Systolic Murmurs

Total Page:16

File Type:pdf, Size:1020Kb

Systolic Murmurs Published online: 2019-12-03 THIEME Clinical Rounds 165 Systolic Murmurs Maddury Jyotsna1 1Department of Cardiology, Nizam's Institute of Medical Sciences, Address for correspondence M. Jyotsna, MD, DM, FACC, FESC, Punjagutta, Hyderabad, Telangana, India FICC, Department of Cardiology, Nizam's Institute of Medical Sciences, Punjagutta, Hyderabad, Telangana 500082, India (e-mail: [email protected]). Ind J Car Dis Wom 2019;4:165–174 Murmur is the vibration of heart components or great ves- The areas to be auscultated other than above mentioned sels.1 Systolic murmurs are those murmurs that can be heard classical five areas are as follows: between S1 and S2. 1. The right parasternal region, 2. The right and left the base of the neck, Basics of Murmur 3. The right and left carotid arteries, 4. The left axilla, The turbulent flow generates murmurs, but the acoustic 5. The interscapular area. force generated by the turbulence is not sufficient to produce an audible sound on the chest wall.2 Brun proposed the con- cept of vortex shedding for the mechanism of generation of Characteristics of the Systolic Murmur the murmurs. Vortices are produced from the diseased valves or great vessels. These vertices can be produced by increased 1. Intensity (loudness)—Intensity of the systolic murmur flow with normal valves or great vessels. These vortices can is graded into six grades. Grade 1 refers to a murmur so produce sustained vibrations to generate audible murmur on faint that it can be heard only with special effort. A grade 2 the chest wall. murmur is faint but is immediately audible. Grade 3 refers Another important factor for the generation of murmur to a moderately loud murmur and grade 4 to a murmur along with turbulence is the velocity. In laminar flow, the that is very loud and palpable. A grade 5 murmur is ex- velocity, as well as vortex shedding, is minimal. In increase tremely loud and is audible with one edge of the stetho- flow conditions (e.g., increase cardiac output states), as veloc- scope touching the chest wall. A grade 6 murmur is so ity increases, the vortex shedding also increases. Even vortex loud that it is audible with the stethoscope just removed shedding may increase with normal velocities if associated from contact with the chest wall. with additional areas of disruption of laminar flow. These 2. Frequency (pitch)—Frequency of the murmurs mainly vortices will determine the pitch of generated murmur. depends on the velocity of the blood flow. If velocity is Vortices in downstream may coalesce and represent lower high, then the pitch of the murmur increases. When blood frequency than at the site of generation. It is always better to flows from a high-pressure chamber (left ventricular, LV) hear the sound at site of generation (e.g., at the site of steno- to low-pressure chamber (left artery, LA) such as mur- sis), then in the downstream. mur due to mitral regurgitation (MR) will have high pitch due to high velocity. Murmur taking origin at the stenotic areas is of a low or medium pitched. Technique of Auscultation 3. Quality—Quality depends upon the tone of the sound. The Auscultation should be done in a calm and quiet room with a descriptions used to define quality are as follows: stethoscope that is 25 to 30 cm long with the stiff diaphragm a. Blowing—e.g., high-pitched murmur of MR, and shallow bell. Auscultation should be in lying, sitting, or b. Musical—e.g., functional or innocent murmurs; usually standing, left lateral decubitus position, and after specific these are low or medium pitched murmurs, maneuvers. On chest, right second intercostal space (ICS) is c. Squeaking—e.g., aortic stenosis murmur. This is high called as aortic area, left third ICS is called as neoaortic area, pitched squeaking and whistling quality, left second ICS is called as pulmonary area, left fourth ICS d. Whooping—e.g., late diastolic whoop in severe aortic is called as tricuspid area and at the cardiac apex as mitral regurgitation, area. Levine and Harvey recommended to do the auscul- e. Honking—e.g., systolic murmur in ballooning mitral tation from the mitral area and then move inch by inch to valve, other areas.3-5 published online DOI https://doi.org/ ©2019 Women in Cardiology and December 3, 2019 10.1055/s-0039-3401063 Related Sciences 166 Systolic Murmurs Jyotsna f. Harsh—e.g., these are usually high velocity murmur as 3. Sudden Squatting—Squatting causes decrease in the ve- in case atrial septal (AS) or pulmonary stenosis (PS) or- nous return to right heart and increase in the peripheral ventricular septal defect (VSD), vascular resistance. g. Rasping, a. Isometric Hand Grip Exercise—The changes in the sys- h. Grunting, temic circulation because of isometric handgrip exer- i. Rumbling—e.g., murmur of mitral stenosis. cise are as follows: Even though many descriptions are there to mention the a) Increase in peripheral vascular resistance, quality of sound, none of them are characteristics of the par- b) Increase in systemic blood pressure, ticular disease. Many people may interchangeably use these c) Increase in heart rate, words to describe the quality. d) Increase in cardiac output, 4. Duration—Systolic murmurs are classified depending e) Increase in LV volume, upon a phase of systole, which is described detailed below. f) Increase in LV filling pressure. 5. Configuration—Shape of murmur is called a configuration 4. Valsalva Maneuver—►Table 1 describes phases of the Val- of the murmur. It depends on the intensity and duration salva, along with the physiological changes and their effects. of the murmur. The descriptions used to describe the con- 5. Passive Leg Rising—Venous return of the right side of the figuration of murmurs are as follows: heart is increased by passive leg raising. a. Crescendo, 6. Post-Extrasystolic Pause—As there is an increase in the b. Decrescendo, ventricular filling, a beat after an extrasystole myo- c. Crescendo decrescendo, cardial contractility increases (according to Frank– d. Plateau, Starling law). 7. Pharmacological Maneuvers—The pharmacological effects 6. Primary Location (point of maximum intensity)—The of below drugs are used to distinguish few of systolic mur- source of origin of murmur is determined by the site murs etiology (►Table 2). where the maximum murmur intensity is heard, even though the murmur may be heard throughout the chest. 7. Site(s) Of Radiation—Some murmurs radiate. The direction Systolic Murmurs—Source of Origin of the radiation may give information about the etiology Many involve stenosis of the semilunar valves or regurgi- of murmur. tation of the atrioventricular valves. All systolic murmurs Dynamic Auscultation Table 1 Valsalva’s maneuver phases and its effects Phase of Physiological Effect The physiologic maneuvers are as follows: Valsalva's changes 1. Respiration—Greater effect of the breathing is seen on the maneuver right side of the heart. Inspiration or Mueller's maneuver Phase 1 (initial ↑ Intrathoracic ↑ LV output (forced inspiration on a closed glottis) causes increase in phase) pressure venous return right side of heart, so right side originat- Phase 2 (strain ↓Venous return ↑ Heart rate ed increase in murmurs with inspiration with good right phase) ↓ Stroke volume ↓ Mean arterial pressure ventricular function. Because of the pooling of blood in ↓ Pulse pressure the low resistance pulmonary capacitance vessel during Phase 3 (release ↑ Venous – inspiration, the blood flow decreases to the left heart. The phase) return opposite occurs during expiration. Phase 4 (over – The normalization of 2. Standing—Standing causes decrease in venous return to stood phase) features of phase 2 the right side of heart first then to left side, whereas lying There is six to eight beats time delay for left-sided events than right- down increases venous return. sided events. Table 2 Drugs used for dynamic osculation Drug Route of administration Dose Duration Pharmacological changes Amyl nitrite Inhalation – 10–15 sec ↓ Peripheral vascular resistance ↑ Stroke volume ↑Venous return Phenylephrine Intravenous 0.5 mg – ↑ Systolic blood pressure for 3–5 min Reflex bradycardia ↓ Myocardial contractility Methoxamine Intravenous 3–5 mg – ↑Systolic blood pressure by 20–40 mm Hg for 10–20 min Reflex bradycardia ↓ Myocardial contractility Indian Journal of Cardiovascular Disease in Women WINCARS Vol. 4 No. 3/2019 Systolic Murmurs Jyotsna 167 are more prominent in the presence of pregnancy, fever, sequences of events are S1, isovolumetric contraction anemia, or thyrotoxicosis. period, then ejection systolic murmurs, hangout inter- Pictogram of the systolic murmurs is in ►Fig. 1. val, and lastly S2. The short crescendo about midsys- tole is an invariable feature of all ejection murmurs.3 Classification of Systolic Murmurs Causes of midsystolic ejection murmurs include: I) Already mentioned previously that systolic murmurs can a) Outflow obstruction (aortic stenosis, pulmonic ste- be classified depending on the phase of systole. nosis, hypertrophic obstructive cardiomyopathy [HOCM]), 1. Early Systolic Murmur—Starts with S1, peaks in early b) Increased flow through normal semilunar valves systole. Causes of early systolic murmurs are as follows: (atrial septal defects), a. Small VSD, c) Dilation of the aortic root or pulmonary trunk, b. VSD with high pulmonary vascular resistance, d) Diseased semilunar valves without obstruction. c. An innocent murmur of childhood, 3. Late Systolic Murmur—Late systolic murmurs (LSM) d. Acute MR, are crescendo in nature and start after S1 and, if left e. Normal-pressure TR, sided, extend up to S2. f. Organic TR, Causes of LSM are as follows: 2. MidSystolic Murmur—Midsystolic ejection murmurs are generated across the semilunar valves. This mur- a. Mitral valve prolapse (MVP), mur starts at the time of ejection, which is after S1 and b. Tricuspid valve prolapse, ends with the cessation of blood flow means before c.
Recommended publications
  • 4.17-Kronzon-M-Mode-Echo.Pdf
    M-Mode Echocardiography Is it still Alive? Itzhak Kronzon, MD,FASE Honoraria: Philips Classical M-mode Echocardiography M-Mode offers better time and image resolution. Sampling Rate M-Mode: 1800 / sec 2D: 30 / sec Disadvantages 1. Single Dimension (depth only) 2. Nonperpendicular orientation (always use 2D guidance). Normal MV MS M-Mode of RA & LA Myxomas Back cover of ECHOCARDIOGRAPHY Feigenbaum, 3rd edition MV Prolapse M-Mode in HOCM ASH / SAM Mid-systolic AV Closure Markers of LV Dysfunction A-C Shoulder (“B-Bump”) EPSS Feigenbaum, ECHOCARDIOGRAPHY What does the m-mode show? 1. MS 2. AI 3. Flail MV 4. Myxoma Answer: 3. Posterior Leaflet Motion in Flail MV Note that the posterior leaflet moves anteriorly in early diastole, before it moves posteriorly. ASD with Large L to R Shunt Note markedly dilated RV and “paradoxical” septal motion Dyssynchrony by M-Mode -LBBB 138msec Dyssynchrony of >130msec is associated with good CRT response (sensitivity 100%, specificity 63%) This M mode finding is not associated with increased risk of A. Coarctation B. Pulmonic Stenosis C. Subaortic Stenosis D. Aortic insufficiency Echo of pt with Endocarditis and Shock Best Rx is: 1. AVR 2. MVR 3. IABP 4. Can not tell Echo of pt with Endocarditis and Shock Answer: 1. AVR Note premature closure of MV & echogenic mass in LVOT (Ao veg. Vs. flail Ao cusp) Differential Dx of Premature MV Closure A. AR B. First Degree AV Block C. High Degree AV Block D. Blocked APC E. Atrial Flutter The most likely physical finding in this pt is 1. Absent left subclavian pulse 2.
    [Show full text]
  • Essentials of Bedside Cardiology CONTEMPORARY CARDIOLOGY
    Essentials of Bedside Cardiology CONTEMPORARY CARDIOLOGY CHRISTOPHER P. CANNON, MD SERIES EDITOR Aging, Heart Disease and Its Management: Facts and Controversies, edited by Niloo M. Edwards, MD, Mathew S. Maurer, MD, and Rachel B. Wellner, MD, 2003 Peripheral Arterial Disease: Diagnosis and Treatment, edited by Jay D. Coffman, MD, and Robert T. Eberhardt, MD, 2003 Essentials ofBedside Cardiology: With a Complete Course in Heart Sounds and Munnurs on CD, Second Edition, by Jules Constant, MD, 2003 Primary Angioplasty in Acute Myocardial Infarction, edited by James E. Tcheng, MD,2002 Cardiogenic Shock: Diagnosis and Treatment, edited by David Hasdai, MD, Peter B. Berger, MD, Alexander Battler, MD, and David R. Holmes, Jr., MD, 2002 Management of Cardiac Arrhythmias, edited by Leonard I. Ganz, MD, 2002 Diabetes and Cardiovascular Disease, edited by Michael T. Johnstone and Aristidis Veves, MD, DSC, 2001 Blood Pressure Monitoring in Cardiovascular Medicine and Therapeutics, edited by William B. White, MD, 2001 Vascular Disease and Injury: Preclinical Research, edited by Daniell. Simon, MD, and Campbell Rogers, MD 2001 Preventive Cardiology: Strategies for the Prevention and Treatment of Coronary Artery Disease, edited by JoAnne Micale Foody, MD, 2001 Nitric Oxide and the Cardiovascular System, edited by Joseph Loscalzo, MD, phD and Joseph A. Vita, MD, 2000 Annotated Atlas of Electrocardiography: A Guide to Confident Interpretation, by Thomas M. Blake, MD, 1999 Platelet Glycoprotein lIb/IlIa Inhibitors in Cardiovascular Disease, edited by A. Michael Lincoff, MD, and Eric J. Topol, MD, 1999 Minimally Invasive Cardiac Surgery, edited by Mehmet C. Oz, MD and Daniel J. Goldstein, MD, 1999 Management ofAcute Coronary Syndromes, edited by Christopher P.
    [Show full text]
  • Case Reports
    Case Reports Quadrivalvular Heart Disease An Autopsied Case with Massive Pulmonary Regurgitation Tsuguya SAKAMOTO, M.D., Zen'ichiro UOZUMI, M.D., Nobuyoshi KAWAI, M.D., Yoshiyuki SAKAMOTO, M.D., Ryoko KATO, M.D., and Hideo UEDA, M.D. SUMMARY An autopsied case of quadrivalvular heart disease was described, in which pulmonary regurgitation due to possible bicuspid valve was pre- dominant and tricuspid stenosis, mitral stenosis, and aortic stenosis with insufficiency coexisted. The patient was 47, and finally 53 years old female with long-term history of cough due to bronchial compression by the enormously dilated pulmonary artery. Clinical examination revealed massive pulmonary regurgitation, which was further substantiated by right heart catheterization and cineangiocardiography. The phono- cardiograms and the reference tracings suggested the co-existence of tricuspid stenosis, aortic stenosis with regurgitation and mitral stenosis. Cardiac catheterization, intracardiac phonocardiography and angio- cardiography also favored to the diagnosis of organic tricuspid stenosis. However, the ignorance of the presence of such an unusual combination misled to the precise antemortem diagnosis. Discussion was made on the rarity of quadrivalvular heart disease, and the pathogenesis of this unusual pulmonary regurgitation was analyzed based on the autopsy finding and the history as well as the clinical mani- festation. Finally, combination of the murmurs of organic and relative tricuspid stenosis was presented to explain the acoustical findings of the present case. Additional Indexing Words: Phonocardiography Mechanocardiography Bronchial compression Right-sided Austin Flint murmur UADRIVALVULAR heart disease was first described by Shattuck1) in 1891. However, the involvement of all four valves in a given patient is extremely rare.2) The present paper describes one of such case, in which From the Second Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Tokyo.
    [Show full text]
  • 179 the Pre-Operative Assessment of Acyanotic Pediatric Patients
    179 ORIGINAL ARTICLE Th e Pre-operative Assessment of Acyanotic Pediatric Patients Presented with Heart Murmur and Role of Surgry in congenital heart diseases, A retrospective analysis Dhafer O Alqahtani, Ali A. Alakfash, Omar R .Altamim Abstract Objectives: Th e aim of this study is to evaluate the incidence of congenital heart disease in patients referred solely because of heart murmur in pediatric age group and to assess the rule of medical and surgical management in patient with heart defects. Study design: It is retrospective analysis of all paediatric cases who presented with cardiac murmur. Materials and Methods:A retrospective database and echocardiographic review. All patients referred to King Abdulaziz Cardiac Center (KA CC) Riyadh, Kingdom of Saudi Arabia dur- ing the period from July 2007 till March 2009 for cardiovascular evaluation because of heart murmur detected during routine physical exam. We included any pediatric patient from the neonatal period till 14 years of age who had echocardiography in our center. Any patient with cyanosis, those with diff erence in the blood pressure between the upper limbs and lower limbs of more than 15 mmHg, preterm neonates, any acquired heart disease and syndromic and critically ill patients were excluded from the study. Results: A total of 245 patients met the inclusion criteria. Median age and weight is 7 months (one day – 12 years), 7.85 Kg (1.9 – 54 Kg) respectively. Normal echocardiography was pres- ent in 163 patients (66.5%). Th e most encountered anomaly found was patent ductus arte- riosious (PDA) which was diagnosed in 27 patients (11 %) followed by atrial septal defect (ASD) secundum in 26 patients (10.6%), then the VSD in 22 patients (9%), atrio-ventricular septal defect (AVSD) in 1 patient (0.4%), Coarctation of Aorta in 3 patients (1.2%), Tortuous of arch in 1 patients (0.4%), Pulmonary stenosis in 10 patients (4%), Mitral valve prolapse in 4 patients (1.6%) and the false tendon in 6 patients (2.4 %).
    [Show full text]
  • Evaluation and Management of Bradydysrhythmias
    VISIT US AT BOOTH # 116 AT THE ACEP SCIENTIFIC ASSEMBLY IN SEATTLE, OCTOBER 14-16, 2013 September 2013 Evaluation And Management Volume 15, Number 9 Of Bradydysrhythmias In The Author Nathan Deal, MD Assistant Professor, Section of Emergency Medicine, Baylor Emergency Department College of Medicine, Houston, TX Peer Reviewers Abstract Joshua M. Kosowsky, MD Vice Chair for Clinical Affairs, Department of Emergency Medicine, Brigham and Women’s Hospital; Assistant Professor, Bradydysrhythmias represent a collection of cardiac conduction Harvard Medical School, Boston, MA abnormalities that span the spectrum of emergency presentations, Charles V. Pollack, Jr., MA, MD, FACEP Professor and Chair, Department of Emergency Medicine, from relatively benign conditions to conditions that represent Pennsylvania Hospital, Perelman School of Medicine, University serious, life-threatening emergencies. This review presents the of Pennsylvania, Philadelphia, PA electrocardiographic findings seen in common bradydysrhythmias CME Objectives and emphasizes prompt recognition of these patterns. Underlying Upon completion of this article, you should be able to: etiologies that may accompany these conduction abnormalities are 1. Recognize the electrocardiographic features of common discussed, including bradydysrhythmias that are reflex mediated bradydysrhythmias. (including trauma induced) and those with metabolic, environ- 2. Consider a variety of pathologies that give rise to mental, infectious, and toxicologic causes. Evidence regarding the bradydysrhythmias. 3. Identify the emergent therapies for the unstable patient management of bradydysrhythmias in the emergency department with bradycardia. is limited; however, there are data to guide the approach to the un- 4. Be familiar with common antidotes for acute toxicities that stable bradycardic patient. When decreased end-organ perfusion is result in bradydysrhythmias.
    [Show full text]
  • Systolic Murmurs
    Murmurs and the Cardiac Physical Exam Carolyn A. Altman Texas Children’s Hospital Advanced Practice Provider Conference Houston, TX April 6 , 2018 The Cardiac Physical Exam Before applying a stethoscope….. Some pearls on • General appearance • Physical exam beyond the heart 2 Jugular Venous Distention Pallor Cyanosis 3 Work of Breathing Normal infant breathing Quiet Tachypnea Increased Rate, Work of Breathing 4 Beyond the Chest Clubbing Observed in children older than 6 mos with chronic cyanosis Loss of the normal angle of the nail plate with the axis of the finger Abnormal sponginess of the base of the nail bed Increasing convexity of the nail Etiology: ? sludging 5 Chest ❖ Chest wall development and symmetry ❖ Long standing cardiomegaly can lead to hemihypertrophy and flared rib edge: Harrison’s groove or sulcus 6 Ready to Examine the Heart Palpation Auscultation General overview Defects Innocent versus pathologic 7 Cardiac Palpation ❖ Consistent approach: palm of your hand, hypothenar eminence, or finger tips ❖ Precordium, suprasternal notch ❖ PMI? ❖ RV impulse? ❖ Thrills? ❖ Heart Sounds? 8 Cardiac Auscultation Where to listen: ★ 4 main positions ★ Inching ★ Ancillary sites: don’t forget the head in infants 9 Cardiac Auscultation Focus separately on v Heart sounds: • S2 normal splitting and intensity? • Abnormal sounds? Clicks, gallops v Murmurs v Rubs 10 Cardiac Auscultation Etiology of heart sounds: Aortic and pulmonic valves actually close silently Heart sounds reflect vibrations of the cardiac structures after valve closure Sudden
    [Show full text]
  • Subclinical Subaortic Stenosis in a Golden Retriever
    CASE ROUTES h CARDIOLOGY h PEER REVIEWED Subclinical Subaortic Stenosis in a Golden Retriever Kursten Pierce, DVM, DACVIM (Cardiology) Colorado State University THE CASE THE CASE A 12-month-old intact female golden retriever is pre- Diagnostic investigation of the heart murmur via echo- sented for a wellness examination and to discuss the cardiography is discussed with the owner but declined pros and cons of breeding the patient versus pursuing due to the patient’s lack of clinical signs and the costs ovariohysterectomy. The owner would like her to pro- associated with additional testing. duce one litter of puppies prior to being spayed. What are the next steps? On physical examination, the patient is bright, alert, and responsive. She is extremely energetic with a good THE CHOICE IS YOURS … BCS (4/9) and appropriate musculature. Cardiovascu- CASE ROUTE 1 lar examination reveals pink mucous membranes, no To provide information on breeding and caring for a obvious jugular venous distension, and a normal heart pregnant bitch and neonatal puppies and plan to spay rate and rhythm with normal synchronous femoral the patient after the puppies have been weaned, go to pulses. Auscultation is difficult and brief because the page 28. patient is rambunctious and panting. Despite the pant- ing, she is eupneic with clear bronchovesicular sounds. CASE ROUTE 2 A grade II/VI left basilar systolic heart murmur is aus- To avoid providing additional recommendations cultated. A murmur had not previously been docu- regarding breeding and ovariohysterectomy to the mented at her puppy wellness visits. The owner has not owner until a diagnostic investigation with a cardiolo- observed any coughing, trouble breathing, exercise gist has been pursued, go to page 32.
    [Show full text]
  • Sudan's Guidelines for Diagnosis, Management and Prevention
    Acute Rheumatic Fever and Rheumatic Heart Disease: Sudan’s Guidelines for Diagnosis, Management and Prevention 1 2 Sudan’s Federal Ministry of Health Sudan Heart Society-Working Group on Pediatric Cardiology Sudanese Association of Pediatricians Sudanese Children’s Heart Society Writing Committee: Sulafa Khalid M Ali, FRCPCH, FACC, Consultant Pediatric Cardiologist Professor-University of Khartoum Mohamed Saeed Al Khaleefa, FRCP, Consultant Cardiologist Professor-University of Al Zaem Al Azhari Siragedeen Mohamed Khair, MD, Consultant Pediatrician Professor- University of Al Zaem Al Azhari Second Edition Jan/2017 3 Contents Chapter Title Page Preface 5 Chapter 1 Rheumatic Heart Disease : General Considerations 6 Chapter 2 Diagnosis and Management of Streptococcal 11 Pharyngitis Chapter 3 Acute Rheumatic Fever 15 Chapter 4 Rheumatic Heart Disease 25 Chapter 5 Rheumatic Heart Disease in Pregnancy 49 Chapter 6 Acute Rheumatic Fever & Rheumatic Heart Disease 57 Control Appendices Rheumatic Heart Disease Protocols, Manuals, 63 Brochures and Educational Websites 4 Preface to the Second Edition: This is the second edition of Sudan’s Guidelines for acute rheumatic fever (ARF) and rheumatic heart disease (RHD) diagnosis, management and prevention. RHD is a devastating sequel of ARF, initiated by a simple throat infection with group A streptococcus in susceptible population. Eradication of RHD can be achieved by improvement of health care system as has been witnessed in developed countries. In many developing countries like Sudan, RHD is still prevalent causing significant mortality and premature cardiovascular death as well as an undesired burden on the health system. An RHD control program has been established in Sudan in 2012 aiming to increase the awareness of both the public and medical personnel, to introduce primary and consolidate secondary prevention and to strengthen the surveillance system.
    [Show full text]
  • Pregnancy and Cardiovascular Disease
    Pregnancy and Cardiovascular Disease Cindy M. Martin, M.D. Co-Director, Adult Congenital and Cardiovascular Genetics Center No Disclosures Objectives • Discuss the hemodynamic changes during pregnancy • Define the low, medium and high risk cardiac lesions as related to pregnancy • Review use of cardiovascular drugs in pregnancy Pregnancy and the Heart • 2-4% of pregnancies in women without preexisting cardiac abnormalities are complicated by maternal CV disease • In 2000, there were an estimated 1 million adult patients in the US with congenital heart disease (CHD), with the number increasing by 5% yearly • In 2005, the number of adult patients with CHD surpassed the number of children with CHD in the United States • CV and CHD disease does not always preclude pregnancy but may pose increase risk to mother and fetus Hemodynamic Changes during Pregnancy • Blood Volume – increases 40-50% • Heart rate – increases 10-15 bpm • SVR and PVR – decreases • Blood Pressure – decreases 10mmHg • Cardiac Output – increases 30-50% – Peaks at end of second trimester and plateaus until delivery • These changes are usually well tolerated Physiologic Changes in Pregnancy Hemodynamic Changes in Labor and Delivery • CO increases an additional 50% with each contraction – Uterine contraction displaces 300-500ml blood into the general circulation – Possible for the cardiac output to be 70-80% above baseline during labor and delivery • Mean arterial pressure also usually rises • Volume changes – Increased blood volume with uterine contraction – Increase venous
    [Show full text]
  • Cardiovascular Responses to Hypoxemia in Sinoaortic-Denervated Fetal Sheep
    003 1-399819 1 /3004-038 1$03.0010 PEDIATRIC RESEARCH Vol. 30. No. 4, I991 Copyright ID1991 International Pediatric Research Foundation. Inc. I1riiirc~c/it1 U.S. ,.I Cardiovascular Responses to Hypoxemia in Sinoaortic-Denervated Fetal Sheep JOSEPH ITSKOVITZ (ELDOR), EDMOND F. LAGAMMA. JAMES BRISTOW, AND ABRAHAM M. RUDOLPH Ccirdiovascz~karResearch Instillrle. Unlver:c.i/yqf Califi~rniu,Sari Francisco. Sun Francisco. Cu11fi)rilia94/43 ABSTRACT. Fetal cardiovascular response to acute hy- hypoxemia in postnatal life (1 3). The vascular effects of periph- poxemia is characterized by bradycardia, hypertension, and eral chemoreceptor stimulation, with ventilation held constant, redistribution of cardiac output. The role of aortic and include coronary vasodilation and vasoconstriction in the carotid chemoreceptors in mediating these responses was splanchnic organs and the skeletal muscles. Stimulation of the examined in eight sinoaortic-denervated and nine sham- carotid body chemoreceptors results in reflex bradycardia and operated fetal lambs. Blood gases, pH, heart rate, arterial negative inotropic responses. The bradycardia and peripheral pressure, and blood flow distribution were determined be- vasoconstriction during carotid chemoreceptor stimulation can fore and during hypoxemia. In intact fetuses, heart rate be reversed by effects arising from concurrent hypernea (13). fell from 184 -+ 12 to 165 + 23 beatslmin (p< 0.01) but The arterial chemoreceptors (aortic and carotid bodies) are increased from 184 + 22 to 200 + 16 beatslmin (p< 0.05) active in the fetal lamb and are responsive to hypoxemia (14- in the sinoaortic-denervated fetuses. Intact fetuses showed 21). Stimulation of the fetal arterial chemoreceptors result in an early hypertensive response to hypoxemia, whereas the bradycardia, which is abolished by SAD (19, 20, 22).
    [Show full text]
  • Problems in Family Practice Heart Murmurs in Infants and Children
    Problems in Family Practice Heart Murmurs in Infants and Children Thomas A. Riemenschneider, MD Sacramento, California A system is presented for evaluation of heart murmurs in in­ fants and children. The system places emphasis on identifica­ tion of functional murmurs, which the physician encounters so frequently in daily practice. A three-part approach is presented which includes: (1) evaluation of cardiovascular status, (2) as­ sessment of the heart murmur, and (3) decision regarding the need for further evaluation. This approach relieves the physi­ cian of the necessity to remember the multiple details of the many congenital cardiac lesions, and requires only the knowl­ edge of a few easily remembered details about functional murmurs. The system enables the physician to confidently distinguish organic and functional murmurs and to decide which children need further evaluation and referral to the pediatric cardiologist. The physician who cares for infants, children, with “normal” murmurs for reassurance to the and adolescents will frequently encounter heart parents.2 Using his/her knowledge of the myriad murmurs during the course of a careful physical details of the many congenital cardiac malforma­ examination. It has been estimated that a heart tions, the pediatric cardiologist seeks evidence murmur may be heard at some time in almost that the murmur is due to an organic lesion. The every child.1 Murmurs may be classified as “func­ family physician cannot expect to retain all of tional” (physiologic, normal, benign, or innocent), these details, and therefore often feels in­ or “organic” (associated with an anatomic car­ adequately prepared to assess the child with a diovascular abnormality).
    [Show full text]
  • Investigation of the Cardiovascular Action of Sympathetic Amines Using Two Kinds of Strain Gauge Instrument
    Nagoya ]. med. Sci. 29: 155-165, 1966. INVESTIGATION OF THE CARDIOVASCULAR ACTION OF SYMPATHETIC AMINES USING TWO KINDS OF STRAIN GAUGE INSTRUMENT ATSUSHI SEKIYA, MITSUYOSHI NAKASHIMA, AND ZENGO KANDA Department of Pharmcology, Nagoya University School of Medicine (Director: Prof. Zen go Kanda) SUMMARY Ventricular responses of a few catecholamines in rabbits were studied with the use of various parameters: blood pressure, systemic output or stroke volume, heart rate, ventricular contractile force and change of segment length of ventricular muscle. In recording ventricular contraction, two kinds of apparatus, strain gauge compass and arch, which we devised, were used. Simultaneous recordings of these various factors permit characterization and direct comparison of the nature and sequence of left ventricular responses by infusion of catecholamines. Epinephrine or norepinephrine, in smaller dose produced almost the same changes in ventricular contractile force and segment length of ventricular muscle. However, in the course of a short time after the administration of the large dose of these drugs, the change of coutractile force by means of strain gauge arch was significant, but the change of muscle segment length measused by means of strain gauge compass was more complicated and gave us much information of cardiac function. Namely, there were a decrease of stroke deflection with a decrease of stroke volume and a downward displacement of systolic and diastolic excursion curve which meant heart dilatation. By the administration of methoxamine, the changes of muscle segment length were more marked than the changes of contractile force. By the administration of isoproterenol, the changes of contractile force were more marked than the changes of muscle segment length changes.
    [Show full text]