The JASP Data Library Version 2

Total Page:16

File Type:pdf, Size:1020Kb

The JASP Data Library Version 2 The JASP Team The JASP Data Library Version 2 JASP Publishing Copyright © 2019 E.-J. Wagenmakers published by jasp publishing tufte-latex.googlecode.com Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in com- pliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/ LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “as is” basis, without warranties or conditions of any kind, either express or implied. See the License for the specific language governing permissions and limitations under the License. This printing, November 2019 Contents Contents 3 Preface 7 PART I DESCRIPTIVE STATISTICS 1 Sleep: Descriptive Statistics 19 2 Fear of Statistics: Reliability Analysis 27 PART II T-TESTS 3 Weight Gain: One Sample T-Test 37 4 Moon & Aggression: Paired Samples T-Test 43 5 Directed Reading Activities: Independent Samples T-Test 49 6 Stereograms: Bayesian Independent Samples T-Test 55 7 Kitchen Rolls: Independent Samples T-Test 63 8 Horizontal Eye Movements: Bayesian Independent Samples T-Test 73 9 Invisibility Cloak: Independent Samples T-Test 81 PART III ANOVA 10 Pain Thresholds: One-Way ANOVA 89 11 Facebook Friends: One-Way ANOVA 95 12 Response to Eye Color: One-Way ANOVA 103 Bibliography 111 List of External Figures 115 5 “You don’t understand anything until you learn it more than one way.” Marvin Minsky Preface This is the documentation for the examples contained in the JASP Data Library. The data sets are available from JASP both in .jasp format and in .csv format. This documentation will grow over time, and therefore we have added a version number to the book title. Structure and Contents The structure of this documentation follows the layout of the JASP ribbon: the first parts deal with Descriptives, T-tests, ANOVA, Regres- sion, Frequencies, and Factor Analysis, whereas the remaining parts concern various JASP modules, namely Meta-Analysis, Network Figure 1: JASP: A fresh way Analysis, and Structural Equation Modeling. to do statistics. Download The example data sets come from various sources. For educational JASP for free at http://jasp- purposes we have included the material from two popular statistical stats.org. textbooks, Field( 2017) and Moore et al.( 2012). This means it is now easy for teachers and students to use JASP and analyze the classic ‘Looks or Personality’ example from Andy Field, or the ‘College Success’ example from Moore, McCaib, and Craig. We also added the original example data sets that JASP users may be familiar with (ever wonder what the ‘Kitchen Rolls’ data set was all about?). A number of publicly available data sets have been added as well. Copyright Most data sets contained in the JASP Data Library are already pub- licly available because they have been presented in academic articles and books. The legal consensus is that such data are facts and there- fore do not fall under copyright protection. An exception concerns data that have not been collected but constructed in order to serve an educational purpose, as is the case for most data sets from Andy Field’s popular course books. For these data sets, the source is ac- knowledged as follows: “This data set comes from Field, A. P. (2017). Discovering Statis- tics Using IBM SPSS Statistics (5th ed.). London: Sage. The data 8 set was constructed by Andy Field who therefore owns the copy- right. Andy Field generously agreed that we can include the data set in the JASP data library. This data set is also publicly avail- able on the website that accompanies Andy Field’s book: https: //edge.sagepub.com/field5e. Without Andy Field‘s explicit consent, this data set may not be distributed for commercial purposes, this data set may not be edited, and this data set may not be presented without acknowledging its source (i.e., the terms of a CC BY-NC-ND license; https://creativecommons.org/licenses/by-nc-nd/3.0/). ” The Need for Documentation Guidelines Our experience with the analysis of publicly available data suggests that there is an urgent need for standard guidelines that encourage systematic and comprehensive documentation. Without such guide- lines, the analysis often becomes a frustrating exercise in encryption.1 1 For empirical support, see for instance Oftentimes, the data could not have been properly analyzed without Hardwicke et al.( 2018). assistance from the original authors. This undesirable state of affairs is why we have developed the JASP Data Documentation Format described below. This format provides a list of minimal requirements for how data ought to be documented, one that may need to be ex- panded for particular data sets (such as those from neuroscience). The proposed format is concrete and focuses purely on documenta- tion (see the FAIR guidelines2 for complementary advice concerning 2 Wilkinson et al.( 2016). data storage). The JASP Data Documentation Format Each chapter in this book documents a single data set using the JASP Data Documentation Format (JDDF).3 The JDDF contains the 3 JDDF templates are available online at following elements: https://osf.io/bjmrg/ I. Description. A brief summary of the data set in order to provide context. Example: This data set, Glasgow Norms, provides a set of normative rat- ings of 5, 553 English words on nine psycholinguistic dimensions. Specifically: “The Glasgow Norms are a set of normative ratings for 5,553 English words on 9 psycholinguistic dimensions: arousal, valence, dominance, concreteness, imageability, familiarity, age of acquisition, semantic size, and gender association (...) for any given subset of words, the same participants provided ratings across all 9 dimensions (32 participants/word, on average).”(Scott et al. 2019, p. 2). II. Purpose. A brief statement of the purpose that the data may serve. Example: 9 The purpose of the original study was to develop a substantial set of standardized, freely available, psycholinguistic materials. Scott et al. (2019) state that “Overall, the Glasgow Norms provide a valuable resource, in particular, for researchers investigating the role of word recognition in language comprehension”(Scott et al. 2019, p. 2). Here we use this data set to demonstrate Bayesian Pearson’s correlation. Specifically, we will estimate how the psycholinguistic dimensions relate to each other. For example, are words that are rated higher on the Dominance dimension rated as more masculine or feminine? Are words associated with higher arousal rated more positive or negative? III. Data Screenshot. A visual impression of the data structure, show- ing at least some of the columns and rows in which the data have been organized. An example screenshot is shown in Figure 2. An example of the text that could accompany the screenshot: The Glasgow Norms data set(Scott et al. 2019) consists of 5, 553 rows and 29 columns. Each row corresponds to a specific word, and the columns relate to various lexical properties. IV. Variables. A description for each of the variables in the data set. At a minimum, the description features (a) the variable name; (b) the variable’s measurement level and the values that the variable can take on; (c) a verbal summary of the variable. An example for the first five variables in the Glasgow Norms data set: • word – Type: Categorical In this book, we use three types of variables: Categorical, Ordinal, and – Description: The word whose lexical properties are listed. Continuous. Even discrete variables, • length although not only strictly continuous, are categorized as ’Continuous’ - this – Type: Continuous is because the analyses options in JASP are the same for both types of variables. – Description: Word length in number of letters. • M AROU – Type: Continuous – Description: A word’s mean arousal value (averaged across raters). Each rater judged the extent to which a word has emotional impact in terms of internal activation on a 9-point scale (‘1’ = very unarousing, ‘9’ = very arousing). • SD AROU – Type: Continuous 10 Figure 2: Screenshot of the first – Description: The standard deviation (across raters) of a word’s 18 rows and 8 columns of the arousal value. Each rater judged the extent to which a word Glasgow Norms data(Scott has emotional impact in terms of internal activation on a et al. 2019). 9-point scale (‘1’ = very unarousing, ‘9’ = very arousing). • N AROU – Type: Continuous – Description: The number of raters who judged a word’s arousal value. Each rater judged the extent to which a word has emotional impact in terms of internal activation on a 9-point scale (‘1’ = very unarousing, ‘9’ = very arousing). V. Source. A description of where the data were obtained, and where the data can be accessed online. Example: Scott, G. G., Keitel, A., Becirspahic, M., O’Donnell, P. J., and Sereno, S. C. (2019). The Glasgow norms: Ratings of 5,500 words on 9 scales. Behavior Research Methods, 51:1258–1270, https://psyarxiv.com/ akzyx/. The data set is available as Supplementary Materials. 11 VI. Analysis code. Anything that allows a third party to reproduce a result. This can be R code, Stan code, or a .jasp file, for instance. We strongly recommend against using commercial software for analysis, as the interested third party might be unwilling or unable to buy an expensive license (e.g., to Matlab, JMP, SAS, Stata, or SPSS) in order to reproduce the result. Example: An annotated JASP file is available in the JASP Data Library and on the OSF at https://osf.io/ypwk5/. VII. Example analysis. A demonstration that the provided code, when applied to the provided data, actually produces a result. Example: As a first step, we will inspect the correlations between the nine psycholinguistic dimensions.
Recommended publications
  • Anomalous Perception in a Ganzfeld Condition - a Meta-Analysis of More Than 40 Years Investigation [Version 1; Peer Review: Awaiting Peer Review]
    F1000Research 2021, 10:234 Last updated: 08 SEP 2021 RESEARCH ARTICLE Stage 2 Registered Report: Anomalous perception in a Ganzfeld condition - A meta-analysis of more than 40 years investigation [version 1; peer review: awaiting peer review] Patrizio E. Tressoldi 1, Lance Storm2 1Studium Patavinum, University of Padua, Padova, Italy 2School of Psychology, University of Adelaide, Adelaide, Australia v1 First published: 24 Mar 2021, 10:234 Open Peer Review https://doi.org/10.12688/f1000research.51746.1 Latest published: 24 Mar 2021, 10:234 https://doi.org/10.12688/f1000research.51746.1 Reviewer Status AWAITING PEER REVIEW Any reports and responses or comments on the Abstract article can be found at the end of the article. This meta-analysis is an investigation into anomalous perception (i.e., conscious identification of information without any conventional sensorial means). The technique used for eliciting an effect is the ganzfeld condition (a form of sensory homogenization that eliminates distracting peripheral noise). The database consists of studies published between January 1974 and December 2020 inclusive. The overall effect size estimated both with a frequentist and a Bayesian random-effect model, were in close agreement yielding an effect size of .088 (.04-.13). This result passed four publication bias tests and seems not contaminated by questionable research practices. Trend analysis carried out with a cumulative meta-analysis and a meta-regression model with Year of publication as covariate, did not indicate sign of decline of this effect size. The moderators analyses show that selected participants outcomes were almost three-times those obtained by non-selected participants and that tasks that simulate telepathic communication show a two- fold effect size with respect to tasks requiring the participants to guess a target.
    [Show full text]
  • An Introduction to Psychometric Theory with Applications in R
    What is psychometrics? What is R? Where did it come from, why use it? Basic statistics and graphics TOD An introduction to Psychometric Theory with applications in R William Revelle Department of Psychology Northwestern University Evanston, Illinois USA February, 2013 1 / 71 What is psychometrics? What is R? Where did it come from, why use it? Basic statistics and graphics TOD Overview 1 Overview Psychometrics and R What is Psychometrics What is R 2 Part I: an introduction to R What is R A brief example Basic steps and graphics 3 Day 1: Theory of Data, Issues in Scaling 4 Day 2: More than you ever wanted to know about correlation 5 Day 3: Dimension reduction through factor analysis, principal components analyze and cluster analysis 6 Day 4: Classical Test Theory and Item Response Theory 7 Day 5: Structural Equation Modeling and applied scale construction 2 / 71 What is psychometrics? What is R? Where did it come from, why use it? Basic statistics and graphics TOD Outline of Day 1/part 1 1 What is psychometrics? Conceptual overview Theory: the organization of Observed and Latent variables A latent variable approach to measurement Data and scaling Structural Equation Models 2 What is R? Where did it come from, why use it? Installing R on your computer and adding packages Installing and using packages Implementations of R Basic R capabilities: Calculation, Statistical tables, Graphics Data sets 3 Basic statistics and graphics 4 steps: read, explore, test, graph Basic descriptive and inferential statistics 4 TOD 3 / 71 What is psychometrics? What is R? Where did it come from, why use it? Basic statistics and graphics TOD What is psychometrics? In physical science a first essential step in the direction of learning any subject is to find principles of numerical reckoning and methods for practicably measuring some quality connected with it.
    [Show full text]
  • Dentist's Knowledge of Evidence-Based Dentistry and Digital Applications Resources in Saudi Arabia
    PTB Reports Research Article Dentist’s Knowledge of Evidence-based Dentistry and Digital Applications Resources in Saudi Arabia Yousef Ahmed Alomi*, BSc. Pharm, MSc. Clin Pharm, BCPS, BCNSP, DiBA, CDE ABSTRACT Critical Care Clinical Pharmacists, TPN Objectives: Drug information resources provide clinicians with safer use of medications and play a Clinical Pharmacist, Freelancer Business vital role in improving drug safety. Evidence-based medicine (EBM) has become essential to medical Planner, Content Editor, and Data Analyst, Riyadh, SAUDI ARABIA. practice; however, EBM is still an emerging dentistry concept. Therefore, in this study, we aimed to Anwar Mouslim Alshammari, B.D.S explore dentists’ knowledge about evidence-based dentistry resources in Saudi Arabia. Methods: College of Destiney, Hail University, SAUDI This is a 4-month cross-sectional study conducted to analyze dentists’ knowledge about evidence- ARABIA. based dentistry resources in Saudi Arabia. We included dentists from interns to consultants and Hanin Sumaydan Saleam Aljohani, those across all dentistry specialties and located in Saudi Arabia. The survey collected demographic Ministry of Health, Riyadh, SAUDI ARABIA. information and knowledge of resources on dental drugs. The knowledge of evidence-based dental care and knowledge of dental drug information applications. The survey was validated through the Correspondence: revision of expert reviewers and pilot testing. Moreover, various reliability tests had been done with Dr. Yousef Ahmed Alomi, BSc. Pharm, the study. The data were collected through the Survey Monkey system and analyzed using Statistical MSc. Clin Pharm, BCPS, BCNSP, DiBA, CDE Critical Care Clinical Pharmacists, TPN Package of Social Sciences (SPSS) and Jeffery’s Amazing Statistics Program (JASP).
    [Show full text]
  • A Data Management Life-Cycle
    science for a changing world Central Energy Resources Team Data Management A Data Management Life-Cycle Introduction Documented, reliable, and accessible data and information are essential building blocks supporting scientific research and applications that enhance society's knowledge base (fig. 1). The U.S. Geological Survey (USGS), a leading provider of science data, information, and knowledge, is uniquely positioned to integrate science and natural resource information to address societal needs. The USGS Central Energy Resources Team (USGS-CERT) provides critical information and knowledge on tnu iuu the quantity, quality, and distribution of the Nation's and the 10101010110 world's oil, gas, and coal resources. 1C001111001 By using a life-cycle model, the USGS-CERT Data Manage­ 1001001"*: ment Project is developing an integrated data management system 10^19*1- to (1) promote access to energy data and information, (2) increase data documentation, and (3) streamline product delivery to the public, scientists, and decision makers. The project incorporates web-based technology, data cataloging systems, data processing Data Information routines, and metadata documentation tools to improve data Figure 1. Access to organized and documented data and access, enhance data consistency, and increase office efficiency. information increases knowledge. Implementation Summary and Future Directions In a life-cycle model, data and information are transformed into tangible products and knowledge by a continuous flow in which The Data Management Project addresses USGS science the output of one process becomes the input of others (fig. 2). \ goals and affects how the Central Energy Resources Team manages data and carries out its programs. Our task-oriented "Find, Get, Use, Deliver, and Maintain" The tools and processes developed are based on strategy incorporates life-cycle concepts and directs USGS-CERT the life-cycle approach and our "Find, Get, Use, data management tasks and implementation.
    [Show full text]
  • 11. Correlation and Linear Regression
    11. Correlation and linear regression The goal in this chapter is to introduce correlation and linear regression. These are the standard tools that statisticians rely on when analysing the relationship between continuous predictors and continuous outcomes. 11.1 Correlations In this section we’ll talk about how to describe the relationships between variables in the data. To do that, we want to talk mostly about the correlation between variables. But first, we need some data. 11.1.1 The data Table 11.1: Descriptive statistics for the parenthood data. variable min max mean median std. dev IQR Dan’s grumpiness 41 91 63.71 62 10.05 14 Dan’s hours slept 4.84 9.00 6.97 7.03 1.02 1.45 Dan’s son’s hours slept 3.25 12.07 8.05 7.95 2.07 3.21 ............................................................................................ Let’s turn to a topic close to every parent’s heart: sleep. The data set we’ll use is fictitious, but based on real events. Suppose I’m curious to find out how much my infant son’s sleeping habits affect my mood. Let’s say that I can rate my grumpiness very precisely, on a scale from 0 (not at all grumpy) to 100 (grumpy as a very, very grumpy old man or woman). And lets also assume that I’ve been measuring my grumpiness, my sleeping patterns and my son’s sleeping patterns for - 251 - quite some time now. Let’s say, for 100 days. And, being a nerd, I’ve saved the data as a file called parenthood.csv.
    [Show full text]
  • Collections Management Plan for the U.S. Geological Survey Woods Hole Coastal and Marine Science Center Data Library
    7 Collections Management Plan for the U.S. Geological Survey Woods Hole Coastal and Marine Science Center Data Library Open-File Report 2015–1141 U.S. Department of the Interior U.S. Geological Survey Collections Management Plan for the U.S. Geological Survey Woods Hole Coastal and Marine Science Center Data Library By Kelleen M. List, Brian J. Buczkowski, Linda P. McCarthy, and Alice M. Orton Open-File Report 2015–1141 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: List, K.M., Buczkowski, B.J., McCarthy, L.P., and Orton, A.M., 2015, Collections management plan for the U.S. Geological Survey Woods Hole Coastal and Marine Science Center Data Library: U.S. Geological Survey Open- File Report 2015–1141, 16 p., http://dx.doi.org/10.3133/ofr20151141.
    [Show full text]
  • Fatigue and Psychological Distress in the Working Population Psychometrics, Prevalence, and Correlates
    Journal of Psychosomatic Research 52 (2002) 445–452 Fatigue and psychological distress in the working population Psychometrics, prevalence, and correlates Ute Bu¨ltmanna,*, Ijmert Kanta, Stanislav V. Kaslb, Anna J.H.M. Beurskensa, Piet A. van den Brandta aDepartment of Epidemiology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands bDepartment of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA Received 11 October 2000 Abstract Objective: The purposes of this study were: (1) to explore the distinct pattern of associations was found for fatigue vs. relationship between fatigue and psychological distress in the psychological distress with respect to demographic factors. The working population; (2) to examine associations with demographic prevalence was 22% for fatigue and 23% for psychological and health factors; and (3) to determine the prevalence of fatigue distress. Of the employees reporting fatigue, 43% had fatigue only, and psychological distress. Methods: Data were taken from whereas 57% had fatigue and psychological distress. Conclusions: 12,095 employees. Fatigue was measured with the Checklist The results indicate that fatigue and psychological distress are Individual Strength, and the General Health Questionnaire (GHQ) common in the working population. Although closely associated, was used to measure psychological distress. Results: Fatigue was there is some evidence suggesting that fatigue and psychological fairly well associated with psychological distress. A separation
    [Show full text]
  • Relevance of Data Mining in Digital Library
    International Journal of Future Computer and Communication, Vol. 2, No. 1, February 2013 Relevance of Data Mining in Digital Library R. N. Mishra and Aishwarya Mishra Abstract—Data mining involves significant process of Data Mining concept has been delimitated in multiple identifying the extraction of hidden predictive information ways by different organizations, scientists etc. Wikipedia, from vast array of databases and it is an authoritative new has visualized data mining a non-trivial extraction of technology with potentiality to facilitate the Libraries and implicit and potentially useful information from data and Information Centers to focus on the most important the science of extracting useful information from large data information in their data warehouses. It is a viable tool to predict future trends and behaviors in the field of library and sets or databases (http://en.wikipedia. org/wiki/Data information service for deducing proactive, knowledge-driven mining). Marketing Dictionary defines data mining as a decisions. Mechanized, prospective analyses of data mining process for extraction of customer information from a vast move beyond the analyses of past events provided by gamut of databases with the help of the feasible software to retrospective tools typical of decision support systems. Data isolate and identify previously unknown patterns or trends. Mining, Process of Data Mining, Knowledge Discovery in Multiple techniques with the help of technologies are Databases, DBMS, Data Mining Techniques etc. etc. have been discussed in this paper. employed in data mining for extraction of data from the heave of databases. Intelligence Encyclopedia has, however, Index Terms—Data mining, KDD, artificial neural Networks, defined data mining as a statistical analysis technique to sequential pattern, modeling, DMT.
    [Show full text]
  • When Psychometrics Meets Epidemiology and the Studies V1.Pdf
    When psychometrics meets epidemiology, and the studies which result! Tom Booth [email protected] Lecturer in Quantitative Research Methods, Department of Psychology, University of Edinburgh Who am I? • MSc and PhD in Organisational Psychology – ESRC AQM Scholarship • Manchester Business School, University of Manchester • Topic: Personality psychometrics • Post-doctoral Researcher • Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh. • Primary Research Topic: Cognitive ageing, brain imaging. • Lecturer Quantitative Research Methods • Department of Psychology, University of Edinburgh • Primary Research Topics: Individual differences and health; cognitive ability and brain imaging; Psychometric methods and assessment. Journey of a talk…. • Psychometrics: • Performance of likert-type response scales for personality data. • Murray, Booth & Molenaar (2015) • Epidemiology: • Allostatic load • Measurement: Booth, Starr & Deary (2013); (Unpublished) • Applications: Early life adversity (Unpublished) • Further applications Journey of a talk…. • Methodological interlude: • The issue of optimal time scales. • Individual differences and health: • Personality and Physical Health (review: Murray & Booth, 2015) • Personality, health behaviours and brain integrity (Booth, Mottus et al., 2014) • Looking forward Psychometrics My spiritual home… Middle response options Strongly Agree Agree Neither Agree nor Disagree Strong Disagree Disagree 1 2 3 4 5 Strongly Agree Agree Unsure Disagree Strong Disagree
    [Show full text]
  • Statistical Analysis in JASP
    Copyright © 2018 by Mark A Goss-Sampson. All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the author except for the purposes of research, education or private study. CONTENTS PREFACE .................................................................................................................................................. 1 USING THE JASP INTERFACE .................................................................................................................... 2 DESCRIPTIVE STATISTICS ......................................................................................................................... 8 EXPLORING DATA INTEGRITY ................................................................................................................ 15 ONE SAMPLE T-TEST ............................................................................................................................. 22 BINOMIAL TEST ..................................................................................................................................... 25 MULTINOMIAL TEST .............................................................................................................................. 28 CHI-SQUARE ‘GOODNESS-OF-FIT’ TEST............................................................................................. 30 MULTINOMIAL AND Χ2 ‘GOODNESS-OF-FIT’ TEST. ..........................................................................
    [Show full text]
  • Resources for Mini Meta-Analysis and Related Things Updated on June 25, 2018 Here Are Some Resources That I and Others Find
    Resources for Mini Meta-Analysis and Related Things Updated on June 25, 2018 Here are some resources that I and others find useful. I know my mini meta SPPC article and Excel were not exhaustive and I didn’t cover many things, so I hope this resource page will give you some answers. I’ll update this page whenever I find something new or receive suggestions. Meta-Analysis Guides & Workshops • David Wilson, who wrote Practical Meta-Analysis, has a website containing PowerPoints and macros (for SPSS, Stata, and SAS) as well as some useful links on meta-analysis o I created an Excel template based on his slides (read the Excel page to see how this template differs from my previous SPPC template) • McShane and Böckenholt (2017) wrote an article in the Journal of Consumer Research similar to my mini meta paper. It comes with a very cool website that calculates meta- analysis for you: https://blakemcshane.shinyapps.io/spmetacase1/ • Courtney Soderberg from the Center for Open Science gave a mini meta-analysis workshop at SIPS 2017. All materials are publicly available: https://osf.io/nmdtq/ • Adam Pegler wrote a tutorial blog on using R to calculate mini meta based on my article • The founders of MetaLab at Stanford made video tutorials on meta-analysis in general • Geoff Cumming has a video tutorial on meta-analysis and other “new statistics” or read his Psychological Science article on the “new statistics” • Patrick Forscher’s meta-analysis syllabus and class materials are available online • A blog post containing 5 tips to understand and carefully
    [Show full text]
  • Best Practices Using Base SAS Software
    Best Practices Using June 27, 2012 BASE SAS Software Best Practices Using BASE SAS® Software Chapter 1: Best Practices 1.1 Introduction 1.2 Techniques for Conserving CPU and Memory 1.3 Techniques for Minimizing I/O Operations 1.4 Techniques for Conserving Disk Space 1.5 Creating and Using Indexes with SAS Data Sets 1.6 Techniques to Minimize Network Traffic (Self-Study) 2 1 Best Practices Using June 27, 2012 BASE SAS Software What Are Best Practices? Best practices can reduce usage of the following five critical system resources to improve performance: CPU I/O Disk Space Memory Data Storage Space Reducing one resource often increases another. 3 Deciding What Is Important for Efficiency Your Programs Your Site Your Data 4 2 Best Practices Using June 27, 2012 BASE SAS Software Understanding Efficiency at Your Site Hardware Operating Environment System Load SAS Environment 5 Knowing How Your Program Will Be Used The importance of efficiency increases with the following: the complexity of the program or the size of the files being processed the number of times that the program will be executed 6 3 Best Practices Using June 27, 2012 BASE SAS Software Knowing Your Data 7 Considering Trade-Offs In this seminar, many tasks are performed using one or more techniques. To decide which technique is most efficient for a given task, benchmark (measure and compare) the resource usage of each technique. You should benchmark with the actual data to determine which technique is the most efficient. The effectiveness of any efficiency technique depends greatly on the data with which you use the technique.
    [Show full text]