The Berlin Declaration of the G20 Health Ministers (2017)

Total Page:16

File Type:pdf, Size:1020Kb

The Berlin Declaration of the G20 Health Ministers (2017) Berlin Declaration of the G20 Health Ministers Together Today for a Healthy Tomorrow 1. We, the G20 Health Ministers, met for the first time ever in Berlin, Germany on 19-20 May 2017. 2. “Shaping an interconnected world” is a common goal of the G20, and health is key to “Building Resilience, Improving Sustainability, Assuming Responsibility”, the three main pillars of Germany’s G20 Presidency. Strong, sustainable and resilient health systems are critical for responding to global health challenges, for populations’ health, wellbeing, economic productivity and for developing a qualified workforce in adequate numbers. Ultimately they are the basis for a prosperous and stable society. Health is one of the most valuable resources for building a sustainable future and an outcome of our commitment. 3. By putting global health on the agenda of the G20, we affirm our role in strengthening the political support for existing initiatives and working to address the economic aspects of global health issues. We support the leading role of the World Health Organization (WHO), as the United Nations specialized agency for health, in global health cooperation. Furthermore, we seek to intensify global action and cooperation in order to address ever-evolving challenges and identify where the health sector can provide leadership and added value. 4. As the premier forum for international economic cooperation, the G20 can contribute to overcoming global health challenges. Global health risks, such as infectious disease outbreaks and antimicrobial resistance (AMR), have a severe impact on the lives and well-being of millions of people as well as on the global economy. Since these global challenges cannot be addressed by one country, region or sector alone, they call for a coordinated global response. For this reason, the G20 is well- placed to contribute to joint commitment and action in close cooperation with the WHO. This is critical in order to ensure a healthy tomorrow for all. Under the 2017 German G20 Presidency, the G20 focuses primarily on preventing and mitigating the devastating impact of health emergencies and counteracting the burden that AMR places on societies and economies. 5. We thank Germany for its leadership in 2017 and we are committed to the continuation of our dialogue on global health in Argentina. We will further promote health in the G20 and we reaffirm our commitment to achieve the health-related goals and targets of the 2030 Agenda for Sustainable Development. - 2 - GLOBAL HEALTH CRISES MANAGEMENT 6. The global interconnectedness of societies, businesses and governments means that an infectious disease risk anywhere can become a health risk everywhere – with far-reaching humanitarian, social, political, economic and security consequences. Therefore, we highlight the need to reinforce joint commitment by the international community to strengthen countries’ health systems, particularly where they are weak and conditions for access to treatment and healthcare are poor, and to improve the management of global health crises. We recognize our unique position to lead by example and foster global preparedness for and responsiveness to health crises. 7. We conducted a simulation exercise during our meeting in Berlin in May 2017 in close cooperation with the World Health Organization (WHO), as the lead agency for the international community on health emergencies and outbreak response, and the World Bank. We acknowledge the importance of carrying out regular simulation exercises at all levels. Such simulation exercises provide a unique opportunity for testing capabilities, policies and agreements, preparing and strengthening a coordinated global response and promoting accountability and transparency. 8. We acknowledge that efficient global health crisis management can only be ensured through compliance with the International Health Regulations (IHR). We will act accordingly within our obligations under the IHR and support the leadership and coordination of WHO in the event of health crises of international concern. We affirm WHO’s central role as health cluster lead in particular within the United Nations (UN) coordination mechanisms that are being put in place at the interface to the wider emergency response management, including through the Inter-Agency Standing Committee’s procedures for infectious disease events adopted in 2016. All relevant stakeholders, taking into account their respective capacities, need to be involved in preventing, preparing for and responding to current and future health crises, guided by the leadership of WHO. This includes recommended actions on a needs-based and disease burden basis, and to cooperate for making required medicines, diagnostics, vaccines and treatment available to the people in need. 9. The international community needs to fully support the WHO in order for the organization to be able to fulfil its role, including in capacity building and in preparing for and responding to health emergencies. In this respect, we acknowledge that WHO’s financial and human resource capacities have to be strengthened, including through adequate and sustainable funding for the Health Emergencies Programme and the WHO Contingency Fund for Emergencies (CFE). Likewise, we welcome and support the three pillars of the WHO reform, with its programmatic, governance and managerial focus. In addition, we welcome the development of the World Bank’s Pandemic Emergency Financing Facility (PEF) as a fast financing mechanism that can provide funds to countries to help fight an escalating serious outbreak. We acknowledge the need to draw on the expertise and resources of the World Bank and Regional Development Banks in addressing questions of financing for health. 10. We acknowledge the importance of building capacity and ensuring quality at national, regional and global level in order to promptly deploy trained personnel to emergencies and outbreaks. Initiatives to expand and deepen existing partnerships to enable such deployments are critical to bring greater coherence and coordination to emergency field operations. The G20 welcomes WHO’s role in coordinating a number of these partnerships including international health emergency deployments, the Global Outbreak Alert and Response Network, Standby Partners, as well as the Global Health Cluster. The G20 advocates for sustainable engagement, support and promotion of these partnerships. - 3 - 11. We recognize the importance of implementing the International Health Regulations (IHR 2005), including by building and strengthening required core capacities within the context of health systems strengthening for prevention, detection, preparedness and response, as a key priority. We support the swift and comprehensive translation of the IHR into practice at national, regional and international level. This includes strengthened and coordinated assistance to countries to implement the IHR. 12. Given the importance played by the assets of the Global Polio Eradication Initiative in maintaining the capacity of many countries with regards to their obligations under the IHR, and given the imminent eradication of Polio, we urge the timely and effective application of those assets to other programmes that could also contribute to maintaining the necessary capacity for those countries to continue meeting their obligations under the IHR. We also recognize the historic opportunity to contribute to global polio eradication. 13. Enhancing transparency facilitates the sharing of key information that can prompt faster responses by the international community. Early communication of disease outbreaks, including those which may constitute a Public Health Emergency of International Concern (PHEIC), may be discouraged if countries are led to believe they will face negative consequences due to unjustified travel and trade restrictions by other countries. To limit the negative impact on economies and societies and to foster early communication, we reiterate our commitment to adhering to reporting obligations under the IHR concerning a potential or declared Public Health Emergency of International Concern and underline the importance of following relevant WHO recommendations, including those on travel and trade. 14. We acknowledge the need for improved monitoring and evaluation of IHR implementation, which may include voluntary external evaluations, and the identification of best practices in order to strengthen health systems and build the core capacities required under IHR. We also recognize the importance of developing and supporting national plans and providing technical assistance to address critical gaps identified during the evaluation process. 15. Research and Development (R&D) are necessary for the timely availability and development of new and improved quality medicines, vaccines, diagnostics and medical equipment for containing emergencies. This requires mobilization of national and international research efforts and facilities, and norms and commitments to share data and samples, in accordance with national legislation, and public health benefits in an inclusive, timely and transparent manner. In addition, sustainable funding and effective international R&D coordination is needed. We welcome and support new models for R&D preparedness including the “WHO R&D Blueprint”, the Global Research Collaboration for Infectious Disease Preparedness (GLOPID-R) and the “Coalition for Epidemic Preparedness Innovations (CEPI)”, which is developing new vaccines for epidemics. We underscore the importance
Recommended publications
  • COVID-19 Vaccines, Cases and Variants
    COVID-19 Critical Intelligence Unit: COVID-19 vaccines, cases and variants COVID-19 Monitor COVID-19 vaccines, cases and variants 24 June 2021 Background • Despite large numbers of vaccinations following the initial vaccine rollout, the United States, India, Chile and Europe have had a surge in COVID-19 cases. It is suspected that relaxation of public health measures, as well as the new variants of COVID-19, may have contributed to this. New variants may be more transmissible and less susceptible to antibodies produced by vaccines or previous infection.(1-6) • While preliminary research from Israel suggests that vaccination reduces transmission, vaccination alone is insufficient to contain COVID-19.(7, 8) Evidence • Viruses constantly change through mutation and, over time, new variants of a virus are expected to occur. Some variants have characteristics that have a significant impact on transmissibility, severity of disease and the effectiveness of vaccines.(9) • For SARS-CoV-2, there are currently four variants of concern as determined by the World Health Organization (WHO).(10) The WHO has recently assigned simple labels for key variants of SARS- CoV-2, included below.(11) • The four variants of concern include: o Alpha (B.1.1.7), which originated in the United Kingdom. Currently 136 countries are reporting detection of the variant. o Beta (B.1.351), which originated in South Africa. Currently 92 countries are reporting detection of the variant. o Gamma (B.1.1.28.1 or P.1), which originated in Brazil. Currently 54 countries are reporting detection of the variant. o Delta (B.1.617.2), which originated in India.
    [Show full text]
  • Genomics and Epidemiological Surveillance Stephanie W
    NEWS & ANALYSIS GENOME WATCH Genomics and epidemiological surveillance Stephanie W. Lo and Dorota Jamrozy This month’s Genome Watch highlights viral transmission, identify viral mutations D614 vari ant, which might be indicative of how genomic surveillance can provide and integrate viral data with health data2. By potential positive selection. The viral genome important information for identifying June 2020, the consortium sequenced >20,000 data were linked with patient clinical infor- and tracking emerging pathogens such SARS- CoV-2 genomes and defined transmis- mation, which showed that the G614 variant as SARS- CoV-2. sion lineages based on phylogeny. Open data might be associated with potentially higher sharing and standardized lineage definitions viral loads but not with disease severity. The timely detection and surveillance of infec- (Global Initiative on Sharing All Influenza Updated data and current global counts of tious diseases and responses to pandemics Data (GISAID)) were established to enable the spike 614 variants are available in the are crucial but challenging. Whole-genome global efforts in detecting emerging lineages COVID-19 Viral Genome Analysis Pipeline. sequencing (WGS) is a common tool for path- and mutations that are relevant for outbreak Genomic surveillance can generate a rich ogen identification and tracking, establishing control and vaccine development on an inter- source of information for tracking pathogen transmission routes and outbreak control. national level3. By the end of June 2020, >57,000 transmission and evolution on both national At the turn of 2019/20, Wu et al1 used SARS- CoV-2 genomes from around 100 dif- and international levels. More importantly, metagenomic RNA sequencing to identify the ferent countries have been deposited in the the recent application of genomics in surveil- aetiology of an at this point unknown respira- GISAID database.
    [Show full text]
  • SARS-Cov-2 Variants ACKNOWLEDGEMENTS
    SARS-CoV-2 variants ACKNOWLEDGEMENTS This report was developed by PHG Foundation for FIND (the Foundation for Innovative New Diagnostics). The work was supported by Unitaid and UK aid from the British people. We would like to thank all those who contributed to the development and review of this report. Lead writers Chantal Babb de Villiers (PHG Foundation) Laura Blackburn (PHG Foundation) Sarah Cook (PHG Foundation) Joanna Janus (PHG Foundation) Reviewers Devy Emperador (FIND) Jilian Sacks (FIND) Marva Seifert (FIND/UCSD) Anita Suresh (FIND) Swapna Uplekar (FIND) Publication date: 11 March 2021 URLs correct as of 4 March 2021 SARS-CoV-2 variants CONTENTS 1 Introduction ............................................................................................................................ 3 2 SARS-CoV-2 variants and mutations .................................................................................... 3 2.1 Definitions of variants of concern ...................................................................................... 4 2.2 Initial variants of concern identified ................................................................................... 5 2.3 Variants of interest ............................................................................................................ 7 3 Impact of variants on diagnostics ........................................................................................ 7 3.1 Impact of variants of concern on diagnostics ...................................................................
    [Show full text]
  • WHO Survey on the Sharing of Genetic Sequence Data Of
    WHO Survey on the Sharing of Genetic Sequence Data of Influenza Viruses with Human Pandemic Potential Results and Analysis of data received 27 April 2016 Table of Contents Acknowledgement .................................................................................................................................. 3 Acronyms ................................................................................................................................................ 4 Executive Summary ................................................................................................................................. 5 Background ............................................................................................................................................. 8 Methodology Summary .......................................................................................................................... 9 IVPP GSD Sharing in Numbers (as of October 2014)............................................................................. 10 Survey Results ....................................................................................................................................... 11 1. Mechanisms for sharing of IVPP GSD........................................................................................ 11 2. Ease of sharing .......................................................................................................................... 13 3. Systematic sharing ...................................................................................................................
    [Show full text]
  • Avian Influenza A(H10N7) Virus–Associated Mass Deaths Among Harbor Seals
    Article DOI: http://dx.doi.org/10.3201/eid2104.141675 Avian Influenza A(H10N7) Virus–Associated Mass Deaths among Harbor Seals Technical Appendix Technical Appendix Table. Details of hemagglutinin sequences shown in the Figure* Isolate name Accession no. Online database A/seal/Germany/EMC-1/2014(H10N7) EPI544351 GISAID EpiFlu A/mallard/Netherlands/1/2014(H10N7) EPI552751 GISAID EpiFlu A/mallard/Sweden/133546/2011(H10N4) CY183991.1 GenBank A/domestic duck/RepublicofGeorgia/2/2010(H10N7) CY185457.1 GenBank A/domestic duck/RepublicofGeorgia/1/2010(H10(N7) CY185449.1 GenBank A/mallard/Sweden/104746/2009(H10N1) CY183855.1 GenBank A/mallard/Sweden/105465/2009(H10N1) CY183927.1 GenBank A/mallard/Sweden/102260/2009(H10N1) CY183847.1 GenBank A/mallard/Sweden/105323/2009(H10N1) CY183887.1 GenBank A/mallard/Sweden/105402/2009(H10N1) CY183911.1 GenBank A/mallard/Sweden/105522/2009(H10N1) JX566079.1 GenBank A/mallard/Netherlands/50/2010(H10N7) EPI552752 GISAID EpiFlu A/mallard/Netherlands/47/2010(H10N7) EPI552753 GISAID EpiFlu A/mallard/Republic of Georgia/14/2011(H10N7) CY185689.1 GenBank A/mallard/Republic of Georgia/15/2011(H10N7) CY185385.1 GenBank A/northern pintail/Egypt/EMC-1/2012(H10N7) EPI552754 GISAID EpiFlu A/mallard/Egypt/EMC-4/2012(H10N7) EPI552755 GISAID EpiFlu A/mallard/Netherlands/1/2012(H10N7) EPI552756 GISAID EpiFlu A/shoveler/Egypt/01198-NAMRU3/2007(H10N7) EPI372402† GISAID EpiFlu A/Jiangxi-Donghu/346/2013(H10N8) EPI497477‡ GISAID EpiFlu A/chicken/Jiangxi/102/2013(H10N8) EPI530542§ GISAID EpiFlu *We gratefully acknowledge the authors, originating and submitting laboratories of the sequences from the Global Initiative on Sharing Avian Influenza Data (GISAID) EpiFluTM database on which this research is based.
    [Show full text]
  • Investigation of Novel SARS-Cov-2 Variant
    SARS-CoV-2 variant data update, England Version 10 6 August 2021 This briefing provides an update on previous data located in technical and variant data update briefings and updates up to 23 July 2021. 1 Investigation of SARS-CoV-2 Variants of Concern. Version 10. Contents Contents .............................................................................................................................. 2 Data on individual variants .................................................................................................. 5 Alpha ............................................................................................................................... 5 Beta ................................................................................................................................. 9 Gamma .......................................................................................................................... 13 Zeta ............................................................................................................................... 17 Eta ................................................................................................................................. 20 VUI-21FEB-04 (B.1.1.318) ............................................................................................ 23 Theta ............................................................................................................................. 26 Kappa ...........................................................................................................................
    [Show full text]
  • APHL SARS-Cov-2 Sequencing Recommendations
    Recommendations for SARS-CoV-2 Sequence Data Quality & Reporting Version 1 • March 1, 2021 www.aphl.org Introduction Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), emerged in late 2019 in Wuhan, China.1 Since being identified, SARS-CoV-2 has spread across the globe resulting in over 113 million cases of COVID-19 and 2.5 million deaths.2 In the US, public health laboratories have played a critical role in the response to the COVID-19 pandemic. As the availability of molecular and serologic/antibody based testing diagnostics has expanded, so too has the work performed by public health laboratories. Currently, efforts are underway to improve the coordination of genomic sequencing of SARS-CoV-2 in the US. Next generation sequencing (NGS) is a tool commonly used in public health surveillance and outbreak response. There are currently multiple efforts in public and private sectors to sequence SARS-CoV-2 genomes, but they are not yet well coordinated. This includes increasing the amount of sequencing performed in state and local public health laboratories. Currently, laboratories are using different sequencing strategies and protocols, including but not limited to differences in sample selection, library preparation and sequencing platforms, bioinformatics workflows, and data interpretation, which are leading to inconsistent data quality standards and biases among SARS-CoV-2 sequences generated by public health laboratories in public databases. While these issues are not unique to public health laboratories, providing basic guidance on SARS-CoV-2 sequencing and data sharing practices will improve coordination of laboratories that have been conducting sequencing and provide expectations for public health laboratories that are currently building capacity.
    [Show full text]
  • Outbreak of SARS Cov 2 B.1.1.7 Lineage After Vaccination in German Long Term Care
    Outbreak of SARS-CoV-2 B.1.1.7 Lineage after Vaccination in Long-Term Care Facility, Germany, February–March 2021 Pinkus Tober-Lau,1 Tatjana Schwarz,1 David Hillus, Jana Spieckermann, Elisa T. Helbig, Lena J. Lippert, Charlotte Thibeault, Willi Koch, Leon Bergfeld, Daniela Niemeyer, Barbara Mühlemann, Claudia Conrad, Stefanie Kasper, Friederike Münn, Frank Kunitz, Terry C. Jones, Norbert Suttorp, Christian Drosten, Leif Erik Sander,2 Florian Kurth,2 Victor M. Corman2 One week after second vaccinations were administered, fi rst week after the second dose (3). Although break- an outbreak of B.1.1.7 lineage severe acute respiratory through infections have been reported, vaccinated syndrome coronavirus 2 infections occurred in a long- persons were at substantially lower risk for infection term care facility in Berlin, Germany, aff ecting 16/20 vac- and symptomatic disease (4,5). cinated and 4/4 unvaccinated residents. Despite consid- The variant of concern (VOC) B.1.1.7 rapidly erable viral loads, vaccinated residents experienced mild became the predominant lineage in Europe in 2021. symptoms and faster time to negative test results. Analyses estimated that B.1.1.7 has increased trans- missibility and a <0.7 higher reproduction number utbreaks of severe acute respiratory syndrome (6). Neutralization activity of serum samples from Ocoronavirus 2 (SARS-CoV-2) in long-term care BNT162b2-vaccinated persons has been shown to facilities (LTCF) are of great concern and have been be slightly reduced against B.1.1.7 in cell culture (7), reported to have high case-fatality rates (1). Conse- but observational data from Israel suggest BNT162b2 quently, national vaccination strategies prioritize res- vaccination is effective against B.1.1.7 (8).
    [Show full text]
  • Press Release
    PRESS RELEASE GISAID announces a major contribution from Seqirus to support open and rapid sharing of influenza virus data Munich, Germany - 26 July 2018 – The Global Initiative on Sharing All Influenza Data (GISAID), a non-profit organization and public-private partnership dedicated to strengthening the world’s defense against deadly influenza threats, today welcomed a €250,000 donation from Seqirus, a leading innovator in influenza vaccine technologies and pandemic response solutions. GISAID is recognized as the world’s foremost global collaboration of scientists and governments, from developed and developing countries, to promote the near-real time exchange and analysis of data on the ever-changing influenza viruses that threaten global populations. It has brought together 8,000 scientists from 1,000 institutions around the world to create the largest and most up-to-date publicly-accessible collection of genetic data on influenza viruses. This initial contribution from Seqirus is the first of its kind from the influenza vaccine industry and will bolster GISAID’s efforts to advance bioinformatics and the interpretation of influenza data. The donation will be used to enhance GISAID’s database, to fund education programmes that aim to strengthen understanding of the impact of influenza and to support general operations. “Seqirus is proud to support GISAID in its mission to provide open and rapid access to influenza virus data for the public health good of all nations,” said Gordon Naylor, President of Seqirus. “The GISAID platform plays a crucial role in the timely identification of changes in the viruses to reduce response times and mitigate the impact of seasonal and pandemic influenza.” “The centenary year of the 1918 pandemic presents an opportune moment to reflect on progress made against the threat of pandemic influenza,” said Peter Bogner, President of GISAID.
    [Show full text]
  • SARS-Cov-2 Variant Analysis Henrik Torres1, Amith Vasantha2, Helen Chow3, Gepoliano Chaves Phd4
    SARS-CoV-2 Variant Analysis Henrik Torres1, Amith Vasantha2, Helen Chow3, Gepoliano Chaves PhD4 1Choate Rosemary Hall, 333 Christrian Street, Wallingford, CT 06492 2Basis Independent Silicon Valley, 1290 Parkmoor Ave, San Jose, CA 95126 3Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132 4University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637 Abstract— The SARS-CoV-2 virus started the novel II. METHODS coronavirus pandemic. SARS-CoV-2 is an RNA virus that causes infection through the binding of the virion’s spike protein to a Data was collected from the NCBI SRA Database and the cell’s ACE2 receptor. The SARS-CoV-2 virion cleaves its way GISAID Database in the form of FASTQ files and FASTA into the cell and deposits its RNA genome that hijacks the cell’s files, respectively. FASTQ files and FASTA files both RNA replication system to produce more virions. During function to store genomic information, with the important replication, genetic variance arises through single nucleotide polymorphisms (SNPs) that can enable a zoonotic jump or affect distinction being that FASTA files store a nucleotide the transmissibility or lethality of a virus [3]. Our research sequence, while FASTQ files add quality scores to each focused on studying these SNPs from collected FASTQ and nucleotide. Several FASTQ and FASTA files were collected FASTA files of human, pangolin, and bat SARS-CoV-2 genomes from NCBI and GISAID with each continent except on online databases such as the NCBI SRA Browser and GISAID Antarctica being equally represented. To analyze the FASTQ and running files through variant call pipelines.
    [Show full text]
  • COVID-19 Genomic Surveillance Regional Network
    COVID-19 Genomic Surveillance Regional Network Dr. Juliana Leite LaboratorySpecialist, Viral Disease Infectious Hazard Management (IHM) PAHO Health Emergencies Department (PHE) Virtual meeting 28 - 30 October 2019 OPS/OMS COVID-19 Genomic Surveillance Regional Network Latin America Region Laboratory • Implementation of a Response Capacity SARS-CoV-2 genomic Caribbean Regian surveillance network in the Americas region Pan American Health Organization OPS/OMS BACKGROUND The response to Emerging Infectious Diseases Regardless of geographic location, an outbreak or epidemic represents an emergency and a potential international threat. There are no countries or institutions that have the complete PRINCIPLES capacity to respond by themselves to epidemics, especially those generated by new (emerging) pathogens with pandemic potential. For this reason, a system is required that coordinates alert and response mechanisms at the global and regional levels. OPS/OMS BACKGROUND The response to Emerging Infectious Diseases Beyond surveillance of endemic pathogens, WHO Member States should be prepared to detect and characterize in a timely manner the emergence of new agents with epidemic potential* Mechanisms for a timely access to National and Regional reference laboratories as well as laboratory networks, must be granted *Core capacity #8 IHR Quality of the results should be ensured OPS/OMS BACKGROUND The response to COVID-19 pandemic Firsts genomic sequences C harité Protocol released in open platform Primers and Probes (Virological and GISAID) Ordering
    [Show full text]
  • First Detection of SARS-Cov-2 B.1.1.7 Variant of Concern in an Asymptomatic Dog in Spain
    viruses Case Report First Detection of SARS-CoV-2 B.1.1.7 Variant of Concern in an Asymptomatic Dog in Spain Sandra Barroso-Arévalo 1,2,* , Belén Rivera 1,2, Lucas Domínguez 1,2 and José M. Sánchez-Vizcaíno 1,2 1 VISAVET Health Surveillance Center, Animal Health Department, Complutense University of Madrid, 28040 Madrid, Spain; [email protected] (B.R.); [email protected] (L.D.); [email protected] (J.M.S.-V.) 2 Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain * Correspondence: [email protected] Abstract: Natural SARS-CoV-2 infection in pets has been widely documented during the last year. Although the majority of reports suggested that dogs’ susceptibility to the infection is low, little is known about viral pathogenicity and transmissibility in the case of variants of concern, such as B.1.1.7 in this species. Here, as part of a large-scale study on SARS-CoV-2 prevalence in pets in Spain, we have detected the B.1.1.7 variant of concern (VOC) in a dog whose owners were infected with SARS-CoV-2. The animal did not present any symptoms, but viral loads were high in the nasal and rectal swabs. In addition, viral isolation was possible from both swabs, demonstrating that the dog was shedding infectious virus. Seroconversion occurred 23 days after the first sampling. This study documents the first detection of B.1.1.7 VOC in a dog in Spain and emphasizes the importance of performing active surveillance and genomic investigation on infected animals.
    [Show full text]