Emc, a Negative HLH Regulator with Multiple Functions in Drosophila Development

Total Page:16

File Type:pdf, Size:1020Kb

Emc, a Negative HLH Regulator with Multiple Functions in Drosophila Development Oncogene (2001) 20, 8299 ± 8307 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc Emc, a negative HLH regulator with multiple functions in Drosophila development Sonsoles Campuzano*,1 1Centro de BiologõÂa Molecular Severo Ochoa, Cantoblanco, 28049 Madrid, Spain Expression and functional analyses of Emc have which by their own do not alter the pattern of SOs, a demonstrated that it is a prototype for a protein required recessive mutation in a gene encoding a repressor of for multiple processes in development. Initially char- AS-C would become dominant and promote the acterized as a negative regulator of sensory organ generation of extra SOs. That is, only one copy of development, it was later found to regulate many other that gene would not produce enough protein to repress developmental processes and cell proliferation. Its ability several copies of AS-C and allow a normal pattern of to block the function of bHLH proteins by forming SOs. Mutations that ful®lled this criterion were found heterodimers, which are ineective in DNA binding, in two loci: hairy (h) and the novel emc (Botas et al., accounts for the role of Emc in preventing the acquisition 1982). It was further observed that loss of emc of several cell fates which are under the control of bHLH function, in a wild type background for the AS-C, proteins. However, while maintaining this repressive caused development of extra SOs, whereas AS-C molecular mechanism, emc also appears to act as a de®ciencies suppressed this phenotype (Moscoso del positive regulator of dierentiation. Oncogene (2001) Prado and GarcõÂ a-Bellido, 1984a,b). Taken together, 20, 8299 ± 8307 these results suggested that the generation of extra SOs in emc mutants depended on the activity of the AS-C Keywords: Drosophila; extramacrochaetae; HLH; tran- and not on the modi®cation of a parallel develop- scription factor; development mental pathway. The molecular analysis of AS-C and emc con®rmed this hypothesis and provided a molecular basis for the negative regulation of AS-C Identi®cation of extramacrochaetae by emc. According to the usual nomenclature system of Drosophila genes, the extramacrochaetae (emc) gene Emc titrates away proneural proteins was named after the ®rst discovered phenotype associated to its loss-of-function mutations, i.e., the The achaete (ac)andscute (sc) genes encode proteins development of extra sensory organs (SOs) on the which contain the basic ± helix ± loop ± helix domain adult ¯y. The larval and adult epidermis of Drosophila (bHLH) characteristic of a family of transcriptional contains thousands of SOs that are distributed regulators (Murre et al., 1989a; Villares and Cabrera, according to a stereotyped pattern. Each SO is formed 1987; see Massari and Murre, 2000, for a recent by the progeny of a single cell, the sensory mother cell review). Biochemical analysis of mammalian bHLH (SMC), which, during the third larval instar or early proteins involved in myogenesis, the MyoD family, and pupal stages, is singled out from the population of of immunoglobulin enhancer binding bHLH proteins imaginal discs cells or abdominal histoblasts (Bate, E12 and E47, showed that the HLH domain allows 1978; Bodmer et al., 1989; GarcõÂ a-Bellido and these proteins to form homodimers or heterodimers Merriam, 1971; Hartenstein and Posakony, 1989). with other members of the family, while the basic Genetic analysis of loss and gain-of-function mutations region is required for binding to speci®c DNA in the achaete-scute complex (AS-C) indicated that it sequences (Murre et al., 1989b). ac and sc are was involved in the commitment of epidermal cells to expressed at the right place and time to promote dierentiate as SOs and that the AS-C might be under SMC determination, as anticipated by the genetic some type of negative regulation (GarcõÂ a-Bellido and analyses. Both genes are coexpressed in the wing SantamarõÂ a 1978; GarcõÂ a-Bellido, 1979). Back in the imaginal discs, the anlagen of most of the thorax and early eighties, a genetic screen was performed to the wings, in clusters of cells located at precisely identify genes that might negatively regulate the AS- determined positions (Cubas et al., 1991; Romani et C (Botas et al., 1982). The rationale of the screening al., 1989; Skeath and Carroll, 1991) (Figure 1a). SMCs was that in the presence of extra doses of the AS-C, are born within these clusters of ac ± sc expressing cells (Cubas et al., 1991; Skeath and Carroll, 1991) (Figure 1a). Moreover, removal of speci®c proneural clusters in *Correspondence: S Campuzano; E-mail: [email protected] ac or sc mutants removes the corresponding SMCs and Multiples requirements for Emc in development S Campuzano 8300 Figure 1 Relationship between the pattern of expression of sc (a) and emc (b, c) in the imaginal wing disc and the pattern of SMCs. (a) Imaginal wing disc from an enhancer trap line that expresses lacZ (green) in the SMCs. The distribution of sc mRNA, revealed by in situ hybridization, is shown in purple. Note that SMCs are born within the clusters of sc expressing cells. (b) Pattern of expression of emc. It is fairly complementary to that of sc. Note minima of emc expression at the regions where the SMCs for the DC and SC bristles develop. (c) Expression of emc (purple) and distribution of SMCs (green) in a Hairy wing imaginal wing disc. (Only the prospective wing region is shown). Although sc is ubiquitously expressed in Hairy wing discs (Balcells et al., 1988), expression of emc is not modi®ed (compare with b). Note the development of ectopic SMCs at the posterior wing margin (PWM) that arise within a region of minimal emc expression. Positions of some SMCs is indicated, namely those that will give rise to the anterior notopleural bristle (ANP); anterior postalar bristle (APA); anterior wing margin bristles (AWM); dorsocentral bristles (DC); giant sensilum of the radius (GSR); sensilla of the dorsal radius (Rd); scutellar bristles (SC) and sensilla of the tegula (Td). PWB, posterior wing blade; v3, vein 3 SOs (Cubas et al., 1991; Romani et al., 1989; Skeath development of extra SOs in ectopic positions (Balcells and Carroll, 1991) and a generalized distribution of et al., 1988; Skeath and Carroll, 1991). Since AS-C Ac ± Sc products (in Hairy wing mutants) promotes proteins confer on cells the ability to become neural Oncogene Multiples requirements for Emc in development S Campuzano 8301 precursors, the AS-C genes have been called proneural genes and the clusters of cells expressing them are referred to as the proneural clusters (Ghysen and Dambly-ChaudieÁ re, 1989; Romani et al., 1989). Another bHLH protein Daughterless (Da), previously identi®ed by its role in sex determination (Cline, 1989) acts synergistically with Ac/Sc to build the SO pattern (Caudy et al., 1988a,b; Dambly-ChaudieÁ re et al., 1988). HLH proteins have been classi®ed according to tissue distribution, dimerization capabilities and DNA-bind- ing site speci®city (Massari and Murre, 2000). Due to their restricted pattern of expression, Ac and Sc belong to HLH class II. On the contrary, Da belongs to class I HLH proteins, which show a generalized distribution (Massari and Murre, 2000). Usually, class II HLH proteins activate transcription in the form of hetero- dimers with class I HLH proteins (Massari and Murre, 2000). Thus, the molecular structure of As ± Sc and Da as well as their genetic interactions (Caudy et al., 1988a,b; Dambly-ChaudieÁ re et al., 1988; Villares and Cabrera, 1987) indicated that they are transcriptional regulators that, in combination, control the activity of genes involved in SMC commitment. In agreement with this hypothesis, AS-C proteins and Da can form heterodimers that bind to speci®c DNA sites in vitro (Cabrera et al., 1987; Murre et al., 1989b). emc also encodes a transcription factor of the HLH family, but the Emc protein lacks the basic region that is involved in the interaction with DNA (Ellis et al., 1990; Garrell and Modolell, 1990) and thus, it belongs to class V of HLH proteins (Massari and Murre, 2000). Heterodimers formed by a bHLH protein and an HLH protein devoid of the basic region are unable to bind to DNA (Davis et al., 1990; Voronova and Baltimore, 1990). Since it was already demonstrated that proneur- al proteins speci®cally bind to DNA in the form of heterodimers (Murre et al., 1989b), a plausible hypothesis for the regulatory interactions between Emc and AS-C was put forward (Figure 2a). Emc would antagonize proneural ac ± sc function by seques- tering proneural bHLH proteins in complexes incap- Figure 2 Possible mechanisms for Emc action. (a) Depicts the situation in an SMC. Sc and Da form heterodimers that are able able of eective interaction with DNA, rather than by to bind to DNA. The black rectangles indicate that the binding a direct repression of AS-C transcription (Ellis et al., domain of this heterodimer ®ts into the binding site present in the 1990; Garrell and Modolell, 1990, reviewed in Garrell promoter of the target gene. Sc/Emc and Da/Emc heterodimers and Campuzano, 1991). This mechanism would are unable to bind to DNA (indicated by the white rectangle). Commitment to the SMC fate takes place in cells like that shown account for the dose dependent interactions between in (a) in which the concentration of active heterodimers exceeds emc, as, sc and da, which suggested that a ®nely tuned that of ineective heterodimers, thus allowing activation of target balance of proneural proteins and of Emc was required gene promoter. In this case Emc plays a repressive role. A similar for proper SMC determination.
Recommended publications
  • Early Events of Neural Development
    Early events of neural development Goals: 1) to discuss the origins of cells in the nervous system 2) to discuss how neural stem cells generate diverse cell types in the nervous system The next four lectures will cover: Induction (Jan 22)...emergence of the nervous system Regionalization (Jan 24)...acquisition of positional information of neural cells Discussion of a journal article (Jan 26) Cell division and cell lineage (Jan 29) Neuronal fate specification (Jan 31) Discussion of a journal article (Feb 2) We will deal with glia later in the course! 1 Outline of this lecture Control of daughter cell fates after cell division (RGC vs differentiating cell) -Notch-Delta signaling -proneural basic helix-loop-helix (bHLH) transcription factors Identity of progenitor cells influence the type of neurons that the progenitor cell produces. -regional identity (outcome of regionalization) -temporal identity (RGCs changes as they undergo asymmetric divisions) Neuronal fate can be controlled postmitotically. 2 Published online: March 17, 2014 EMBO reports Neurogenesis during vertebrate development Judith TML Paridaen & Wieland B Huttner Published online: March 17, 2014 EMBO reports Neurogenesis during vertebrate development Judith TML Paridaen & Wieland B Huttner A C Regulation of spindle orientation Symmetric division Planar Oblique Horizontal NPCA 2 NPCs C Regulation of spindle orientation Mammalian neurogenesis Drosophila neuroblast Symmetric division Planar Oblique Horizontal NPC 2 NPCs Mammalian neurogenesis Drosophila neuroblast Apical Centrosome
    [Show full text]
  • Investigating the Co-Regulatory Role of Midline and Extramacrochaetae in Regulating Eye Development and Vision in Drosophila Melanogaster
    The University of Southern Mississippi The Aquila Digital Community Honors Theses Honors College Spring 5-2014 Investigating the Co-Regulatory Role of Midline and Extramacrochaetae In Regulating Eye Development and Vision in Drosophila melanogaster Lillian M. Forstall University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/honors_theses Part of the Developmental Biology Commons Recommended Citation Forstall, Lillian M., "Investigating the Co-Regulatory Role of Midline and Extramacrochaetae In Regulating Eye Development and Vision in Drosophila melanogaster" (2014). Honors Theses. 236. https://aquila.usm.edu/honors_theses/236 This Honors College Thesis is brought to you for free and open access by the Honors College at The Aquila Digital Community. It has been accepted for inclusion in Honors Theses by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi Investigating the Co-Regulatory Role of midline and extramacrochaetae In Regulating Eye Development and Vision in Drosophila melanogaster by Lillian Forstall A Thesis Submitted to the Honors College of The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in the Department of Biological Sciences May 2014 ii Approved by _________________________________ Dr. Sandra Leal, Ph.D., Thesis Adviser Assistant Professor of Biology _________________________________ Dr. Shiao Wang, Ph.D., Interim Chair Department of Biological Sciences _________________________________ Dr. David R. Davies, Ph.D., Dean Honors College iii Abstract The Honors thesis research focused on the roles of extramacrochaetae and midline in regulating eye development and the vision of Drosophila melanogaster.
    [Show full text]
  • Regulation of the Drosophila ID Protein Extra Macrochaetae by Proneural Dimerization Partners Ke Li1†, Nicholas E Baker1,2,3*
    RESEARCH ARTICLE Regulation of the Drosophila ID protein Extra macrochaetae by proneural dimerization partners Ke Li1†, Nicholas E Baker1,2,3* 1Department of Genetics, Albert Einstein College of Medicine, Bronx, United States; 2Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, United States; 3Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, United States Abstract Proneural bHLH proteins are transcriptional regulators of neural fate specification. Extra macrochaetae (Emc) forms inactive heterodimers with both proneural bHLH proteins and their bHLH partners (represented in Drosophila by Daughterless). It is generally thought that varying levels of Emc define a prepattern that determines where proneural bHLH genes can be effective. We report that instead it is the bHLH proteins that determine the pattern of Emc levels. Daughterless level sets Emc protein levels in most cells, apparently by stabilizing Emc in heterodimers. Emc is destabilized in proneural regions by local competition for heterodimer formation by proneural bHLH proteins including Atonal or AS-C proteins. Reflecting this post- translational control through protein stability, uniform emc transcription is sufficient for almost normal patterns of neurogenesis. Protein stability regulated by exchanges between bHLH protein *For correspondence: dimers could be a feature of bHLH-mediated developmental events. [email protected] DOI: https://doi.org/10.7554/eLife.33967.001 Present address: †Howard Hughes Medical Institute, Department of Physiology, University of California, San Introduction Francisco, San Francisco, United Proneural bHLH genes play a fundamental role in neurogenesis. Genes from Drosophila such as States atonal (ato) and genes of the Achaete-Scute gene complex (AS-C) define the proneural regions that Competing interests: The have the potential for neural fate (Baker and Brown, 2018; Bertrand et al., 2002; Go´mez- authors declare that no Skarmeta et al., 2003).
    [Show full text]
  • Cell Proliferation Control by Notch Signalling During Imaginal Discs
    Published online: 2021-05-10 Manuscript submitted to: Volume 2, Issue 1, 70-96. AIMS Genetics DOI: 10.3934/genet.2015.1.70 Received date 13 November 2014, Accepted date 25 January 2015, Published date 5 February 2015 Review Cell proliferation control by Notch signalling during imaginal discs development in Drosophila Carlos Estella 1 and Antonio Baonza 2, * 1 Departamento de Biología Molecular and Centro de Biología Molecular SeveroOchoa, Universidad Autónoma de Madrid (UAM), Madrid, Spain 2 Centro de Biología Molecular Severo Ochoa (CSIC/UAM) c/Nicolás Cabrera 1, 28049, Madrid, Spain * Correspondence: Email: [email protected]; Tel: 0034 914974129; Fax: 0034 914978632. Abstract: The Notch signalling pathway is evolutionary conserved and participates in numerous developmental processes, including the control of cell proliferation. However, Notch signalling can promote or restrain cell division depending on the developmental context, as has been observed in human cancer where Notch can function as a tumor suppressor or an oncogene. Thus, the outcome of Notch signalling can be influenced by the cross-talk between Notch and other signalling pathways. The use of model organisms such as Drosophila has been proven to be very valuable to understand the developmental role of the Notch pathway in different tissues and its relationship with other signalling pathways during cell proliferation control. Here we review recent studies in Drosophila that shed light in the developmental control of cell proliferation by the Notch pathway in different contexts such as the eye, wing and leg imaginal discs. We also discuss the autonomous and non-autonomous effects of the Notch pathway on cell proliferation and its interactions with different signalling pathways.
    [Show full text]
  • Atrophin Controls Developmental Signaling Pathways Via Interactions
    RESEARCH ARTICLE Atrophin controls developmental signaling pathways via interactions with Trithorax-like Kelvin Yeung1,2, Ann Boija3, Edvin Karlsson4,5, Per-Henrik Holmqvist3, Yonit Tsatskis1,2, Ilaria Nisoli6†, Damian Yap7,8, Alireza Lorzadeh9,10,11, Michelle Moksa9,10,11, Martin Hirst9,10,11, Samuel Aparicio7,8, Manolis Fanto6, Per Stenberg4,5, Mattias Mannervik3*, Helen McNeill1,2* 1Department of Molecular Genetics, University of Toronto, Toronto, Canada; 2Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; 3Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; 4Department of Molecular Biology, Umea˚ University, Umea˚ , Sweden; 5Division of CBRN Security and Defence, FOI-Swedish Defence Research Agency, Umea˚ , Sweden; 6Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom; 7Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Canada; 8Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; 9Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada; 10Michael Smith Laboratories, Vancouver, Canada; 11Canada’s *For correspondence: mattias. [email protected] (MMa); mcneill@ Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, Canada lunenfeld.ca (HM) Present address: †Division of Infection and Immunity, Abstract Mutations in human Atrophin1, a transcriptional
    [Show full text]
  • Gene Expression in Wild-Type and Myod-Null Satellite Cells: Regulation of Activation, Proliferation, and Myogenesis
    Gene expression in wild-type and MyoD-null satellite cells: regulation of activation, proliferation, and myogenesis Thesis by Dawn D. W. Cornelison In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 1998 (Submitted May 22, 1998) 11 © 1998 Dawn D.W. Cornelison All rights reserved. 11l Acknowledgements I would like to thank all of the people in and out of Caltech who have influenced my graduate education, in particular: First, my parents, for never thinking there was anything I couldn't do; and if they occasionally thought I shouldn't, for not saying so out loud. Drs. Andy and Toni Smolen, for showing me how much fun it is. Katherine Woo, for her friendship, support, and inspiration, not to mention her generosity with her excellent microscopy skills and occasional babysitting. The members of my committee, for their support and enthusiasm, particularly Scott Fraser, for a vote of confidence when one was most needed. The members of the Wold lab, past and present, especially Kyuson Yun, Ardem Patapoutian, Sonya Palmer and Marie Csete. I have been incredibly lucky to have been surrounded by labmates whom I like as people as much as I respect as scientists. The members and associates of the ARCS Foundation, for their generous and much-appreciated support for many years. My daughters, Ceili, Abagael, and Aidan, for being very understanding about having a mad scientist for a mom. Last and most, to Paul, for all the reasons he knows and a few that he doesn't, I dedicate this work with love and gratitude.
    [Show full text]
  • The Drosophila Extramacrochaetae Protein Antagonizes Sequence-Specific DNA Binding by Daughterless/Achaete-Scute Protein Complexes
    Development 113, 245-255 (1991) 245 Printed in Great Britain © The Company of Biologists Limited 1991 The Drosophila extramacrochaetae protein antagonizes sequence-specific DNA binding by daughterless/achaete-scute protein complexes MARK VAN DOREN, HILARY M. ELLIS* and JAMES W. POSAKONYf Department of Biology and Center for Molecular Genetics, University of California San Diego, LaJolla, CA 92093-0322, USA * Present address: Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA t Corresponding author Summary In Drosophila, a group of regulatory proteins of the of emc. Under the conditions of our experiments, the emc helix-loop-helix (HLH) class play an essential role in protein, but not the h protein, is able to antagonize conferring upon cells in the developing adult epidermis specifically the in vitro DNA-binding activity of da/AS-C the competence to give rise to sensory organs. Proteins and putative da/da protein complexes. We interpret encoded by the daughterless (da) gene and three genes of these results as follows: the heterodimerization capacity the achaete-scute complex (AS-C) act positively in the of the emc protein (conferred by its HLH domain) allows determination of the sensory organ precursor cell fate, it to act in vivo as a competitive inhibitor of the while the extramacrochaetae (emc) and hairy (h) gene formation of functional DNA-binding protein complexes products act as negative regulators. In the region by the da and AS-C proteins, thereby reducing the upstream of the achaete gene of the AS-C, we have effective level of their transcriptional regulatory activity identified three 'E box' consensus sequences that are within the cell.
    [Show full text]
  • Hes6 Inhibits Astrocyte Differentiation and Promotes Neurogenesis Through Different Mechanisms
    The Journal of Neuroscience, October 25, 2006 • 26(43):11061–11071 • 11061 Cellular/Molecular Hes6 Inhibits Astrocyte Differentiation and Promotes Neurogenesis through Different Mechanisms Sumit Jhas, Sorana Ciura,* Stephanie Belanger-Jasmin,* Zhifeng Dong, Estelle Llamosas, Francesca M. Theriault, Kerline Joachim, Yeman Tang, Lauren Liu, Jisheng Liu, and Stefano Stifani Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4 The mechanisms regulating the generation of cell diversity in the mammalian cerebral cortex are beginning to be elucidated. In that regard, Hairy/Enhancer of split (Hes) 1 and 5 are basic helix-loop-helix (bHLH) factors that inhibit the differentiation of pluripotent cortical progenitors into neurons. In contrast, a related Hes family member termed Hes6 promotes neurogenesis. It is shown here that knockdown of endogenous Hes6 causes supernumerary cortical progenitors to differentiate into cells that exhibit an astrocytic morphol- ogy and express the astrocyte marker protein GFAP. Conversely, exogenous Hes6 expression in cortical progenitors inhibits astrocyte differentiation. The negative effect of Hes6 on astrocyte differentiation is independent of its ability to promote neuronal differentiation. We also show that neither its proneuronal nor its anti-gliogenic functions appear to depend on Hes6 ability to bind to DNA via the basic arm of its bHLH domain. Both of these activities require Hes6 to be localized to nuclei, but only its anti-gliogenic function depends on two short peptides, LNHLL and WRPW, that are conserved in all Hes6 proteins. These findings suggest that Hes6 is an important regulator of the neurogenic phase of cortical development by promoting the neuronal fate while suppressing astrocyte differentiation.
    [Show full text]
  • Extramacrochaete Promotes Branch and Bouton Number Via the Sequestration Of
    bioRxiv preprint doi: https://doi.org/10.1101/686014; this version posted June 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Title: Extramacrochaete promotes branch and bouton number via the sequestration of Daughterless in the cytoplasm of neurons. Authors: Edward A. Waddell1, Jennifer M. Viveiros1, Erin L. Robinson1, Michal A. Sharoni1, Nina K. Latcheva1, and Daniel R. Marenda1*, 2* Addresses: 1Department of Biology, Drexel University, Philadelphia, PA, USA; 2Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA *Correspondence: Daniel R. Marenda, Department of Biology, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104. Email: [email protected]; Short Title: Emc sequesters Da in the cytoplasm Key Words: Daughterless; TCF4; NMJ; proneural; bHLH; Pitt-Hopkins; schizophrenia; EMC; ID; HLH 1 bioRxiv preprint doi: https://doi.org/10.1101/686014; this version posted June 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract The class I basic Helix Loop Helix (bHLH) proteins are highly conserved transcription factors that are ubiquitously expressed. A wealth of literature on class I bHLH proteins have shown that these proteins must homodimerize or heterodimerize with tissue specific HLH proteins in order to bind DNA at E box (CANNTG) consensus sequences to control tissue specific transcription.
    [Show full text]
  • Regulation of Proneural Gene Expression and Cell Fate During Neuroblast Segregation in the Drosophila Embryo
    Development 114, 939-946 (1992) 939 Printed in Great Britain © The Company of Biologists Limited 1992 Regulation of proneural gene expression and cell fate during neuroblast segregation in the Drosophila embryo JAMES B. SKEATH and SEAN B. CARROLL* Howard Hughes Medical Institute, Laboratory of Molecular Biology, University of Wisconsin - Madison, 1525 Linden Drive, Madison, WI 53706, USA *To whom correspondence should be addressed Summary The Drosophila embryonic central nervous system expressed in a repeating pattern of four ectodermal cell develops from sets of progenitor neuroblasts which clusters per hemisegment. Even though 5-7 cells initially segregate from the neuroectoderm during early embryo- express ac in each cluster, only one, the neuroblast, genesis. Cells within this region can follow either the continues to express ac. The repression of ac in the neural or epidermal developmental pathway, a decision remaining cells of the cluster requires zygotic neurogenic guided by two opposing classes of genes. The proneural gene function. In embryos lacking any one of five genes, genes, including the members of the achaete-scute the restriction of ac expression to single cells does not complex (AS-C), promote neurogenesis, while the occur; instead, all cells of each cluster continue to neurogenic genes prevent neurogenesis and facilitate express ac, enlarge, delaminate and become neuroblasts. epidermal development. To understand the role that It appears that one key function of the neurogenic genes proneural gene expression and regulation play in the is to silence proneural gene expression within the choice between neurogenesis and epidermogenesis, we nonsegregating cells of the initial ectodermal clusters, examined the temporal and spatial expression pattern of thereby permitting epidermal development.
    [Show full text]
  • 7648.Full.Pdf
    The Journal of Neuroscience, October 15, 2000, 20(20):7648–7656 Evidence That Helix-Loop-Helix Proteins Collaborate with Retinoblastoma Tumor Suppressor Protein to Regulate Cortical Neurogenesis Jean G. Toma, Hiba El-Bizri, Fanie Barnabe´ -Heider, Raquel Aloyz, and Freda D. Miller Center for Neuronal Survival, Montreal Neurological Institute, Montreal, Canada H3A 2B4 The retinoblastoma tumor suppressor protein (pRb) family is phenotypes were rescued by coexpression of a constitutively essential for cortical progenitors to exit the cell cycle and survive. activated pRb mutant. In contrast, Id2 overexpression in post- In this report, we test the hypothesis that pRb collaborates with mitotic cortical neurons affected neither neuronal gene expres- basic helix-loop-helix (bHLH) transcription factors to regulate sion nor survival. Thus, pRb collaborates with HLHs to ensure the cortical neurogenesis, taking advantage of the naturally occur- coordinate induction of terminal mitosis and neuronal gene ex- ring dominant-inhibitory HLH protein Id2. Overexpression of Id2 pression as cortical progenitors become neurons. in cortical progenitors completely inhibited the induction of Key words: neurogenesis; Id2; pRb; bHLH transcription fac- neuron-specific genes and led to apoptosis, presumably as a tors; cortical development; neuronal gene expression; ␣-tubulin; consequence of conflicting differentiation signals. Both of these neural progenitor cells; neurofilaments; apoptosis During embryogenesis, cycling neural progenitor cells in the ven- In particular, in the PNS, bHLHs such as Mash-1 (Johnson et al., tricular zones of the CNS commit to a neuronal fate, and as a 1990) and the neurogenins (Ma et al., 1996; Sommer et al., 1996) consequence of that decision, coordinately undergo terminal mito- regulate the genesis of defined neuronal populations (Guillemot et sis and induce early, neuron-specific genes.
    [Show full text]
  • Topic 3.0 Genetic Determination of Sex 3.1 Drosophila 3.2 Human
    April 2020 ZOB 603: Genetic and Cell Biology Topic 3.0 Genetic Determination of Sex 3.1 Drosophila 3.2 Human Developed By – Dr. Ganesh Kumar Maurya Assistant Professor (Zoology) MMV, BHU Sex & its Determination • The word SEX is derived from the Latin word sexus meaning separation. • Sex is the morphological ,physiological & behavioural difference observed between egg and sperm producing organisms. WHAT IS SEX DETERMINATION? - It refers to the hormonal, environmental and genetical especially molecular mechanism that make an organism either male or female. - It determines the development of sexual characteristics in an organism. Sex Determination in Drosophila - In Drosophila, sex determination is achieved by Genic balance mechanism (given by Calvin Bridges , 1926)i.e. a balance of female determinants on the X chromosome and male determinants on the autosomes. - Ratio of X chromosomes: haploid sets of autosomes (X:A) determine the sex. X chromosome = Female producing effects Autosomes = Male producing effects Y Chromosome= Fertility factor in male required for sperm formation but not in sex determination. X:A ratio Female = 1.0 (2X:2A) Male = 0.5 (1x:2A) 0.5 < X:A < 1.0 = intersex XO Drosophila are sterile males. Gynandromorphs Gynandromorphs are animals in which certain regions of the body are male and other regions are female. Examples - Drosophila and certain other insects - This can happen when an X chromosome is lost from one embryonic nucleus. The cells descended from that cell, instead of being XX (female), are XO (male) - In Insects, each cell makes its own sexual "decision" because they lack sex hormones to modulate such events.
    [Show full text]