Eightsimpleactionsthatindividual
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arthropod IGF, Relaxin and Gonadulin, Putative Orthologs of Drosophila
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.11.088476; this version posted June 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Arthropod IGF, Relaxin and Gonadulin, putative 2 orthologs of Drosophila insulin-like peptides 6, 7 and 3 8, likely originated from an ancient gene triplication 4 5 6 Jan A. Veenstra1, 7 8 1 INCIA UMR 5287 CNRS, University of Bordeaux, Bordeaux, Pessac, France 9 10 Corresponding Author: 11 Jan A. Veenstra1 12 INCIA UMR 5287 CNRS, Université de Bordeaux, allée Geoffroy St Hillaire, CS 50023, 33 615 13 Pessac Cedex, France 14 Email address: [email protected] 15 16 Abstract 17 Background. Insects have several genes coding for insulin-like peptides and they have been 18 particularly well studied in Drosophila. Some of these hormones function as growth hormones 19 and are produced by the fat body and the brain. These act through a typical insulin receptor 20 tyrosine kinase. Two other Drosophila insulin-like hormones are either known or suspected to act 21 through a G-protein coupled receptor. Although insulin-related peptides are known from other 22 insect species, Drosophila insulin-like peptide 8, one that uses a G-protein coupled receptor, has 23 so far only been identified from Drosophila and other flies. However, its receptor is widespread 24 within arthropods and hence it should have orthologs. Such putative orthologs were recently 25 identified in decapods and have been called gonadulins. -
Wildlife Review Cover Image: Hedgehog by Keith Kirk
Dumfries & Galloway Wildlife Review Cover Image: Hedgehog by Keith Kirk. Keith is a former Dumfries & Galloway Council ranger and now helps to run Nocturnal Wildlife Tours based in Castle Douglas. The tours use a specially prepared night tours vehicle, complete with external mounted thermal camera and internal viewing screens. Each participant also has their own state- of-the-art thermal imaging device to use for the duration of the tour. This allows participants to detect animals as small as rabbits at up to 300 metres away or get close enough to see Badgers and Roe Deer going about their nightly routine without them knowing you’re there. For further information visit www.wildlifetours.co.uk email [email protected] or telephone 07483 131791 Contributing photographers p2 Small White butterfly © Ian Findlay, p4 Colvend coast ©Mark Pollitt, p5 Bittersweet © northeastwildlife.co.uk, Wildflower grassland ©Mark Pollitt, p6 Oblong Woodsia planting © National Trust for Scotland, Oblong Woodsia © Chris Miles, p8 Birdwatching © castigatio/Shutterstock, p9 Hedgehog in grass © northeastwildlife.co.uk, Hedgehog in leaves © Mark Bridger/Shutterstock, Hedgehog dropping © northeastwildlife.co.uk, p10 Cetacean watch at Mull of Galloway © DGERC, p11 Common Carder Bee © Bob Fitzsimmons, p12 Black Grouse confrontation © Sergey Uryadnikov/Shutterstock, p13 Black Grouse male ©Sergey Uryadnikov/Shutterstock, Female Black Grouse in flight © northeastwildlife.co.uk, Common Pipistrelle bat © Steven Farhall/ Shutterstock, p14 White Ermine © Mark Pollitt, -
Autographa Gamma
1 Table of Contents Table of Contents Authors, Reviewers, Draft Log 4 Introduction to the Reference 6 Soybean Background 11 Arthropods 14 Primary Pests of Soybean (Full Pest Datasheet) 14 Adoretus sinicus ............................................................................................................. 14 Autographa gamma ....................................................................................................... 26 Chrysodeixis chalcites ................................................................................................... 36 Cydia fabivora ................................................................................................................. 49 Diabrotica speciosa ........................................................................................................ 55 Helicoverpa armigera..................................................................................................... 65 Leguminivora glycinivorella .......................................................................................... 80 Mamestra brassicae....................................................................................................... 85 Spodoptera littoralis ....................................................................................................... 94 Spodoptera litura .......................................................................................................... 106 Secondary Pests of Soybean (Truncated Pest Datasheet) 118 Adoxophyes orana ...................................................................................................... -
ALFALFA LOOPER Lepidoptera: Noctuidae Autographa Californica ______DESCRIPTION
Modified from Ralph E. Berry. 1998©. Insects and Mites of Economic Importance in the Northwest. 2nd Ed. 221 p. ALFALFA LOOPER Lepidoptera: Noctuidae Autographa californica ______________________________________________________________________________ DESCRIPTION Adults have silvery-gray forewings marked with an ivory colored funnel-shaped mark resembling that found on the forewings of cabbage looper. Alfalfa loopers are larger than cabbage loopers and have a wingspan of 30 to 40 mm. Larvae are about 25 mm long and closely resemble the cabbage looper in color, but usually have a dark top stripe edged with white lines and two obscure white top-lateral lines. Larvae have three pairs of legs on the thorax and three pairs of prolegs on the abdomen (one pair on segments five and six and one pair on the terminal Alfalfa looper larva. segment). Eggs are round, white to cream colored, and are laid singly on undersides of leaves. ECONOMIC IMPORTANCE The alfalfa looper is more widespread and destructive than the cabbage or celery looper. Larvae feed on leaves causing ragged-edged holes in the leaf and on the leaf margins. The major damage caused by larvae and pupae is contamination of the heads of cole crops and processed foods, and defoliation of peas, sugarbeets, alfalfa, beans, mint, and spinach. Alfalfa looper adult. DISTRIBUTION AND LIFE HISTORY ALFALFA LOOPER This pest is distributed throughout the United States PUPAE and parts of Canada. Alfalfa loopers overwinter as pupae either in soil or in trash near the base of host ADULTS plants. Moths begin emerging in late April and May EGGS and adults lay eggs singly on weed hosts (mostly wild LARVAE crucifers). -
Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site a Report to the U
Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site A report to the U. S. Army and U. S. Fish and Wildlife Service G. J. Michels, Jr., J. L. Newton, H. L. Lindon, and J. A. Brazille Texas AgriLife Research 2301 Experiment Station Road Bushland, TX 79012 2008 Report Introductory Notes The invertebrate survey in 2008 presented an interesting challenge. Extremely dry conditions prevailed throughout most of the adult activity period for the invertebrates and grass fires occurred several times throughout the summer. By visual assessment, plant resources were scarce compared to last year, with few green plants and almost no flowering plants. Eight habitats and nine sites continued to be sampled in 2008. The Ponderosa pine/ yellow indiangrass site was removed from the study after the low numbers of species and individuals collected there in 2007. All other sites from the 2007 survey were included in the 2008 survey. We also discontinued the collection of Coccinellidae in the 2008 survey, as only 98 individuals from four species were collected in 2007. Pitfall and malaise trapping were continued in the same way as the 2007 survey. Sweep net sampling was discontinued to allow time for Asilidae and Orthoptera timed surveys consisting of direct collection of individuals with a net. These surveys were conducted in the same way as the time constrained butterfly (Papilionidea and Hesperoidea) surveys, with 15-minute intervals for each taxanomic group. This was sucessful when individuals were present, but the dry summer made it difficult to assess the utility of these techniques because of overall low abundance of insects. -
MOTHS and BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed Distributional Information Has Been J.D
MOTHS AND BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed distributional information has been J.D. Lafontaine published for only a few groups of Lepidoptera in western Biological Resources Program, Agriculture and Agri-food Canada. Scott (1986) gives good distribution maps for Canada butterflies in North America but these are generalized shade Central Experimental Farm Ottawa, Ontario K1A 0C6 maps that give no detail within the Montane Cordillera Ecozone. A series of memoirs on the Inchworms (family and Geometridae) of Canada by McGuffin (1967, 1972, 1977, 1981, 1987) and Bolte (1990) cover about 3/4 of the Canadian J.T. Troubridge fauna and include dot maps for most species. A long term project on the “Forest Lepidoptera of Canada” resulted in a Pacific Agri-Food Research Centre (Agassiz) four volume series on Lepidoptera that feed on trees in Agriculture and Agri-Food Canada Canada and these also give dot maps for most species Box 1000, Agassiz, B.C. V0M 1A0 (McGugan, 1958; Prentice, 1962, 1963, 1965). Dot maps for three groups of Cutworm Moths (Family Noctuidae): the subfamily Plusiinae (Lafontaine and Poole, 1991), the subfamilies Cuculliinae and Psaphidinae (Poole, 1995), and ABSTRACT the tribe Noctuini (subfamily Noctuinae) (Lafontaine, 1998) have also been published. Most fascicles in The Moths of The Montane Cordillera Ecozone of British Columbia America North of Mexico series (e.g. Ferguson, 1971-72, and southwestern Alberta supports a diverse fauna with over 1978; Franclemont, 1973; Hodges, 1971, 1986; Lafontaine, 2,000 species of butterflies and moths (Order Lepidoptera) 1987; Munroe, 1972-74, 1976; Neunzig, 1986, 1990, 1997) recorded to date. -
The Ground Beetles (Coleoptera: Carabidae) of Three Horticultural Farms in Lombardy, Northern Italy ()
Boll. Zool. agr. Bachic. 31 dicembre 2007 Ser. II, 39 (3): 193-209 D. LUPI, M. COLOMBO, S. FACCHINI The ground beetles (Coleoptera: Carabidae) of three horticultural farms in Lombardy, Northern Italy () Abstract - Ground beetles (Coleoptera: Carabidae) were surveyed across three hor- ticultural farms, located in a peri-urban area, in the Po plain in Lombardy (Northern Italy) from April 2003 to March 2005. Their biodiversity was estimated using pitfall traps. A total of 29 genera and 39 species were collected. Notes on ants and spiders presence were also furnished. Land use seemed to have a significant effect on the number and composition of the species: catches were lower in the conventional farm and higher in biological farms. Apart from land use, all the species detected have already been recorded as frequent in agricultural fields and are characteristic of lowland agroecosystem in Northern Italy. Riassunto - I Coleotteri Carabidi di tre aziende orticole lombarde Si riferisce di un’indagine biennale (aprile 2003 - marzo 2005) effettuata sui Co- leotteri Carabidi di tre aziende orticole lombarde inserite in un contesto periurbano nella Pianura Padana. La biodiversità di tale famiglia è stata stimata utilizzando trappole a caduta. È stato catturato un totale di 39 specie afferenti a 29 generi. Vengono fornite indicazioni anche dei formicidi e ragni catturati nelle stesse trap- pole. La gestione aziendale sembra aver avuto un ruolo significativo sul numero e sulla composizione delle specie: le catture erano significativamente più basse nell’azienda convenzionale rispetto a quelle biologiche. Indipendentemente dalla gestione aziendale le specie catturate sono comunque comuni nei campi coltivati e caratteristiche degli agroecosistemi del nord Italia. -
Bombyx Mori L.) and Wild Silkworm (Bombyx Mandarina M.) to Phoxim Insecticide
African Journal of Biotechnology Vol. 9(12), pp. 1771-1775, 22 March, 2010 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2010 Academic Journals Full Length Research Paper Resistance comparison of domesticated silkworm (Bombyx mori L.) and wild silkworm (Bombyx mandarina M.) to phoxim insecticide Bing Li1,2, Yanhong Wang2, Haitao Liu2, YaXiang Xu1,2, Zhengguo Wei1,2, YuHua Chen1,2 and Weide Shen1,2 1National Engineering Laboratory for Modern Silk, Soochow University 215123, Suzhou, China. 2School of Basic Medicine and Biological Sciences, Soochow University 215123, Suzhou, China. Accepted 11 March, 2010 In this study, the resistance difference to phoxim between Bombyx mori L. and Bombyx mandarina M was investigated. For the both silkworm species, the whole body of each larval were collected, and on the third day of the 5th instar, the brain, midgut, fat bodies, and silk gland were collected for enzymatic activity assay of acetylcholinesterase (AChE). Our results showed that in the early larval stages, the resistance difference to phoxim was not significant between the two species. However, in the 4th and 5th instar, the resistance differences showed significant increase. When compared to B. mori L, the LC50 of B. mandarina was 4.43 and 4.02-fold higher in the 4th and 5th instar, respectively. From the 1st to 5th instar, the enzymatic activities of AChE of B. mandarina were 1.60, 1.65, 1.81, 1.93 and 2.28-fold higher than that of B. mori, respectively. For the brain, midgut, fat body, and silk gland on the third day of the 5th instar, the enzymatic activity ratios of B. -
Template for Taxonomic Proposal to the ICTV Executive Committee to Create a New Genus in an Existing Family
Template for Taxonomic Proposal to the ICTV Executive Committee To create a new Genus in an existing Family Code† 2006.044I.04 To create a new genus in the family* Baculoviridae † Code 2006.045I.04 To name the new genus* Deltabaculovirus † Code 2006.046I.04 To designate Culex nigripalpus nucleopolyhedrovirus as the type species of the new genus* † Code 2006.047I.04 To designate the following as species of the new genus*: Culex nigripalpus nucleopolyhedrovirus † Assigned by ICTV officers * repeat these lines and the corresponding arguments for each genus created in the family Author(s) with email address(es) of the Taxonomic Proposal J.A. Jehle, G. W. Blissard, B. C. Bonning, J. Cory, E. A. Herniou , G. F. Rohrmann , D. A. Theilmann , S. M. Thiem , and J. M. Vlak Baculovirus Study Group Chair: [email protected] Old Taxonomic Order Order Family Baculoviridae Genus Nucleopolyhedrovirus Type Species Autographa californica multiple nucleopolyhedrovirus Species in the Genus Adoxophyes honmai NPV Agrotis ipsilon NPV Anticarsia gemmatalis MNPV Autographa californica MNPV Bombyx mori NPV Buzura suppressaria NPV Choristoneura fumiferana DEF MNPV Choristoneura fumiferana MNPV Choristoneura rosaceana NPV Culex nigripalpus NPV Ectropis obliqua NPV Epiphyas postvittana NPV Helicoverpa armigera NPV Helicoverpa zea NPV Lymantria dispar MNPV Mamestra brassicae MNPV Mamestra configurata NPV-A Mamestra configurata NPV-B Neodiprion lecontei NPV Neodiprion sertifer NPV Orgyia pseudotsugata MNPV Spodoptera exigua MNPV Spodoptera frugiperda MNPV Spodoptera -
Contribución Al Conocimiento De Los Acridoideos (Insecta: Orthoptera) Del Estado De Querétaro, México
Acta Zoológica MexicanaActa Zool. (n.s.) Mex. 22(2):(n.s.) 22(2)33-43 (2006) CONTRIBUCIÓN AL CONOCIMIENTO DE LOS ACRIDOIDEOS (INSECTA: ORTHOPTERA) DEL ESTADO DE QUERÉTARO, MÉXICO Manuel Darío SALAS ARAIZA1,Patricia ALATORRE GARCÍA1 y Eliseo URIBE GONZÁLEZ2 1Instituto de Ciencias Agrícolas. Universidad de Guanajuato A. Postal 311. Irapuato CP 36500, Gto. MÉXICO. [email protected] 2Comité Estatal de Sanidad Vegetal de Querétaro. Calamanda de Juárez. Km. 186.8 Autopista México-Querétaro MÉXICO RESUMEN Se determinaron 25 especies y 17 géneros de la superfamilia Acridoidea en el estado de Querétaro. La subfamilia Gomphocerinae de Acrididae presentó el mayor número de géneros y especies con 3 y 5, respectivamente. Melanoplus differentialis differentialis y Sphenarium purpurascens fueron las especies más abundantes. Dactylotum bicolor variegatum, Melanoplus lakinus, Orpulella pelidna y Schistocerca albolineata son nuevos registros para el estado de Querétaro. Palabras Clave: Acridoideos, taxonomía, Querétaro, México. ABSTRACT Twenty five species were determined in 17 genera of the superfamily Acridoidea in the state of Queretaro. Gomphocerinae belonging to Acrididae, showed the greatest number of genera and species with 3 and 5 respectively. Melanoplus differentialis differentialis and Sphenarium purpurascens were the most abundant species. Dactylotum bicolor variegatum, Melanoplus lakinus, Orpulella pelidna y Schistocerca albolineata are new records in the state of Queretaro. Key Words: Acridoidea, taxonomy, Queretaro state, Mexico. INTRODUCCIÓN En los últimos años diversas especies de chapulines han ocasionado serios daños a los cultivos en diversas partes de México, estos ortópteros se distribuyen ampliamente en las zonas tropicales y templadas. Algunas especies son de hábitos migratorios y periódicamente forman grandes agregados que ocasionan severos daños a su paso. -
Effect of Alternative Plants on Physiological and Biological Characteristics of Silkworm Bombyx Mori L
Middle East Journal of Agriculture Volume : 06 | Issue : 04 | Oct.-Dec. | 2017 Research Pages:1268-1272 ISSN 2077-4605 Effect of alternative plants on physiological and biological characteristics of silkworm Bombyx mori L. El-Shewy A.M. and Elgizawy K. KH Plant Protection Dept., Fac. of Agric. Moshtohor, Benha Uni., Egypt. Received: 11 Sept. 2017 / Accepted: 04 Dec. 2017 / Publication date: 20 Dec. 2017 ABSTRACT Nutrition has an important role in improving growth and development of the silkworm Bombyx mori L. Although B. mori L. larvae are normally reared on mulberry leaves (Morus alba), those can be successfully reared on leaves of alternate plants. The aim of this study was to evaluate the effect of alternate plants, namely grapes leaves, Bougainvillea glabra, Lettuce sativa, Lantana camara and Ficus retusa with different concentrations of mulberry leaves powder aiming to increase the silk and egg production of Bombyx mori L., and also to improve low nutritional value of autumn rearing season. The results showed that treatment of mulberry leaves powder with grape leaves at 1 and 2% concentrations resulted high consumption of food. That was followed by lettuce leaves and Bougainvilleg leaves. While, lantana camara and Ficus retusa leaves caused the least consumption of food. It was also found that, grapes and lettuce leaves caused significant increases in all the tested biological and physiological parameters during autumn season. Also, the new alternate food produced healthy cocoons and increased of eggs production. Meanwhile, the alternate plants lantana comara and Ficus retusa were the least efficient treatments. Key words: Bombyx mori L., alternate plants, mulberry leaves, nutrition, biological and physiological parameters Introduction The mulberry silkworm Bombyx mori L. -
(Coleoptera: Carabidae) As Parasitoids C 719 of Any Race of A
Carabid Beetles (Coleoptera: Carabidae) as Parasitoids C 719 of any race of A. mellifera. Migratory beekeepers Capsid managing scutellata in the northern part of South Africa have moved bees into the fynbos region of The protein coat or shell of a virus particle; the South Africa where the Cape bee is present (the capsid is a surface crystal, built of structure units. reciprocal also happens). This has allowed Cape workers to drift into and parasitize Apis mellifera Capsids scutellata colonies. This action has been a significant problem for beekeepers because Cape-parasitized Some members of the family Miridae (order colonies often dwindle and die. Furthermore, Cape Hemiptera). bees are specialist foragers in the fynbos region and Plant Bugs they often perform poorly when taken outside of this Bugs region. So Apis mellifera scutellata colonies parasit- ized by Cape bees in the northern part of South Capsomere Africa can become useless to beekeepers. Beekeepers in South Africa often consider A cluster of structure units arranged on the sur- Cape bees more of a serious threat to their colo- face of the nucleocapsid, in viruses possessing nies than varroa mites (Varroa destructor, the most cubic symmetry. prolific pest of honey bees). Because of this, researchers globally have taken notice of Cape Carabidae bees. Many fear that if Cape bees ever spread out- side of South Africa, they may be a significant A family of beetles (order Coleoptera). They com- problem for beekeepers worldwide. monly are known as ground beetles. Beetles References Hepburn HR (2001) The enigmatic Cape honey bee,Apis mel- Carabid Beetles (Coleoptera: lifera capensis.