full text]
  • Introduction to Game Theory: a Discovery Approach
    Linfield University DigitalCommons@Linfield Linfield Authors Book Gallery Faculty Scholarship & Creative Works 2020 Introduction to Game Theory: A Discovery Approach Jennifer Firkins Nordstrom Linfield College Follow this and additional works at: https://digitalcommons.linfield.edu/linfauth Part of the Logic and Foundations Commons, Set Theory Commons, and the Statistics and Probability Commons Recommended Citation Nordstrom, Jennifer Firkins, "Introduction to Game Theory: A Discovery Approach" (2020). Linfield Authors Book Gallery. 83. https://digitalcommons.linfield.edu/linfauth/83 This Book is protected by copyright and/or related rights. It is brought to you for free via open access, courtesy of DigitalCommons@Linfield, with permission from the rights-holder(s). Your use of this Book must comply with the Terms of Use for material posted in DigitalCommons@Linfield, or with other stated terms (such as a Creative Commons license) indicated in the record and/or on the work itself. For more information, or if you have questions about permitted uses, please contact [email protected]. Introduction to Game Theory a Discovery Approach Jennifer Firkins Nordstrom Linfield College McMinnville, OR January 4, 2020 Version 4, January 2020 ©2020 Jennifer Firkins Nordstrom This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Preface Many colleges and universities are offering courses in quantitative reasoning for all students. One model for a quantitative reasoning course is to provide students with a single cohesive topic. Ideally, such a topic can pique the curios- ity of students with wide ranging academic interests and limited mathematical background. This text is intended for use in such a course.
    [Show full text]
  • Extensive-Form Games with Perfect Information
    Extensive-Form Games with Perfect Information Jeffrey Ely April 22, 2015 Jeffrey Ely Extensive-Form Games with Perfect Information Extensive-Form Games With Perfect Information Recall the alternating offers bargaining game. It is an extensive-form game. (Described in terms of sequences of moves.) In this game, each time a player moves, he knows everything that has happened in the past. He can compute exactly how the game will end given any profile of continuation strategies Such a game is said to have perfect information. Jeffrey Ely Extensive-Form Games with Perfect Information Simple Extensive-Form Game With Perfect Information 1b ¨ H L ¨ H R ¨¨ HH 2r¨¨ HH2r AB @ C @ D @ @ r @r r @r 1, 0 2, 3 4, 1 −1, 0 Figure: An extensive game Jeffrey Ely Extensive-Form Games with Perfect Information Game Trees Nodes H Initial node. Terminal Nodes Z ⊂ H. Player correspondence N : H ⇒ f1, ... , ng (N(h) indicates who moves at h. They move simultaneously) Actions Ai (h) 6= Æ at each h where i 2 N(h). I Action profiles can be identified with branches in the tree. Payoffs ui : Z ! R. Jeffrey Ely Extensive-Form Games with Perfect Information Strategies A strategy for player i is a function si specifying si (h) 2 Ai (h) for each h such that i 2 N(h). Jeffrey Ely Extensive-Form Games with Perfect Information Strategic Form Given any profile of strategies s, there is a unique terminal node z(s) that will be reached. We define ui (s) = ui (z(s)). We have thus obtained a strategic-form representation of the game.
    [Show full text]
  • Perfect Conditional E-Equilibria of Multi-Stage Games with Infinite Sets
    Perfect Conditional -Equilibria of Multi-Stage Games with Infinite Sets of Signals and Actions∗ Roger B. Myerson∗ and Philip J. Reny∗∗ *Department of Economics and Harris School of Public Policy **Department of Economics University of Chicago Abstract Abstract: We extend Kreps and Wilson’s concept of sequential equilibrium to games with infinite sets of signals and actions. A strategy profile is a conditional -equilibrium if, for any of a player’s positive probability signal events, his conditional expected util- ity is within of the best that he can achieve by deviating. With topologies on action sets, a conditional -equilibrium is full if strategies give every open set of actions pos- itive probability. Such full conditional -equilibria need not be subgame perfect, so we consider a non-topological approach. Perfect conditional -equilibria are defined by testing conditional -rationality along nets of small perturbations of the players’ strate- gies and of nature’s probability function that, for any action and for almost any state, make this action and state eventually (in the net) always have positive probability. Every perfect conditional -equilibrium is a subgame perfect -equilibrium, and, in fi- nite games, limits of perfect conditional -equilibria as 0 are sequential equilibrium strategy profiles. But limit strategies need not exist in→ infinite games so we consider instead the limit distributions over outcomes. We call such outcome distributions per- fect conditional equilibrium distributions and establish their existence for a large class of regular projective games. Nature’s perturbations can produce equilibria that seem unintuitive and so we augment the game with a net of permissible perturbations.
    [Show full text]
  • Extensive-Form Games with Perfect Information
    Extensive-Form Games with Perfect Information Yiling Chen September 22, 2008 CS286r Fall'08 Extensive-Form Games with Perfect Information 1 Logistics In this unit, we cover 5.1 of the SLB book. Problem Set 1, due Wednesday September 24 in class. CS286r Fall'08 Extensive-Form Games with Perfect Information 2 Review: Normal-Form Games A finite n-person normal-form game, G =< N; A; u > I N = f1; 2; :::; ng is the set of players. I A = fA1; A2; :::; Ang is a set of available actions. I u = fu1; u2; :::ung is a set of utility functions for n agents. C D C 5,5 0,8 D 8,0 1,1 Prisoner's Dilemma CS286r Fall'08 Extensive-Form Games with Perfect Information 3 Example 1: The Sharing Game Alice and Bob try to split two indivisible and identical gifts. First, Alice suggests a split: which can be \Alice keeps both", \they each keep one", and \Bob keeps both". Then, Bob chooses whether to Accept or Reject the split. If Bob accepts the split, they each get what the split specifies. If Bob rejects, they each get nothing. Alice 2-0 1-1 0-2 Bob Bob Bob A R A R A R (2,0) (0,0) (1,1) (0,0) (0,2) (0,0) CS286r Fall'08 Extensive-Form Games with Perfect Information 4 Loosely Speaking... Extensive Form I A detailed description of the sequential structure of the decision problems encountered by the players in a game. I Often represented as a game tree Perfect Information I All players know the game structure (including the payoff functions at every outcome).
    [Show full text]
  • Epistemic Game Theory∗
    Epistemic game theory∗ Eddie Dekel and Marciano Siniscalchi Tel Aviv and Northwestern University, and Northwestern University January 14, 2014 Contents 1 Introduction and Motivation2 1.1 Philosophy/Methodology.................................4 2 Main ingredients5 2.1 Notation...........................................5 2.2 Strategic-form games....................................5 2.3 Belief hierarchies......................................6 2.4 Type structures.......................................7 2.5 Rationality and belief...................................9 2.6 Discussion.......................................... 10 2.6.1 State dependence and non-expected utility................... 10 2.6.2 Elicitation...................................... 11 2.6.3 Introspective beliefs................................ 11 2.6.4 Semantic/syntactic models............................ 11 3 Strategic games of complete information 12 3.1 Rationality and Common Belief in Rationality..................... 12 3.2 Discussion.......................................... 14 3.3 ∆-rationalizability..................................... 14 4 Equilibrium Concepts 15 4.1 Introduction......................................... 15 4.2 Subjective Correlated Equilibrium............................ 16 4.3 Objective correlated equilibrium............................. 17 4.4 Nash Equilibrium...................................... 21 4.5 The book-of-play assumption............................... 22 4.6 Discussion.......................................... 23 4.6.1 Condition AI...................................
    [Show full text]
  • Sequential Price of Anarchy for Atomic Congestion Games with Limited Number of Players
    Kiril Kolev Master Thesis Sequential Price of Anarchy for Atomic Congestion Games with Limited Number of Players August 2016 University of Twente Master Applied Mathematics Master Thesis Sequential Price of Anarchy for Atomic Congestion Games with Limited Number of Players Author: Supervisors: Kiril Kolev Marc Uetz Judith Timmer Jasper de Jong, MSc A thesis submitted in fulfillment of the requirements for the degree of Master of Science in the Discrete Mathematics and Mathematical Programming group of the University of Twente August 2016 \It is just as foolish to complain that people are selfish and treacherous as it is to complain that the magnetic field does not increase unless the electric field has a curl. Both are laws of nature." John von Neumann UNIVERSITY OF TWENTE Faculty of Electrical Engineering, Mathematics, and Computer Science Master Applied Mathematics Abstract Sequential Price of Anarchy for Atomic Congestion Games with Limited Number of Players by Kiril Kolev We consider sequentially played atomic congestion games with linear latency functions. To measure the quality of sub-game perfect equilibria of sequentially played games, we analyze the Sequential Price of Anarchy (SPoA), which is defined to be the ratio of the total cost given by the worst sub-game perfect equilibrium to the total cost of the social optimum. In this project, we want to improve lower and upper bounds on the value of SPoA using a linear programming approach. We limit the number of players to 4, 5 and 6 players and consider different combinations of their possible actions and resources they use. Additionaly we consider two player sequentially played non-atomic congestion games with split flow and give new results for the SPoA in all the possible cases.
    [Show full text]