Blessed As a Newt

Total Page:16

File Type:pdf, Size:1020Kb

Blessed As a Newt Froglife’s newsletter - amphibians, reptiles & nature news Issue 20 spring/summer 2020 froglife Blessed as a newt Plus... Identifying UK newts : Poems from Creeping Toad : Monitoring amphibian tunnels Photo: Craig Mackay contents ‘From the CEO’: Kathy Wormald on the 3. Latest Developments Garden Wildlife Health (GWH) is a collaborative project between the Identifying UK newt species 4. Zoological Society of London (ZSL), Dear You can enter your sightings onto can be achieved with everyone’s the British Trust for Ornithology Surveying for newts supporters, our App. However please remember support. 6. (BTO), Froglife and the Royal great crested newts are a protected Firstly a huge I hope you enjoy this newsletter as Society for the Protection of Birds species and only someone with eDNA for detecting great crested newts; thank you much as we have enjoyed compiling (RSPB) which aims to monitor the a great crested newt licence can a replacement for traditional survey to everyone it. 8. health of, and identify disease handle them. techniques? who has threats to, British wildlife. Finally thanks to Vicky for designing contributed to We have included in the newsletter this newsletter, she always does us Low impact class licence for great Visit www.gardenwildlifehealth.org this newsletter. We have a great the lovely mural of great crested proud. 12. crested newts to find out more range of informative and interesting newts at Spitalfield and further articles, poems, photos and creativity has been added by one My love for amphibians Kathy Wormald, CEO 14. artwork. It is fantastic to see how of our trustees, Gordon, who has inspirational great created newts submitted poems from one of his 16. Toad - The eye of the beholder are. They certainly bring out the sessions with young people. creativity in people. Poems from Creeping Toad The Froglife Board Thanks goes to all of our supporters, 18. It is the time of year when you will donors, friends, staff, trustees and Chair of Trustees: Inez Smith see great crested newts in ponds. volunteers for all they have done to Newts: latest literature Vice Chair of Trustees: Prof. Roger Downie 20. The males do an amazing mating help us achieve so much. Fifty five Trustees: Frank Clark, Richard Donoyou, Dr. Phil Wheeler, dance to attract females. If you ponds in Sheffield and building on a Reports on three great crested newt Gordon MacLellan, Dr. Silviu Petrovan shine a torch into a pond at night network of ponds at Muiravonside 22. sites Patrons: Kate Bradbury & Jules Howard with newts you may witness this. Country Park highlights how much CEO: Kathy Wormald Studying the effects of predator cues on 25. great crested newt larvae contact us Froglife Six years of monitoring under-road 1 Loxley, Werrington 26. tunnels for amphibians Peterborough PE4 5BW fe 28. Frogalogue Phone: 01733 602102 ogli Email: [email protected] fr Design by Dr Victoria Larcombe Facebook “f” Logo CMYK / .eps Facebook “f” Logo CMYK / .eps www.froglife.org froglife @froglifers froglifers +froglife froglife Froglife is the campaign title for The Froglife Trust. Registered Charity Number 1093372 (in England & Wales) & SC041854 (in Scotland); Registered Company Number 438714 (in England & Wales). The views expressed in Natterchat are those of the contributors and not necessarily those of Froglife. To advertise in or to sponsor an edition of Natterchat please contact Kathy Wormald at [email protected]. Help us find dragons... Grab your phone, get your wellies, and go out dragon hunting this spring to help us map amphibians and reptiles. The new version of our free Dragon Finder smartphone app will help you to identify all the different amphibians and reptiles you might spot in the UK. You can also use it to record your sightings, adding to our Living Atlas of where the animals can be found. 2 3 Palmate newts are slightly smaller than smooth newts, they also have a yellow belly, often with dark E: palmate newt Identifying UK newt species spots. However, the easiest way to distinguish between the two is by Kathy Wormald, CEO grow their front legs, again different acid water that palmate newts do not have a to frogs and toads, followed by their and soil In the UK we have three native newt spotted or yellow throat; instead back legs. At this time of year adult as palmate species: smooth (C), palmate (A) and their throat is pink (E). During the newts spend a considerable amount newts can. great crested newts (B,D). All three breeding season males develop a of time in the water hunting for Both species when on land, have a share common features whilst each filament at the tip of their tails and food. However, once the larvae have velvety appearance and are often also have distinctive ones. Shared black webbing on their back feet. absorbed their gills, they leave the mistaken for lizards. Their colouring features include adults emerging Their preferred habitat is heathland, water as juveniles (or efts). is varying shades of grey or brown from their overwintering sites in moorland and bogland, and shallower Photo: Glenn Upton-Fletcher and both will have a distinctive early spring and heading to ponds Newts spend the autumn/winter ponds in acidic soils. yellow/orange dorsal stripe. In to breed. The males perform an months sheltering under rocks, Great crested newts are the largest F: smooth newt smooth newts this starts between the elaborate courtship dance before the in compost heaps, under logs and newt species in the UK and have eyes and continues down the body, eggs are laid. Females lay individual fallen leaves. Some will overwinter in been around for approximately 40 whereas in the palmate newt the eggs and wrap each egg up in a leaf ponds. They don’t hibernate as such, million years. During the breeding stripe starts just below the head and of a pond plant. Depending on local and may take advantage of milder season the males develop a jagged continues the full length of its body weather conditions two to four weeks weather to forage. crest along their backs which has a and tail. later larvae (sometimes called newt Now to their distinctive features. break at the base of the tail with a tadpoles) will hatch. During the breeding season male Smooth newt and palmate newts do white flash on the tail. Females take smooth newts develop a wavy crest The larvae have feathery gills around look very similar and are difficult on a ‘bulky’ appearance. Their skin is along their backs. They have a yellow the head, distinguishing them from to tell them apart but here are a black or dark brown and has a rough, or orange belly, usually with black frog or toad tadpoles. A couple of few tips. Smooth newts are more warty appearance. Their undersides spots/or blotches and their throats months after they hatch they start to widespread and cannot tolerate as are bright orange with irregular black Photo: Dr Silviu Petrovan are spotted. blotches. There are no great crested newts in Ireland but they are found G: great crested newt in all other areas of the UK, although A: male palmate newt B: female great crested newt in many areas their distribution is patchy, especially in the north and west. Great crested newts favour larger ponds and they generally do not live with fish. Their eggs (H) are much larger than smooth or palmate newts (I). The eggs are white with light yellow centre surrounded by a jelly capsule. Whereas smooth Photo: Dr Silviu Petrovan and palmate newt eggs are greyish- brown or dirty white but are also surrounded by a transparent jelly. Photo: Dave Kilbey For more information about our UK newts visit www.froglife.org/info- male (left) & female (right) smooth male great crested newt C: D: advice/amphibians-and-reptiles newt H: great crested I: smooth/palmate newt egg newt egg smooth/palmate newt eft great crested Photo: Mark Zekhuis Photo: Dave Kilbey newt eft 4 5 As great crested newts are protected You will need a powerful torch. Ideal surveying conditions are air more techniques are used for You will torch from the bank of the temperatures of 5°C or higher, surveying them, and can only be pond, move slowly around the pond little or no wind, dry with water carried out by someone with a great and torch approximately every two temperature ideally 10°C or more. crested newt licence. If great crested metres. Shine the torch into the Happy surveying and please do enter newts are suspected to be present water, take time to get your ‘eye’ into your data onto the Froglife App at on a site, a Natural England licence it, moving out from the bank and back it helps us a lot with our work, and is required before carrying out any again. your data will help to inform wider surveying techniques. Daytime surveys are done in April- conservation as all our data is In daylight simply walk around June to find eggs and night-time submitted to the National Biodiversity the pond edge and surrounding torching between March-June for Network database. terrestrial habitat and record newts adults and July-September for larvae http://www.froglife.org/dragonfinder/ and newt efts seen in the water hatched that year. These timings app/ and under logs, large stones etc. will vary depending on weather Remember newts can travel several conditions and locations. hundred metres away from the pond, so look further afield. You can also look for folded leaves which will indicate egg laying. You can look inside a folded leaf to determine its size and colour but do not disturb too many, and if you come across great crested newt eggs stop immediately as these are protected.
Recommended publications
  • <I>Ichthyosaura Alpestris</I>
    Volume 26 (January 2016), 49–56 FULL PAPER Herpetological Journal Published by the British Provenance of Ichthyosaura alpestris (Caudata: Herpetological Society Salamandridae) introductions to France and New Zealand assessed by mitochondrial DNA analysis Jan W. Arntzen1, Tania M. King2, Mathieu Denoël3, Iñigo Martínez-Solano4,5 & Graham P. Wallis2 1Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands 2Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand 3Behavioural Biology Unit, Department of Biology, Ecology and Evolution, University of Liège, Quai van Beneden 22, 4020 Liège, Belgium 4CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Rua Padre Armando Quintas, s/n 4485-661 Vairão, Portugal 5(present address) Ecology, Evolution, and Development Group, Department of Wetland Ecology, Doñana Biological Station, CSIC, c/ Americo Vespucio, s/n, 41092, Seville, Spain The last century has seen an unparalleled movement of species around the planet as a direct result of human activity, which has been a major contributor to the biodiversity crisis. Amphibians represent a particularly vulnerable group, exacerbated by the devastating effects of chytrid fungi. We report the malicious translocation and establishment of the alpine newt (Ichthyosaura alpestris) to its virtual antipode in North Island of New Zealand. We use network analysis of mitochondrial DNA haplotypes to identify the original source population as I. a. apuana from Tuscany, Italy. Additionally, a population in southern France, presumed to be introduced, is identified as I. a. alpestris from western Europe. However, the presence of two differentiated haplotypes suggests a mixed origin.
    [Show full text]
  • Phalangeal Bone Anomalies in the European Common Toad Bufo Bufo from Polluted Environments
    Environ Sci Pollut Res DOI 10.1007/s11356-016-7297-6 RESEARCH ARTICLE Phalangeal bone anomalies in the European common toad Bufo bufo from polluted environments Mikołaj Kaczmarski1 & Krzysztof Kolenda 2 & Beata Rozenblut-Kościsty2 & Wioletta Sośnicka 2 Received: 7 March 2016 /Accepted: 20 July 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Every spring, many of amphibians are killed by ximately 20 % from the rural and semi-urban sites. In partic- motor vehicles on roads. These road-killed animals can be ular, we found hypertrophic bone cells, misaligned intercellu- used as valuable material for non-invasive studies showing lar substance, and irregular outer edges of bones. We suggest the effect of environmental pollution on amphibian popula- that these malformations are caused by different pollution, e.g. tions. The aims of our research were to check whether the with heavy metals. phalanges of road-killed toads may be useful as material for histological analysis, and whether various degrees of human Keywords Amphibians . Phalangeal bone . Poland . impact influence the level in bone abnormalities in the com- Pollution . Roadkilling . Skeletochronology . Urban area mon toad. We also examined whether the sex and age struc- ture of toads can differ significantly depending in the different sites. We chose three toad breeding sites where road-killed Introduction individuals had been observed: near the centre of a city, the outskirts of a city, and a rural site. We collected dead individ- Current knowledge widely indicates a direct relationship be- uals during spring migration in 2013. The sex of each individ- tween anthropogenic pressures and the deteriorating environ- ual was determined and the toes were used to determine age mental state and/or global extinction of amphibian popula- using the skeletochronology method.
    [Show full text]
  • Toads Have Warts... and That's Good! | Nature Detectives | Summer 2021
    Summer 2021 TOADS HAVE WARTS…AND THAT’S GOOD! Warts on your skin are not good. Warts can occur when a virus sneaks into human skin through a cut. A medicine gets rid of the virus and then it’s good-bye ugly wart. Toad warts look slightly like human warts, but toad warts and people warts are not one bit the same. Toad warts are natural bumps on a toad’s back. Toads have larger lumps behind their eyes. The bumps and lumps are glands. The glands produce a whitish goo that is a foul-tasting and smelly poison. The poison is a toad’s ultimate defense in a predator attack. It is toxic enough to kill small animals, if they swallow enough of it. The toxin can cause skin and eye irritation in humans. Some people used to think toad warts were contagious. Touching a toad can’t cause human warts, but licking a toad might make you sick! Toads have other defenses too. Their camouflage green/gray/brown colors blend perfectly into their surroundings. They can puff up with air to look bigger, and maybe less appetizing. Pull Out and Save Pull Out and Pick one up, and it might pee on your hand. Toads Travel, Frogs Swim Toads and frogs are amphibians with some similarities and quite a few differences. Amphibians spend all or part of their life in water. Frogs have moist, smooth skin that loses moisture easily. A toad’s dry, bumpy skin doesn’t lose water as easily as frog skin. Frogs are always in water or very near it, otherwise they quickly dehydrate and die.
    [Show full text]
  • Common Frog Rana Temporaria
    Common frog Rana temporaria Description Common frogs are common, widespread and easily recognisable amphibians. They have smooth, moist skin and long stripy legs. Common frogs are usually olive-green, although their colouration can be variable (from brown, yellow, cream or black, to pink, red, or lime-green). They have a dark patch (‘mask’) around the eye and eardrum, and often have other irregular black blotches over their body and limbs. They have large golden eyes with oval horizontal pupils. Frogs hop and jump rather than walk or crawl, and they are most active at night. They hibernate during the winter in pond mud or under piles of rotting leaves, logs or stones. Outside the breeding season, frogs are largely terrestrial and can be found in meadows, gardens and woodland. Breeding takes place in ponds, lakes, canals, and even wet grassland or puddles! Spawning usually occurs in January in the milder areas of the UK, but not until March to April in the North or upland areas. Mating pairs and masses of clumpy frogspawn can often be seen in waterbodies during this time. The eggs hatch into tadpoles within two to three weeks. What they eat Adult frogs eat snails, slugs, worms, insects and other invertebrates caught using their long sticky tongue. Young tadpoles feed on algae, but become carnivorous as they mature. Where and when to see them z Frogs can be spotted in ponds, lakes, canals, meadows, woodlands and gardens most commonly between February and October. z Look for frogspawn just below the surface of the water. Frogs lay a mass of jelly-like eggs, whereas toadspawn is produced in long strings.
    [Show full text]
  • Pre-Incursion Plan PIP006 Salamanders and Newts
    Pre-incursion Plan PIP006 Salamanders and Newts Pre-incursion Plan PIP006 Salamanders and Newts Order: Ambystomatidae, Cryptobranchidea and Proteidae Scope This plan is in place to guide prevention and eradication activities and the management of non-indigenous populations of Salamanders and Newts (Order Caudata; Families Salamandridae, Ambystomatidae, Cryptobranchidea and Proteidae) amphibians in the wild in Victoria. Version Document Status Date Author Reviewed By Approved for Release 1.0 First Draft 26/07/11 Dana Price M. Corry, S. Wisniewski and A. Woolnough 1.1 Second Draft 21/10/11 Dana Price S. Wisniewski 2.0 Final Draft 18/01/2012 Dana Price 3.0 Revision Draft 12/11/15 Dana Price J. Goldsworthy 3.1 New Final 10/03/2016 Nigel Roberts D.Price New DEDJTR templates and document review Published by the Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria, May 2016 © The State of Victoria 2016. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968. Authorised by the Department of Economic Development, Jobs, Transport and Resources, 1 Spring Street, Melbourne 3000. Front cover: Smooth Newt (Lissotriton vulgaris) Photo: Image courtesy of High Risk Invasive Animals group, DEDJTR Photo: Image from Wikimedia Commons and reproduced with permission under the terms of the Creative Commons Attribution-Share Alike 2.5 Generic License. ISBN 078-1-925532-40-1 (pdf/online) Disclaimer This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.
    [Show full text]
  • Early Onset of Breeding Season in the Green Toad Bufotes Viridis in Western Poland
    Herpetozoa 32: 109–112 (2019) DOI 10.3897/herpetozoa.32.e35825 Early onset of breeding season in the green toad Bufotes viridis in Western Poland Mikołaj Kaczmarski1, Klaudia Szala1, Janusz Kloskowski1 1 Poznan University of Life Sciences, Institute of Zoology, Wojska Polskiego 71c, 60-625, Poznań, Poland http://zoobank.org/083A67C2-D89B-4631-BFEC-D610D396E68F Corresponding author: Mikołaj Kaczmarski ([email protected]) Academic editor: Andreas Maletzky ♦ Received 29 July 2018 ♦ Accepted 9 January 2019 ♦ Published 22 May 2019 Abstract Amphibians are highly sensitive to environmental changes such as climate warming. Here, we report unusually early oviposition in two spatially isolated urban subpopulations of the green toad Bufotes viridis Laurenti, 1768, in Poznań, Western Poland. To our knowledge, we report the earliest breeding date for Central and Eastern Europe, for areas of similar latitude. We ascribe the early onset of B. viridis reproduction to an exceptionally warm spring in Western Poland in 2017. B. viridis shows flexibility in the timing of reproductive activity, however, shifts in breeding phenology may have both beneficial and detrimental population consequences. Key Words Amphibia, Anura, climate change, global warming, phenology, Poznań Global warming affects the phenology of amphibians (e.g. 2017): Park Cytadela [52°25'26"N, 16°55'56"E], a stone Beebee 1995; Muths et al. 2017), inducing shifts in repro- garden/amphitheatre with a permanent shallow concrete ductive periods that may influence amphibian populations pond (area: ca. 5,150 m2) and Park Rataje [52°23'9"N, both directly (e.g. mortality rates) and indirectly (e.g. im- 16°57'20"E], a post-industrial area containing debris and pacts on terrestrial and aquatic habitats, changes in food concrete waste, where, due to a non-permeable clay sub- webs or the spread of diseases) (Blaustein et al.
    [Show full text]
  • Stem Caecilian from the Triassic of Colorado Sheds Light on the Origins
    Stem caecilian from the Triassic of Colorado sheds light PNAS PLUS on the origins of Lissamphibia Jason D. Pardoa, Bryan J. Smallb, and Adam K. Huttenlockerc,1 aDepartment of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; bMuseum of Texas Tech University, Lubbock, TX 79415; and cDepartment of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved May 18, 2017 (received for review April 26, 2017) The origin of the limbless caecilians remains a lasting question in other early tetrapods; “-ophis” (Greek) meaning serpent. The vertebrate evolution. Molecular phylogenies and morphology species name honors paleontologist Farish Jenkins, whose work on support that caecilians are the sister taxon of batrachians (frogs the Jurassic Eocaecilia inspired the present study. and salamanders), from which they diverged no later than the early Permian. Although recent efforts have discovered new, early Holotype. Denver Museum of Nature & Science (DMNH) 56658, members of the batrachian lineage, the record of pre-Cretaceous partial skull with lower jaw and disarticulated postcrania (Fig. 1 caecilians is limited to a single species, Eocaecilia micropodia. The A–D). Discovered by B.J.S. in 1999 in the Upper Triassic Chinle position of Eocaecilia within tetrapod phylogeny is controversial, Formation (“red siltstone” member), Main Elk Creek locality, as it already acquired the specialized morphology that character- Garfield County, Colorado (DMNH loc. 1306). The tetrapod as- izes modern caecilians by the Jurassic. Here, we report on a small semblage is regarded as middle–late Norian in age (Revueltian land amphibian from the Upper Triassic of Colorado, United States, with vertebrate faunachron) (13).
    [Show full text]
  • Controlled Animals
    Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3.
    [Show full text]
  • Linnaeus, 1758) from Bozcaada (Çanakkale, Turkey
    Turkish Journal of Zoology Turk J Zool (2017) 41: 189-195 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Short Communication doi:10.3906/zoo-1602-14 Taxonomic status of a newly described island population of the smooth newt Lissotriton vulgaris (Linnaeus, 1758) from Bozcaada (Çanakkale, Turkey) 1 1 1 2, Nurşen ÇÖRDÜK , Çiğdem GÜL , Murat TOSUNOĞLU , Konstantinos SOTIROPOULOS * 1 Department of Biology, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey 2 Department of Biological Applications and Technologies, School of Health Sciences, University of Ioannina, Ioannina, Greece Received: 08.02.2016 Accepted/Published Online: 16.05.2016 Final Version: 25.01.2017 Abstract: The taxonomic status and phylogenetic position of the recently recorded smooth newt (Lissotriton vulgaris) population from the island of Bozcaada (Çanakkale, Turkey) is clarified on the basis of morphological and molecular phylogenetic analyses. The L. vulgaris population from Bozcaada presents body proportions and morphological features of subsp. schmidtlerorum, such as small body length, absence of the tail filament, and dorsal crest with pointed free margin. Similarly, phylogenetic analyses of mitochondrial DNA sequences (ND4, 16S rRNA) place the Bozcaada population within Clade E of the recent L. vulgaris phylogeny, which consists of L. v. schmidtlerorum populations. Key words: Lissotriton vulgaris schmidtlerorum, mitochondrial DNA, 16S rRNA, ND4, taxonomy, Bozcaada (Tenedos), Turkey The smooth newt, Lissotriton vulgaris L., is a polytypic Raffaëlli, 2009), on the basis of mitochondrial sequences amphibian species with a wide range across Eurasia, (Mettouris and Kornilios, 2015). This geographically extending from Western Europe, excluding Iberia, further restricted subspecies is distributed along the Marmara east to Western Siberia and Western Anatolia.
    [Show full text]
  • Herpetofauna of the Podkielecki Landscape Protection Area
    Environmental Protection and Natural Resources Vol. 30 No 2(80): 32-40 Ochrona Środowiska i Zasobów Naturalnych DOI 10.2478/oszn-2019-0008 Dariusz Wojdan*, Ilona Żeber-Dzikowska**, Barbara Gworek***, Agnieszka Pastuszko****, Jarosław Chmielewski***** Herpetofauna of the Podkielecki Landscape Protection Area * Uniwersytet Jana Kochanowskiego w Kielcach, ** Państwowa Wyższa Szkoła Zawodowa w Płocku, *** Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, **** Instytut Ochrony Środowiska - Państwowy Instytut Badawczy w Warszawie, ***** Wyższa Szkoła Rehabilitacji w Warszawie; e-mail: [email protected] Keywords: Amphibians, reptiles, occurrence, biology, phenology, Podkielecki Landscape Protection Area Abstract The study was conducted in 2016-2017 in the Podkielecki Landscape Protection Area (area 26,485 ha). It was focused on the occurrence and distribution of amphibians and reptiles, the biology of the selected species and the existing threats. Established in 1995, the Podkielecki Landscape Protection Area surrounds the city of Kielce from the north, east and south-east, and adjoins several other protected areas. It covers the western part of the Świętokrzyskie Mountains (part of the Klonowskie and Masłowskie ranges) and the southern part of the Suchedniów Plateau. The studied area is mostly covered by forest and thicket communities (48.1%) and farmlands (39.9%), followed by built-up areas (7.8%), industrial areas (0.5%), roads and railways (2.7%), and surface water bodies (1%). The protected area is developed mainly on Palaeozoic rocks, including Cambrian and Ordovician sandstones, Silurian and Carboniferous shales, and Devonian marls. Podzolic soils predominate among soils. The largest rivers include Lubrzanka, Czarna Nida, Bobrza and Belnianka. There are no natural lakes within the PLPA limits, and the largest artificial reservoirs include the Cedzyna Reservoir, Morawica Reservoir, Suków Sandpit and two sedimentation reservoirs of the Kielce Power Plant.
    [Show full text]
  • Morphological Evolution and Modularity of the Caecilian Skull Carla Bardua1,2* , Mark Wilkinson1, David J
    Bardua et al. BMC Evolutionary Biology (2019) 19:30 https://doi.org/10.1186/s12862-018-1342-7 RESEARCH ARTICLE Open Access Morphological evolution and modularity of the caecilian skull Carla Bardua1,2* , Mark Wilkinson1, David J. Gower1, Emma Sherratt3 and Anjali Goswami1,2 Abstract Background: Caecilians (Gymnophiona) are the least speciose extant lissamphibian order, yet living forms capture approximately 250 million years of evolution since their earliest divergences. This long history is reflected in the broad range of skull morphologies exhibited by this largely fossorial, but developmentally diverse, clade. However, this diversity of form makes quantification of caecilian cranial morphology challenging, with highly variable presence or absence of many structures. Consequently, few studies have examined morphological evolution across caecilians. This extensive variation also raises the question of degree of conservation of cranial modules (semi-autonomous subsets of highly-integrated traits) within this clade, allowing us to assess the importance of modular organisation in shaping morphological evolution. We used an intensive surface geometric morphometric approach to quantify cranial morphological variation across all 32 extant caecilian genera. We defined 16 cranial regions using 53 landmarks and 687 curve and 729 surface sliding semilandmarks. With these unprecedented high-dimensional data, we analysed cranial shape and modularity across caecilians assessing phylogenetic, allometric and ecological influences on cranial evolution, as well as investigating the relationships among integration, evolutionary rate, and morphological disparity. Results: We found highest support for a ten-module model, with greater integration of the posterior skull. Phylogenetic signal was significant (Kmult =0.87,p < 0.01), but stronger in anterior modules, while allometric influences were also significant (R2 =0.16,p < 0.01), but stronger posteriorly.
    [Show full text]
  • Bollettino Del Museo Di Storia Naturale Di Venezia 67
    Bollettino del Museo di Storia Naturale di Venezia, 67: 71-75 71 Nicola Novarini, Emanuele Stival WADING BIRDS PREDATION ON BUFOTES VIRIDIS (LAURENTI, 1768) IN THE CA’ VALLESINA WETLAND (CA’ NOGHERA, VENICE, ITALY) Riassunto. Predazione di uccelli acquatici su Bufotes viridis (Laurenti, 1768) nella zona umida di Ca’ Vallesina (Ca’ Noghera, Venezia). Viene riportata per la prima volta la predazione di rospo smeraldino da parte di due specie di uccelli acquatici, Bubulcus ibis e Threskiornis aethiopicus, in una piccola zona umida lungo il margine nordoccidentale della Laguna di Venezia. Summary. Predation instances on the green toad by two waterbird predators, Bubulcus ibis and Threskiornis aethiopicus, are reported for the first time in a small wetland along the northwestern border of the Lagoon of Venice (NE-Italy). Keywords: Bufotes viridis, predation, waterbirds, Bubulcus ibis, Threskiornis aethiopicus. Reference: Novarini N., Stival E., 2017. Wading birds predation on Bufotes viridis (Laurenti, 1768) in the Ca’ Vallesina wetland (Ca’ Noghera, Venice, Italy). Bollettino del Museo di Storia Naturale di Venezia, 67: 71-75. INTRODUCTION Anuran amphibians are typical intermediate predators in the food-chain of wetlands, being active consumers of invertebrates, especially insects, and occasionally small vertebrates, as well as prey themselves of invertebrates, fishes, other amphibians, reptiles, birds and mammals, including man. Egrets, ibises and other wading birds often share the same wetland habitat with amphibians and are major (though opportunistic) predators of anurans, especially of the palatable ranids (KABISCH & BELTER, 1968; COOK, 1987; DUELLMAN & TRUEB, 1994; TOLEDO et al., 2007; WELLS, 2007). A wide number of species across almost all anuran families, however, contain toxic and/or distasteful secretions in their skin glands, with bufonids generally included among the least palatable species, either as adults and larvae (LUTZ, 1971; DUELLMAN & TRUEB, 1994; TOLEDO & JARED, 1995; GUNZBURGER & TRAVIS, 2005).
    [Show full text]