In-Space Production of Storable Propellants

Total Page:16

File Type:pdf, Size:1020Kb

In-Space Production of Storable Propellants Deep Space Industries Inc. In-Space Production NNX15AL85G of Storable Propellants NIAC Phase I Final Report for NNX15AL85G: In-Space Production of Storable Propellants Deep Space Industries Inc. John S. Lewis, P. I. 1 March 2016 Deep Space Industries Inc. In-Space Production NNX15AL85G of Storable Propellants Table of Contents Overview and Conclusions ............................................................................................................................ 1 Introduction .................................................................................................................................................. 5 1. Available Feedstock on C-cadre Asteroids ................................................................................................ 5 2. Energy Requirements for Heating Feedstock ........................................................................................... 6 3. Recovered Water and its Uses ................................................................................................................ 16 4. Electrolysis of Water for STP or Direct Combustion .............................................................................. 17 5. Electrolysis of Water for Manufacture of Storables .............................................................................. 19 6. Where Should we Make Propellants? ..................................................................................................... 20 7. Storage and Transportation of Water and Carbon Dioxide ................................................................... 20 8. Methanol/Dimethyl Ether Synthesis ...................................................................................................... 22 9. Conventional (Earthside) H2O2 Synthesis ................................................................................................ 24 10. Space-based direct synthesis of H2O2 ................................................................................................... 25 11. Long-Term Storage of Hydrogen Peroxide ............................................................................................ 26 12. Effect of Peroxide Degradation on Propellant Performance ................................................................ 28 13. Freezing and Distillation Behavior of Hydrogen Peroxide ................................................................... 28 14. Raw Materials Requirements for Storable Propellant Synthesis .......................................................... 30 15. DME/H2O2 Combustion ........................................................................................................................ 32 16. Schematic Processing System Architecture on an Asteroid................................................................. 33 17. Schematic Processing System Architecture in Earth Orbit .................................................................. 37 18. Hydrogen peroxide as a monopropellant ............................................................................................ 42 19. Applications of this Propellant Manufacturing Scheme: the Mars System and the Moon ................. 42 20. Mission Opportunities for Use of Storable Space-based Propellants .................................................. 43 20.1 Transportation from NEAs to Earth’s vicinity. ................................................................................ 44 20.2 Capture and delivery to HEEO Processing Facility orbit via single lunar swingby. ......................... 47 20.3 Selection of the HEEO Processing and Storage Facility Orbit ......................................................... 50 20.4 Delivery of processed propellants to customer orbits. .................................................................. 51 21. Synergy with New-Generation Low-Cost Earth-Launch Technologies ................................................ 55 22. Terrestrial applications of improved H2O2 syntheses ........................................................................... 55 References .................................................................................................................................................. 56 1 Deep Space Industries Inc. In-Space Production NNX15AL85G of Storable Propellants List of Tables Table 1. Potential fuel/oxidizer pairs compared to feedstock composition ............................................... 31 Table 2. Heats of combustion for assorted fuel/oxidizer pairs .................................................................. 32 Table 3. Analysis of producing different fuels for use with HTP. ............................................................... 41 Table 4. ΔV costs (impulsively modeled) for delivery of HEEO materials to markets in other orbits. ....... 51 List of Figures Fig. 1 Decomposition pressures of various hydrous mineral phases. ....................................................... 10 Fig. 2 Projection of the Fe-S-O phase diagram on the p(s2)-p(O2) plane at 800 K. .................................. 12 Fig. 3 Projection of the Fe-S-O phase diagram on the p(s2)-p(O2) plane at 1000 K. ................................. 13 Fig. 4 The equilibrium stability field of CO2 clathrate hydrate ................................................................. 21 Fig. 5 Rate of decomposition of HTP H2O2 in Al-alloy tanks. ................................................................... 27 Fig. 6 Equilibrium phase diagram of the H2O2-H2O system on the p(H2O2)-p(H2O) plane. ................... 29 Fig. 7 Analysis of at-the-asteroid processing identified 13 major phases ................................................. 35 Fig. 8 The synthesis of HTP and a fuel (TBD) will be conducted in Earth orbit. ......................................... 40 Fig. 9 Ballistic Trajectory between 2009 HC and Earth. ............................................................................. 46 Fig. 10 STP transfer between 2009 HC and Earth. Isp = 200 s, Thrust = 45N @ 1 AU ................................. 46 Fig. 11 STP transfer between 1998 KY26 and Earth. Isp = 200 s, Thrust = 80N @ 1 AU .............................. 47 Fig. 12. Lunar swingby trajectory. .............................................................................................................. 48 Fig. 13 “Porkchop” Plot Showing Mission Opportunity in terms of ΔV ...................................................... 54 2 Deep Space Industries Inc. In-Space Production NNX15AL85G of Storable Propellants Overview and Conclusions Our exploration of the feasibility of in-space production of storable propellants from resources available on asteroids, and also on Mars and the Moon, has considered the process of sample acquisition; the energy requirements for heating and volatile release; the thermodynamic behavior of gas release from minerals and organic polymers containing hydrogen, oxygen, carbon, sulfur, and nitrogen; purification of the released water and carbon dioxide; the storage and transportation of these materials in the condensed state; synthesis of fuels including methanol and dimethyl ether (DME); and the co-production, concentration, stability, and storage of the complementary oxidizer high-test hydrogen peroxide (HTP). We call attention to the ability of the storable propellant/oxidizer combination of DME and HTP to carry out deep-space missions and to perform retrieval and relocation of any and all space-derived resources, such as retrieving asteroidal metal to high Earth orbit. This study’s analyses are based on returning resources to a storage/processing/dispensing facility in a Highly Eccentric Earth Orbit (HEEO) with a perigee above geosynchronous orbit and an apogee approach or beyond the Moon’s orbit. The methane/LOX option, notable for good engine performance, has not been included in this study because our scope includes only fully storable propellants. This work in Phase I has led to a number of conclusions. These are: 1. Thermodynamic theory shows that extraction of water and carbon dioxide from carbonaceous (C-type) near-Earth asteroids by means of direct solar heating is feasible and efficient. This is in agreement with experiments carried out by Joel Sercel in an independent NIAC Phase I project, using both CM type meteorite material and a C-type asteroid simulant that we have developed at DSI and the University of Central Florida under an SBIR grant running concurrently with this (and his) NIAC grant. 2. The same theory also predicts that attempts at full extraction of volatiles from a C asteroid will require calciner temperatures of at least 700 K, at which temperature not only does the native organic polymer in the C asteroid material react with magnetite (Fe3O4) to generate carbon dioxide and water vapor, but also these gases react with coexisting sulfide and sulfate minerals to release copious amounts of sulfur dioxide. This prediction has also been qualitatively verified by Joel Sercel’s work on meteorite and DSI simulant materials. At these temperatures, release of H, C, O, N, and S produces gases amounting to about 40% of the total mass of the asteroidal material. 3. The principal sulfur gas released, sulfur dioxide, is a source of some concern for several reasons. It is a toxic and offensively odorous gas that must be removed from water intended for life-support or hydroponic use. It also spontaneously generates elemental sulfur and sulfuric acid, highly undesirable materials that can corrode or clog water-handling systems
Recommended publications
  • New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period
    Hayabusa2 Extended Mission: New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period M. Hirabayashi1, Y. Mimasu2, N. Sakatani3, S. Watanabe4, Y. Tsuda2, T. Saiki2, S. Kikuchi2, T. Kouyama5, M. Yoshikawa2, S. Tanaka2, S. Nakazawa2, Y. Takei2, F. Terui2, H. Takeuchi2, A. Fujii2, T. Iwata2, K. Tsumura6, S. Matsuura7, Y. Shimaki2, S. Urakawa8, Y. Ishibashi9, S. Hasegawa2, M. Ishiguro10, D. Kuroda11, S. Okumura8, S. Sugita12, T. Okada2, S. Kameda3, S. Kamata13, A. Higuchi14, H. Senshu15, H. Noda16, K. Matsumoto16, R. Suetsugu17, T. Hirai15, K. Kitazato18, D. Farnocchia19, S.P. Naidu19, D.J. Tholen20, C.W. Hergenrother21, R.J. Whiteley22, N. A. Moskovitz23, P.A. Abell24, and the Hayabusa2 extended mission study group. 1Auburn University, Auburn, AL, USA ([email protected]) 2Japan Aerospace Exploration Agency, Kanagawa, Japan 3Rikkyo University, Tokyo, Japan 4Nagoya University, Aichi, Japan 5National Institute of Advanced Industrial Science and Technology, Tokyo, Japan 6Tokyo City University, Tokyo, Japan 7Kwansei Gakuin University, Hyogo, Japan 8Japan Spaceguard Association, Okayama, Japan 9Hosei University, Tokyo, Japan 10Seoul National University, Seoul, South Korea 11Kyoto University, Kyoto, Japan 12University of Tokyo, Tokyo, Japan 13Hokkaido University, Hokkaido, Japan 14University of Occupational and Environmental Health, Fukuoka, Japan 15Chiba Institute of Technology, Chiba, Japan 16National Astronomical Observatory of Japan, Iwate, Japan 17National Institute of Technology, Oshima College, Yamaguchi, Japan 18University of Aizu, Fukushima, Japan 19Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 20University of Hawai’i, Manoa, HI, USA 21University of Arizona, Tucson, AZ, USA 22Asgard Research, Denver, CO, USA 23Lowell Observatory, Flagstaff, AZ, USA 24NASA Johnson Space Center, Houston, TX, USA 1 Highlights 1.
    [Show full text]
  • Potential Resources on and from the Asteroids/Comets; Threats
    ASTEROIDS AND COMETS: POTENTIAL RESOURCES LECTURE 21 NEEP 533 HARRISON H. SCHMITT EROS C-TYPE NASA/NEAR SHOEMAKER/APL 11X11X34 KM ASTEROIDS IN GENERAL 1.3 GM/CM3 MAIN BELT ASTEROIDS BETWEEN JUPITER AND MARS NEAR EARTH ASTEROIDS SOME MAY BE SPENT COMETS EARTH CROSSING ASTEROIDS SOME MAY BE SPENT COMETS “CENTAUR” ASTEROIDS BETWEEN JUPITER AND URANUS CHIRON, 1979 VA, AND 133P/ELST-PIZARRO ALSO HAVE COMET- LIKE BEHAVIOR “TROJAN” ASTEROIDS JUPITER’S ORBIT AND CONTROLLED BY IT GENERAL CHARACTERISTICS RUBBLE PILES (?) NO ASTEROID >150M ROTATES FASTER THAN ONE REVOLUTION PER 2 HOURS CALCULATED LIMIT FOR RUBBLE TO STAY TOGETHER 1998 KY26 IS 30M IN DIAMETER, ROTATES IN 10.7 MIN. AND MAY BE SOLID MAY BE A TRANSITION IN ORBITAL CHARACTERISTICS AND / OR COMPOSITION BETWEEN SOME ASTEROIDS AND COMETS • S-TYPE OTHER ASTEROIDS – INNER ASTEROID BELT – EVIDENCE OF HEATING AND DIFFERENTIATION – 29 TELESCOPIC SPECTRA (Binzel, et al., 1996) • INTERMEDIATE BETWEEN S-TYPE AND ORDINARY CHONDRITES – 1. DISTINCT ROCK TYPES VS DIVERSE LARGER BODIES – 2. ABUNDANCE OF OPAQUE MATERIALS – 3. FRESH SURFACES (MOST LIKELY) • BASALTIC ACHONDRITES (6%) – 4 VESTA AT 2.36 AU [MAIN BELT PARENT (?)] – TOUTATIS - NEA (RADAR STUDY) • 4.5X2.4X1.9KM, 2.1 GM/CM3, TWO ROTATIONS, I.E., TUMBLING (5.4 AND 7.3 DAYS) – 1459 MAGNYA AT 3.15 AU [FRAGMENT OF LARGER BODY (?)] EROS • (Lazzaro, et al, 2000, Science, 288) C-TYPE (REVISED BY GRS DATA) 11X11X33 KM 2.7 GM/CM3 5.27 HR ROTATION NASA/NEAR SHOEMAKER/APL OTHER ASTEROIDS • D-TYPE CARBONACEOUS CHONDRITE (BEYOND MAIN BELT ASTEROIDS) – TAGISH
    [Show full text]
  • Asteroid Retrieval Feasibility Study
    Asteroid Retrieval Feasibility Study 2 April 2012 Prepared for the: Keck Institute for Space Studies California Institute of Technology Jet Propulsion Laboratory Pasadena, California 1 2 Authors and Study Participants NAME Organization E-Mail Signature John Brophy Co-Leader / NASA JPL / Caltech [email protected] Fred Culick Co-Leader / Caltech [email protected] Co -Leader / The Planetary Louis Friedman [email protected] Society Carlton Allen NASA JSC [email protected] David Baughman Naval Postgraduate School [email protected] NASA ARC/Carnegie Mellon Julie Bellerose [email protected] University Bruce Betts The Planetary Society [email protected] Mike Brown Caltech [email protected] Michael Busch UCLA [email protected] John Casani NASA JPL [email protected] Marcello Coradini ESA [email protected] John Dankanich NASA GRC [email protected] Paul Dimotakis Caltech [email protected] Harvard -Smithsonian Center for Martin Elvis [email protected] Astrophysics Ian Garrick-Bethel UCSC [email protected] Bob Gershman NASA JPL [email protected] Florida Institute for Human and Tom Jones [email protected] Machine Cognition Damon Landau NASA JPL [email protected] Chris Lewicki Arkyd Astronautics [email protected] John Lewis University of Arizona [email protected] Pedro Llanos USC [email protected] Mark Lupisella NASA GSFC [email protected] Dan Mazanek NASA LaRC [email protected] Prakhar Mehrotra Caltech [email protected]
    [Show full text]
  • The Orbital Distribution of Near-Earth Objects Inside Earth’S Orbit
    Icarus 217 (2012) 355–366 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus The orbital distribution of Near-Earth Objects inside Earth’s orbit ⇑ Sarah Greenstreet a, , Henry Ngo a,b, Brett Gladman a a Department of Physics & Astronomy, 6224 Agricultural Road, University of British Columbia, Vancouver, British Columbia, Canada b Department of Physics, Engineering Physics, and Astronomy, 99 University Avenue, Queen’s University, Kingston, Ontario, Canada article info abstract Article history: Canada’s Near-Earth Object Surveillance Satellite (NEOSSat), set to launch in early 2012, will search for Received 17 August 2011 and track Near-Earth Objects (NEOs), tuning its search to best detect objects with a < 1.0 AU. In order Revised 8 November 2011 to construct an optimal pointing strategy for NEOSSat, we needed more detailed information in the Accepted 9 November 2011 a < 1.0 AU region than the best current model (Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.M., Levison, Available online 28 November 2011 H.F., Michel, P., Metcalfe, T.S. [2002]. Icarus 156, 399–433) provides. We present here the NEOSSat-1.0 NEO orbital distribution model with larger statistics that permit finer resolution and less uncertainty, Keywords: especially in the a < 1.0 AU region. We find that Amors = 30.1 ± 0.8%, Apollos = 63.3 ± 0.4%, Atens = Near-Earth Objects 5.0 ± 0.3%, Atiras (0.718 < Q < 0.983 AU) = 1.38 ± 0.04%, and Vatiras (0.307 < Q < 0.718 AU) = 0.22 ± 0.03% Celestial mechanics Impact processes of the steady-state NEO population.
    [Show full text]
  • The Physical Characterization of the Potentially-‐Hazardous
    The Physical Characterization of the Potentially-Hazardous Asteroid 2004 BL86: A Fragment of a Differentiated Asteroid Vishnu Reddy1 Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719, USA Email: [email protected] Bruce L. Gary Hereford Arizona Observatory, Hereford, AZ 85615, USA Juan A. Sanchez1 Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719, USA Driss Takir1 Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719, USA Cristina A. Thomas1 NASA Goddard Spaceflight Center, Greenbelt, MD 20771, USA Paul S. Hardersen1 Department of Space Studies, University of North Dakota, Grand Forks, ND 58202, USA Yenal Ogmen Green Island Observatory, Geçitkale, Mağusa, via Mersin 10 Turkey, North Cyprus Paul Benni Acton Sky Portal, 3 Concetta Circle, Acton, MA 01720, USA Thomas G. Kaye Raemor Vista Observatory, Sierra Vista, AZ 85650 Joao Gregorio Atalaia Group, Crow Observatory (Portalegre) Travessa da Cidreira, 2 rc D, 2645- 039 Alcabideche, Portugal Joe Garlitz 1155 Hartford St., Elgin, OR 97827, USA David Polishook1 Weizmann Institute of Science, Herzl Street 234, Rehovot, 7610001, Israel Lucille Le Corre1 Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719, USA Andreas Nathues Max-Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany 1Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NNX-08AE38A with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. Pages: 27 Figures: 8 Tables: 4 Proposed Running Head: 2004 BL86: Fragment of Vesta Editorial correspondence to: Vishnu Reddy Planetary Science Institute 1700 East Fort Lowell Road, Suite 106 Tucson 85719 (808) 342-8932 (voice) [email protected] Abstract The physical characterization of potentially hazardous asteroids (PHAs) is important for impact hazard assessment and evaluating mitigation options.
    [Show full text]
  • THE DISTRIBUTION of ASTEROIDS: EVIDENCE from ANTARCTIC MICROMETEORITES. M. J. Genge and M. M. Grady, Department of Mineralogy, T
    Lunar and Planetary Science XXXIII (2002) 1010.pdf THE DISTRIBUTION OF ASTEROIDS: EVIDENCE FROM ANTARCTIC MICROMETEORITES. M. J. Genge and M. M. Grady, Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD (email: [email protected]). Introduction: Antarctic micrometeorites (AMMs) due to aqueous alteration. Some C2 fgMMs contain are that fraction of the Earth's cosmic dust flux that tochilinite and are probably directly related to the CM2 survive atmospheric entry to be recovered from Antar- chondrites, however, others may differ from CMs in tic ice. Models of atmospheric entry indicate that, due their mineralogy. to their large size (>50 µm), unmelted AMMs are de- C1 fgMMs are particles with compact matrices that rived mainly from low geocentric velocity sources such are homogeneous in Fe/Mg and show little contrast in as the main belt asteroids [1]. The production of dust in BEIs. These are similar to the CI1 chondrites and do the main belt by small erosive collisions and the deliv- not contain recognisable psuedomorphs after anhy- ery of dust-sized debris to Earth by P-R light drag drous silicates and thus have been intensely altered by should ensure that AMMs are a much more representa- water. C1 fgMMs often contain framboidal magnetite tive sample of main belt asteroids than meteorites. clusters. The relative abundances of different petrological C3 fgMMs have porous matrices (often around types amongst 550 AMMs collected from Cap Prud- 50% by volume) and are dominated by micron-sized homme [2] is reported and compared with the abun- Mg-rich olivine and pyroxenes linked by a network of dances of asteroid spectral-types in the main belt.
    [Show full text]
  • Detection of Exocometary CO Within the 440 Myr Old Fomalhaut Belt: a Similar CO+CO2 Ice Abundance in Exocomets and Solar System Comets
    UCLA UCLA Previously Published Works Title Detection of Exocometary CO within the 440 Myr Old Fomalhaut Belt: A Similar CO+CO2 Ice Abundance in Exocomets and Solar System Comets Permalink https://escholarship.org/uc/item/1zf7t4qn Journal Astrophysical Journal, 842(1) ISSN 0004-637X Authors Matra, L MacGregor, MA Kalas, P et al. Publication Date 2017-06-10 DOI 10.3847/1538-4357/aa71b4 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Astrophysical Journal, 842:9 (15pp), 2017 June 10 https://doi.org/10.3847/1538-4357/aa71b4 © 2017. The American Astronomical Society. All rights reserved. Detection of Exocometary CO within the 440 Myr Old Fomalhaut Belt: A Similar CO+CO2 Ice Abundance in Exocomets and Solar System Comets L. Matrà1, M. A. MacGregor2, P. Kalas3,4, M. C. Wyatt1, G. M. Kennedy1, D. J. Wilner2, G. Duchene3,5, A. M. Hughes6, M. Pan7, A. Shannon1,8,9, M. Clampin10, M. P. Fitzgerald11, J. R. Graham3, W. S. Holland12, O. Panić13, and K. Y. L. Su14 1 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK; [email protected] 2 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 3 Astronomy Department, University of California, Berkeley CA 94720-3411, USA 4 SETI Institute, Mountain View, CA 94043, USA 5 Univ. Grenoble Alpes/CNRS, IPAG, F-38000 Grenoble, France 6 Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Dr., Middletown, CT 06459, USA 7 MIT Department of Earth, Atmospheric, and
    [Show full text]
  • Aas 14-267 Design of End-To-End Trojan Asteroid
    AAS 14-267 DESIGN OF END-TO-END TROJAN ASTEROID RENDEZVOUS TOURS INCORPORATING POTENTIAL SCIENTIFIC VALUE Jeffrey Stuart,∗ Kathleen Howell,y and Roby Wilsonz The Sun-Jupiter Trojan asteroids are celestial bodies of great scientific interest as well as potential natural assets offering mineral resources for long-term human exploration of the solar system. Previous investigations have addressed the auto- mated design of tours within the asteroid swarm and the transition of prospective tours to higher-fidelity, end-to-end trajectories. The current development incorpo- rates the route-finding Ant Colony Optimization (ACO) algorithm into the auto- mated tour generation procedure. Furthermore, the potential scientific merit of the target asteroids is incorporated such that encounters with higher value asteroids are preferentially incorporated during sequence creation. INTRODUCTION Near Earth Objects (NEOs) are currently under consideration for manned sample return mis- sions,1 while a recent NASA feasibility assessment concludes that a mission to the Trojan asteroids can be accomplished at a projected cost of less than $900M in fiscal year 2015 dollars.2 Tour concepts within asteroid swarms allow for a broad sampling of interesting target bodies either for scientific investigation or as potential resources to support deep-space human missions. However, the multitude of asteroids within the swarms necessitates the use of automated design algorithms if a large number of potential mission options are to be surveyed. Previously, a process to automatically and rapidly generate sample tours within the Sun-Jupiter L4 Trojan asteroid swarm with a mini- mum of human interaction has been developed.3 This scheme also enables the automated transition of tours of interest into fully optimized, end-to-end trajectories using a variety of electrical power sources.4,5 This investigation extends the automated algorithm to use ant colony optimization, a heuristic search algorithm, while simultaneously incorporating a relative ‘scientific importance’ ranking into tour construction and analysis.
    [Show full text]
  • Asteroid Retrieval Feasibility
    Asteroid Retrieval Feasibility ESA ESTEC: March 14, 2012 Louis Friedman & Marco Tantardini 1 STUDY Co-Leads John Brophy (NASA JPL) Fred Culick (Caltech) Louis Friedman (The Planetary Society) • Carl Allen (NASA JSC) • John Lewis (University of Arizona) • David Baughman (Naval Postgraduate School) • Pedro Llanos (USC) • Julie Bellerose (NASA ARC) • Mark Lupisella (NASA GSFC) • Bruce Betts (The Planetary Society) • Dan Mazanek (NASA LaRC) • Mike Brown (Caltech) • Prakhar Mehrotra (Caltech) • Michael Busch (UCLA) • Joe Nuth (NASA GSFC) • John Casani (NASA JPL) • Kevin Parkin (NASA ARC) • Marcello Coradini (ESA) • Rusty Schweickart (B612 Foundation) • John Dankanich (NASA GRC) • Guru Singh (NASA JPL) • Paul Dimotakis (Caltech) • Nathan Strange (NASA JPL) • Martin Elvis (Harvard-Smithsonian Center for Astrophysics) • Marco Tantardini (The Planetary Society) • Ian Garrick-Bethell (UCSC) • Brian Wilcox (NASA JPL) • Robert Gershman (NASA JPL) • Colin Williams (NASA JPL) • Tom Jones (Florida Institute for Human and Machine • Willie Williams (NASA JSC) Cognition) • Don Yeomans (NASA JPL) • Damon Landau (NASA JPL) • Chris Lewicki (Arkyd Astronautics) Two Workshops – Sept 2011, Feb 2012 2 • Near human mission target beyond the Moon • First step on flexible path into the solar system • Test bed for human exploration operations • Asteroid Exploration/ Resource Utilization • Water • Propellants • Materials for radiation shielding • Science 3 Planetary Society Presentation to ESA 1. Objectives 2. Target Identification 3. Destinations and Investigations 4. Flight System and Capture Mechanism 5. Mission and Trajectory Design 6. Mission Benefits 7. COMPASS Study 8. Conclusions 9. Roadmap 10. Follow-up 4 Planetary Society Presentation to ESA • Determine the feasibility of robotically capturing and returning a small near-Earth asteroid to the vicinity of the Earth using technology available in this decade.
    [Show full text]
  • The National Aeronautics and Space Administration Planetary Astronomy Program
    FRS 347320 FINAL REPORT FOR GRANT NAG5-3938 SUBMITTED TO: The National Aeronautics and Space Administration Planetary Astronomy Program TITLE: Beginning Research with the 1.8-meter Spacewatch Telescope ORGANIZATION: The University of Arizona Lunar and Planetary Laboratory PERIOD OF GRANT: 1996 Dec. 1 - 2000 Nov. 30 PERIOD REPORTED ON: 1996 Dec. I - 2001 Feb. 9 2._o[ PRINCIPAL INVESTIGATOR: Tom Gehrels Date Professor Lunar and Planetary Laboratory University of Arizona Kuiper Space Sciences Building 1629 East University Boulevard Tucson, AZ 85721-0092 Phone: 520/621-6970 FAX: 520/621-1940 Email: [email protected] BUSINESS REPRESENTATIVE: Ms. Lynn A. Lane Senior Business Manager Lunar and Planetary Laboratory University of Arizona Kuiper Space Sciences Building 1629 East University Boulevard Tucson, AZ 85721-0092 Phone: 520/621-6966 FAX: 520/621-4933 Email: [email protected] c:_w_nnsaknag53938.fnl Participating Professionals (all at the Lunar and Planetary Laboratory): Terrence H. Bressi (B. S., Astron. & Physics) Engineer Anne S. Descour (M. S., Computer Science) Senior Systems Programmer Tom Gehrels (Ph. D., Astronomy) Professor, observer, and PI Robert Jedicke (Ph.D., Physics) Principal Research Specialist Jeffrey A. Larsen (Ph. D., Astronomy) Principal Research Specialist and observer Robert S. McMiUan (Ph.D., Astronomy) Associate Research Scientist & observer Joseph L. Montani (M. S., Astronomy) Senior Research Specialist and observer Marcus L. Perry (B. A., Astronomy) (Chief) Staff Engineer James V. Scotti (B. S., Astronomy) Senior Research Specialist and observer PROJECT SUMMARY The purpose of this grant was to bring the Spacewatch 1.8-m telescope to operational status for research on asteroids and comets.
    [Show full text]
  • SPACEWATCH SEARCH for MATERIAL RESOURCES NEAR EARTH Robert S
    SPACEWATCH SEARCH FOR MATERIAL RESOURCES NEAR EARTH Robert S. McMillan Lunar & Planetary Laboratory University of Arizona Tucson, AZ Abstract smaller than 100 m. Spacewatch can find the large NEOs while they are as far away as the main asteroid Since 1989 the Spacewatch Project has belt, near the aphelia of their orbits. It is important discovered more than 192 Near-Earth Objects (NEOs). that the discoveries ofNEOs are made with a system of By virtue of a fainter limit of detection compared to known biases and known absolute efficiency so that the other surveys, Spacewatch finds a higher proportion of true distributions versus absolute magnitude and orbital small asteroids (less than 300 meters in diameter). One elements and the total number of objects can be of these, 1998 KY26, is the most accessible to spacecraft extrapolated accurately. The absolute sensitivity and among asteroids with well-known orbits. Spacewatch efficiency of Spacewatch scans have been 10 11 has provided the first- and so far the only- empirical characterized. • information on the critical specific energy and tensile strength of asteroid material. These parameters are With more NEOs found with the well­ relevant to the mechanics of large-scale mining. Our understood Spacewatch system and more thorough new 1.8-meter telescope will reach a magnitude fainter analyses, more refined understanding of the present than the venerable 0.9-m Spacewatch Telescope. It distributions of NEOs as well as the mechanism by will help NEOs discovered on previous apparitions to which they left the main· belt should be possible. be recovered years later, thus improving knowledge of Spacewatch initially debiased in the four "dimensions" their orbital elements well enough that they will not be of (a, e, i, H), a procedure that is appropriate for · lost.
    [Show full text]
  • Near Earth Asteroid Rendezvous: Mission Summary 351
    Cheng: Near Earth Asteroid Rendezvous: Mission Summary 351 Near Earth Asteroid Rendezvous: Mission Summary Andrew F. Cheng The Johns Hopkins Applied Physics Laboratory On February 14, 2000, the Near Earth Asteroid Rendezvous spacecraft (NEAR Shoemaker) began the first orbital study of an asteroid, the near-Earth object 433 Eros. Almost a year later, on February 12, 2001, NEAR Shoemaker completed its mission by landing on the asteroid and acquiring data from its surface. NEAR Shoemaker’s intensive study has found an average density of 2.67 ± 0.03, almost uniform within the asteroid. Based upon solar fluorescence X-ray spectra obtained from orbit, the abundance of major rock-forming elements at Eros may be consistent with that of ordinary chondrite meteorites except for a depletion in S. Such a composition would be consistent with spatially resolved, visible and near-infrared (NIR) spectra of the surface. Gamma-ray spectra from the surface show Fe to be depleted from chondritic values, but not K. Eros is not a highly differentiated body, but some degree of partial melting or differentiation cannot be ruled out. No evidence has been found for compositional heterogeneity or an intrinsic magnetic field. The surface is covered by a regolith estimated at tens of meters thick, formed by successive impacts. Some areas have lesser surface age and were apparently more recently dis- turbed or covered by regolith. A small center of mass offset from the center of figure suggests regionally nonuniform regolith thickness or internal density variation. Blocks have a nonuniform distribution consistent with emplacement of ejecta from the youngest large crater.
    [Show full text]