Signomial Programs with Equality Constraints

Total Page:16

File Type:pdf, Size:1020Kb

Signomial Programs with Equality Constraints SIGNOMIAL PROGRAMS WITH EQUALITY CONSTRAINTS: NUMERICAL SOLUTION AND APPLICATIONS by JAMES YAN B.A.Sc., University of British Columbia, Vancouver, 1969 -M.A.Sc., University of British Columbia, Vancouver, 1971 •A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Electrical Engineering We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA December 1976 © James Yan, 1976 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Depa rtment The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date ABSTRACT Many design problems from diverse engineering disciplines can be formulated as signomial programs with both equality and inequa• lity constraints. However, existing computational methods of signomial programming are applicable to programs with inequality constraints only. In this thesis an algorithm is proposed and implemented to solve signo• mial programs with mixed inequality and equality constraints. The algo• rithm requires no manipulation of the constraints by the user and is compatible with the results of signomial programming. The proposed algorithm is a synthesis shaped by three concepts: the method of multipliers viewed as a primal-dual method, partial dua- lization,.and the retention of the structure of a signomial program. The strategy of the algorithm is to replace the original problem with a se• quence of subproblems each subject to the original signomial inequality constraints only. The subproblem's objective function is the original cost augmented with the equality constraints and specified by a parameter vector X_ and a penalty constant K. The algorithm then alternates between solving the subproblem and updating X_ and K. The convergence of the algorithm is, under suitable assumptions, guaranteed by the convergence of the method of multipliers and the method used to solve the subproblem. Because the subproblem has the form of a regular signomial program, it can in principle be solved by the techniques of signomial programming. A new numerical method implementing a variant of the Avriel- Williams algorithm for signomial programs is suggested for solving the subproblem. The method relies on monomial condensation, and the combined use of the reduced gradient method and a cutting plane scheme. Details ii of the method's implementation are considered, and some computational experience has been acquired. The proposed method also has the advan• tageous flexibility of being able to handle non-signomial differentiable objective functions. Four updating schemes for X_ and K are formulated and evaluated in a series of numerical experiments. In terms of the rate of convergence, the most promising scheme tested is the use of the Hestenes-Powell rule for updating A_ and the moderate monotonic increase of K after the comple• tion of each subproblem. Convergence can also be considerably accele• rated by properly scaling the equality constraints and performing only inexact minimization in the first few subproblems. The applicability of the algorithms developed in this thesis is illustrated with the solution of three design examples drawn from structural design and chemical process engineering. iii TABLE OF CONTENTS Page ABSTRACT ii TABLE OF CONTENTS ............ iv LIST OF ILLUSTRATIONS vl LIST OF TABLES . vii ACKNOWLEDGEMENT , viii . I. INTRODUCTION 1 1.1 Nonlinear Programming and Engineering Design 1 1.2 A Preview of the Thesis 2 II. SIGNOMIAL PROGRAMMING 6 2.1 Introduction" . 6 2.2 Posynomlals and Their Condensation ... ^ 2.3 Signomial Programming 9 2.4 Geometric Programming H 2.5 Solution of Geometric Programs 2.6 Solution of Signomial Programs 15 III. SIGNOMIAL PROGRAMS WITH EQUALITY CONSTRAINTS . 19 3.1 Motivation i9 3.2 Previous Work 20 3.3 Problem Statement 21 3.4 Proposed Algorithm 22 3.4.1 Background . ; 22 3.4.2 Development of the Algorithm 23 3.4.3 Statement.of the Algorithm . 27 3.5 Convergence Considerations 29 3.6 Solution of the Subproblem 31 3.7 Conclusion 37 IV. A PROPOSED ALGORITHM FOR INEQUALITY-CONSTRAINED SIGNOMIAL PROGRAMS 39 4.1 Introduction . ^9 4.2 Problem Statement 4° 4.3 Proposed Algorithm 41 4.3.1 Preview 41 4.3.2 The Reduced Gradient Method . 41 4.3.3 Algorithm Development 43 4.3.4 The Algorithm 46 4.3.5 The Algorithm in Perspective 46 4.4 Considerations for Implementation 48 4.4.1 Finding a Feasible Point of a Signomial Program. 48 4.4.2 Getting an Initial Basic Feasible Solution of Problem (LST) - No Cut Added .......... 49 4.4.3 Getting an Initial Basic Feasible Solution of Problem (LST) - After the Addition of a Cut . 51 iv Page 9 4.4.4 A Linear Search Method ...... 53 4.4.5 Optimality Criteria, Feasibility Tolerances, and Updating the Basis' Inverse ........ 56 4.5 Computational Experience ............... 58 4.5.1 Posynomial Representation . 58 4.5.2 Software Implementation 59 4.5.3 Computational Results 60 4.6 Presence of Simple Upper Bounds 66 4.7 Minimizing Algebraic Functionals of Signomials .... 70 4.7.1 Introduction ....... 70 4.7.2 Problem Formulation and Solution 7i 4.7.3 Application to Constrained Location-Allocation Problems 72 V. NUMERICAL SOLUTION OF SIGNOMIAL PROGRAMS WITH EQUALITY CONSTRAINTS . 77 77 5.1 Introduction 5.2 Solution of the Subproblem . 78 5.3 Schemes for Updating X_ and K 79 5.3.1 Introduction 79 5.3.2 Choice of Step Size a 81 5.3.3 Updating the Penalty Constant K ........ 84 5.4 Numerical Experiments ^ 5.4.1 Introduction 85 5.4.2 Software Details ........... 85 5.4.3 Test Problems .......... 87 5.4.4 Experiment Plan . 90 no 5.4.5 Results and Discussion ^ VI. APPLICATIONS IN ENGINEERING DESIGN . 100 6.1 Optimum Design of Statically Indeterminate Pin-Jointed Structures . 100 6.1.1 Introduction ..... 100 6.1.2 Problem Formulation 100 6.1.3 Example 103 6.2 Optimization Examples from Chemical Process Engineering 107 6.2.1 Introduction 107 6.2.2 Alkylation Process Optimization 108 6.2.3 Design of a Heat Exchanger Network H6 VII. CONCLUSION . 124 7.1 Synopsis' . 124 7.2 Contributions of the Thesis 128 7.3 Suggestions for Further Research 129 REFERENCES 131 v LIST OF ILLUSTRATIONS Figure Page 5.1 Typical plot of log 6(N) against the dual iteration count N , 97 6.1 The hyperstatic pin-jointed structure of the example, (a) Frame and loading (b) Basic frame with external load (c) Basic frame subject to redundant force .... 104 6.2 Simplified alkylation process diagram . 109 6.3 A small heat exchanger network 117 vi LIST OF TABLES Table Page 4.1 Coefficients for Problem C ......... 63 4.2 Statistics of the test problems for the CRGCP algorithm. 63 '4.3 Starting point and solution of (a) Problem A, (b) Pro• blem B, (c) Problem C . 64 4.4 Coefficients of example problem with simple upper bounds. 69 4.5 Starting points and solutions of the example problem with simple upper bounds . 69 4.6 Locations and weights for major Ukraine cities ..... 76 4.7 Summary of the solution of the constrained location pro• blem 76 5.1 Summary of the characteristics of the test problems . 87 5.2 Performance results of Schemes I-IV 93 6.1 The alkylation process problem's variables and their bounds 110 6.2 Definitions and values of the cost coefficients of the alkylation process problem ..... 110 6.3 The initial and optimal solution of the alkylation process problem iX5 6.4 Data for the heat exchanger network design problem . 121 6.5 Starting point and optimal solution of the heat ex• changer network problem 123 vii ACKNOWLEDGEMENT I would like to thank Dr. Erik V. Bohn for introducing me to geometric programming and for supervising my doctoral research. My first encounter with the method of multipliers was due to Dr. Mordecai Avriel of Technion, Israel. I am also grateful to Dr. Avriel for his encouragement and for the many valuable discussions we had during his stay at U.B.C. in 1974-75. I wish to acknowledge the use of Dr. Ron Dembo's code GGP made available to me by Dr. Avriel. The timely assistance of my friend, Rose Cam, during the pre• paration of the first draft provided a much needed boost. She deserves a bouquet of roses. Many thanks go to Misses Mary-Ellen Flanagan and Sannifer Louie for their excellent work in typing the final copy. Finally, the graduate fellowships from UBC and a National Research Council of Canada Postgraduate Scholarship are gratefully acknowledged. Partial support of the project also came from NRC Grant No. A3134. viii 1. I. INTRODUCTION 1.1 Nonlinear Programming and Engineering Design Design is the essential task of engineering. The design pro• cess usually begins with the recognition of a need. The process then proceeds with the analysis of the need, the synthesis of solution con• cepts likely to satisfy the need, the evaluation of the proposed solu• tions, and the selection of a. final proposal. The selected concept is then further refined and made sufficiently specific for prototype eva• luation and possible revision. Finally, the design plan is implemented. In most stages of the design process opportunities for optimi• zation exist. However, the disparate problems faced in each stage dic• tate the use of radically different optimization methods.
Recommended publications
  • Constrained Optimization 5
    Constrained Optimization 5 Most problems in structural optimization must be formulated as constrained min- imization problems. In a typical structural design problem the objective function is a fairly simple function of the design variables (e.g., weight), but the design has to satisfy a host of stress, displacement, buckling, and frequency constraints. These constraints are usually complex functions of the design variables available only from an analysis of a finite element model of the structure. This chapter offers a review of methods that are commonly used to solve such constrained problems. The methods described in this chapter are for use when the computational cost of evaluating the objective function and constraints is small or moderate. In these meth- ods the objective function or constraints these are calculated exactly (e.g., by a finite element program) whenever they are required by the optimization algorithm. This approach can require hundreds of evaluations of objective function and constraints, and is not practical for problems where a single evaluation is computationally ex- pensive. For these more expensive problems we go through an intermediate stage of constructing approximations for the objective function and constraints, or at least for the more expensive functions. The optimization is then performed on the approx- imate problem. This approximation process is described in the next chapter. The basic problem that we consider in this chapter is the minimization of a function subject to equality and inequality constraints minimize f(x) such that hi(x) = 0, i = 1, . , ne , (5.1) gj(x) ≥ 0, j = 1, . , ng . The constraints divide the design space into two domains, the feasible domain where the constraints are satisfied, and the infeasible domain where at least one of the constraints is violated.
    [Show full text]
  • Tabu Search for Constraint Satisfaction
    Tabu Search for Constraint Solving and Its Applications Jin-Kao Hao LERIA University of Angers 2 Boulevard Lavoisier 49045 Angers Cedex 01 - France 1. Introduction The Constraint Satisfaction Problem (CSP) is a very general problem able to conveniently formulate a wide range of important applications in combinatorial optimization. These include well-known classical problems such as graph k-coloring and satisfiability, as well as many practical applications related to resource assignments, planning and timetabling. The feasibility problem of Integer Programming can also be easily represented by the CSP formalism. As elaborated below, we provide case studies for specific CSP applications, including the important realm of frequency assignment, and establish that tabu search is the best performing approach for these applications. The Constraint Satisfaction Problem is defined by a triplet (X, D, C) where: – X = {x1,· · ·,xn} is a finite set of n variables. – D = {Dx1 ,· · ·,Dxn} is a set of associated domains. Each domain Dxi specifies the finite set of possible values of the variable xi. – C = {C1,· · ·,Cp} is a finite set of p constraints. Each constraint is defined on a set of variables and specifies which combinations of values are compatible for these variables. Given such a triplet, the basic problem consists in finding a complete assignment of the values to the variables such that that all the constraints are satisfied. Such an assignment is called a solution to the given CSP instance. Since the set of all assignments is given by the Cartesian product Dx1 ×· · ·×Dxn, solving a CSP means to determine a particular assignment among a potentially huge search space.
    [Show full text]
  • Constrained Quadratic Optimization: Theory and Application for Wireless Communication Systems
    Constrained Quadratic Optimization: Theory and Application for Wireless Communication Systems by Erik Hons A thesis presented to the University of Waterloo in ful¯lment of the thesis requirement for the degree of Master of Applied Science in Electrical and Computer Engineering Waterloo, Ontario, Canada, 2001 c Erik Hons 2001 ° I hereby declare that I am the sole author of this thesis. I authorize the University of Waterloo to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the University of Waterloo to reproduce this thesis by pho- tocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. ii The University of Waterloo requires the signatures of all persons using or pho- tocopying this thesis. Please sign below, and give address and date. iii Abstract The suitability of general constrained quadratic optimization as a modeling and solution tool for wireless communication is discussed. It is found to be appropriate due to the many quadratic entities present in wireless communication models. It is posited that decisions which a®ect the minimum mean squared error at the receiver may achieve improved performance if those decisions are energy constrained. That theory is tested by applying a speci¯c type of constrained quadratic optimization problem to the forward link of a cellular DS-CDMA system. Through simulation it is shown that when channel coding is used, energy constrained methods typi- cally outperform unconstrained methods. Furthermore, a new energy-constrained method is presented which signi¯cantly outperforms a similar published method in several di®erent environments.
    [Show full text]
  • A Fast Algorithm for Maximum Likelihood Estimation of Mixture Proportions Using Sequential Quadratic Programming
    A Fast Algorithm for Maximum Likelihood Estimation of Mixture Proportions Using Sequential Quadratic Programming Youngseok Kim∗, Peter Carbonetto†yz, Matthew Stephens∗‡, Mihai Anitescu∗§ December 10, 2020 Abstract Maximum likelihood estimation of mixture proportions has a long history, and continues to play an important role in modern statistics, including in development of nonparametric empirical Bayes methods. Maximum likelihood of mixture proportions has traditionally been solved using the expectation maximization (EM) algorithm, but recent work by Koenker & Mizera shows that modern convex optimization techniques|in particular, interior point methods|are substantially faster and more accurate than EM. Here, we develop a new solution based on sequential quadratic programming (SQP). It is substantially faster than the interior point method, and just as accurate. Our approach combines several ideas: first, it solves a reformulation of the original problem; second, it uses an SQP approach to make the best use of the expensive gradient and Hessian computations; third, the SQP iterations are implemented using an active set method to exploit the sparse nature of the quadratic subproblems; fourth, it uses accurate low-rank approximations for more efficient gradient and Hessian computations. We illustrate the benefits of the SQP approach in experiments on synthetic data sets and a large genetic association data set. In large data sets (n ≈ 106 observations, m ≈ 103 mixture components), our implementation achieves at least 100-fold reduction in
    [Show full text]
  • Optimality and Complexity for Constrained Optimization Problems with Nonconvex Regularization
    Optimality and complexity for constrained optimization problems with nonconvex regularization Wei Bian Department of Mathematics, Harbin Institute of Technology, Harbin, China, [email protected] Xiaojun Chen Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China, [email protected] In this paper, we consider a class of constrained optimization problems where the feasible set is a general closed convex set and the objective function has a nonsmooth, nonconvex regularizer. Such regularizer includes widely used SCAD, MCP, logistic, fraction, hard thresholding and non-Lipschitz Lp penalties as special cases. Using the theory of the generalized directional derivative and the Clarke tangent cone, we derive a first order necessary optimality condition for local minimizers of the problem, and define the generalized stationary point of it. The generalized stationary point is the Clarke stationary point when the objective function is Lipschitz continuous at this point, and the scaled stationary point when the objective function is not Lipschitz continuous at this point. We prove the consistency between the generalized directional derivative and the limit of the classic directional derivatives associated with the smoothing function. Moreover we show that finding a global minimizer of such optimization problems is strongly NP-hard and establish positive lower bounds for the absolute value of nonzero entries in every local minimizer of the problem if the regularizer is concave in an open set. Key words : Constrained nonsmooth nonconvex optimization; directional derivative consistency; optimality condition; lower bound theory; complexity MSC2000 subject classification : Primary: 49K35, 90C26; secondary: 65K05, 90C46 1. Introduction In this paper, we consider the following constrained optimization problem min f(x) := Θ(x) + c(h(x)); (1) x2X where Θ : Rn ! R and c : Rm ! R are continuously differentiable, h : Rn ! Rm is continuous, and X ⊂ Rn is a nonempty closed convex set.
    [Show full text]
  • Constraint Programming for Scheduling John J
    University of Dayton eCommons Department of Management Information Systems, MIS/OM/DS Faculty Publications Operations Management, and Decision Sciences 2004 Constraint Programming for Scheduling John J. Kanet University of Dayton, [email protected] Sanjay L. Ahire University of Dayton Michael F. Gorman University of Dayton, [email protected] Follow this and additional works at: http://ecommons.udayton.edu/mis_fac_pub Part of the Business Administration, Management, and Operations Commons, and the Operations and Supply Chain Management Commons eCommons Citation Kanet, John J.; Ahire, Sanjay L.; and Gorman, Michael F., "Constraint Programming for Scheduling" (2004). MIS/OM/DS Faculty Publications. Paper 1. http://ecommons.udayton.edu/mis_fac_pub/1 This Book Chapter is brought to you for free and open access by the Department of Management Information Systems, Operations Management, and Decision Sciences at eCommons. It has been accepted for inclusion in MIS/OM/DS Faculty Publications by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. 47 Constraint Programming for Scheduling 47.l Jntroduction ......................... ........ ...... 47-1 47.2 What is Constraint Programming (CP)? ... .. 47-2 Constraint Satisfaction Problem 47.3 How Does Constrain t Programming Solve a CSP? ... 47-3 A General Algorithm for CSP • Constraint Propagation • Branching • Adapting the SP Algo ri thm to Constra ined Optimiza ti on Problems 47 .4 An Illustrati on of CP Formulation and Solution Logic ....... .. .... .. .. ....... .. ... 47-5 4 7.5 Selected CP Applica tions in the Scheduling Literature .. ... ..... .. .. .. 47-7 Job Shop Scheduling • Si ngle-Machine Sequencing • Pa rallel Machine Scheduling • Timetabling • Vehicle Dispatching • In tegration of the CP and IP Paradi gms 47.6 The Richness of CP for Modeling Scheduling Problems .......
    [Show full text]
  • Mathematical Optimization Techniques
    MATHEMATICAL OPTIMIZATION TECHNIQUES S. Russenschuck CERN, 1211 Geneva 23, Switzerland Abstract From the beginning the ROXIE program was structured such that mathemati- cal optimization techniques can be applied to the design of the superconduct- ing magnets. With the concept of features it is possible to create the complex coil assemblies in 2 and 3 dimensions with only a small number of engineer- ing data which can then be addressed as design variables of the optimization problem. In this chapter some background information on the application of mathematical optimization techniques is given. 1 Historical overview Mathematical optimization including numerical techniques such as linear and nonlinear programming, integer programming, network flow theory and dynamic optimization has its origin in operations research developed in world war II, e.g., Morse and Kimball 1950 [45]. Most of the real-world optimization problems involve multiple conflicting objectives which should be considered simultaneously, so-called vector-optimization problems. The solution process for vector-optimization problems is threefold, based on decision-making methods, methods to treat nonlinear constraints and optimization algorithms to min- imize the objective function. Methods for decision-making, based on the optimality criterion by Pareto in 1896 [48], have been introduced and applied to a wide range of problems in economics by Marglin 1966 [42], Geoffrion 1968 [18] and Fandel 1972 [12]. The theory of nonlinear programming with constraints is based on the opti- mality criterion by Kuhn and Tucker, 1951 [37]. Methods for the treatment of nonlinear constraints have been developed by Zoutdendijk 1960 [70], Fiacco and McCormick 1968 [13] and Rockafellar 1973 [54] among others.
    [Show full text]
  • Introduction to Design Optimization
    Introduction to Design Optimization Various Design Objectives Minimum Weight (under Allowable Stress) A PEM Fuel Cell Stack with Even Compression over Active Area (Minimum Stress Difference) Minimum Maximum Stress in the Structure Optimized Groove Dimension to Avoid Stress Concentration or Weakening of the Structure Engineering Applications of Optimization • Design - determining design parameters that lead to the best “performance” of a mechanical structure, device, or system. “Core of engineering design, or the systematic approach to design” (Arora, 89) • Planning – production planning - minimizing manufacturing costs – management of financial resources - obtaining maximum profits – task planning (robot, traffic flow) - achieving best performances • Control and Manufacturing - identifying the optimal control parameters for the best performance (machining, trajectory, etc.) • Mathematical Modeling - curve and surface fitting of given data with minimum error Commonly used tool: OPT function in FEA; MATLAB Optimization Toolbox What are common aspects in optimization problems? • There are multiple solutions to the problem; and the optimal solution is to be identified. • There exist one or more objectives to accomplish and a measure of how well these objectives are accomplished (measurable performance). • Constraints of different forms (hard, soft) are imposed. • There are several key influencing variables. The change of their values will influence (either improve or worsen) the “measurable performance” and the degree of violation of the “constraints.” Solution Methods • Optimization can provide either – a closed-form solution, or – a numerical solution. • Numerical optimization systematically and efficiently adjusts the influencing variables to find the solution that has the best performance, satisfying given constraints. • Frequently, the design objective, or cost function cannot be expressed in the form of simple algebra.
    [Show full text]
  • Introduction to Global Optimization
    Introduction to Global Optimization Leo Liberti LIX, Ecole´ Polytechnique, Palaiseau F-91128, France ([email protected]) October 23, 2008 Abstract Accurate modelling of real-world problems often requires nonconvex terms to be introduced in the model, either in the objective function or in the constraints. Nonconvex programming is one of the hardest fields of optimization, presenting many challenges in both practical and theoretical aspects. The presence of multiple local minima calls for the application of global optimization techniques. This paper is a mini-course about global optimization techniques in nonconvex programming; it deals with some theoretical aspects of nonlinear programming as well as with some of the current state- of-the-art algorithms in global optimization. The syllabus is as follows. Some examples of Nonlinear Programming Problems (NLPs). General description of two-phase algorithms. Local optimization of NLPs: derivation of KKT conditions. Short notes about stochastic global multistart algorithms with a concrete example (SobolOpt). In-depth study of a deterministic spatial Branch-and-Bound algorithm, and convex relaxation of an NLP. Latest advances in bilinear programming: the theory of reduction constraints. Contents 1 Introduction 2 1.1 Scope of this paper . ... 3 1.2 Examples which require Global Optimization . ...... 4 1.3 A brief history of global optimization . ......... 6 2 The structure of Global Optimization Algorithms 8 2.1 Stochastic global phase . ...... 9 2.2 Deterministic global phase . ...... 11 2.2.1 Fathoming ....................................... 13 2.3 Example of solution by Branch-and-Select . 13 3 Local Optimization of NLPs 16 3.1 Fundamental notions of convex analysis . ..... 16 3.2 Necessary and sufficient conditions for local optimality .
    [Show full text]
  • Branch-And-Cut for Cardinality Optimization by Ankit Sikka
    Branch-and-Cut for Cardinality Optimization by Ankit Sikka, B.S.E.E. A Thesis In INDUSTRIAL ENGINEERING Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE In INDUSTRIAL ENGINEERING Approved Ismael R. de-Farias JR. Chair Milton Smith John Kobza Ralph Ferguson Dean of Graduate School December, 2010 c 2010, Ankit Sikka Texas Tech University, Ankit Sikka, December 2010 ACKNOWLEDGEMENTS My utmost gratitude goes to my advisor, Dr. Ismael de Farias, whose encourage- ment, guidance and support from the initial to the final level enabled me to develop an understanding of the subject. This work would have been impossible without his guidance. He is not only an outstanding professor with wide knowledge and extraor- dinary academic achievements, but also a great person. I could not have imagined having a better advisor and mentor for my master study. Besides my advisor, I would like to thank my thesis committee members: Dr. Milton Smith and Dr. John Kobza, for their encouragement, help and insightful comments. I offer my regards and blessings to all of those who supported me in any respect during the completion of the project. Finally, I want to give my best appreciation to my parents and friends for always being there for me, and for their understandings and supports for me in completing this thesis. Whenever thinking of them, I gained courage to continue my education, even when I was discouraged. ii Texas Tech University, Ankit Sikka, December 2010 TABLE OF CONTENTS Acknowledgements . ii Abstract .
    [Show full text]
  • Appendix a Brief Review of Mathematical Optimization
    Appendix A Brief Review of Mathematical Optimization Ecce signum (Behold the sign; see the proof) Optimization is a mathematical discipline which determines a “best” solution in a quantitatively well-defined sense. It applies to certain mathematically defined prob- lems in, e.g., science, engineering, mathematics, economics, and commerce. Opti- mization theory provides algorithms to solve well-structured optimization problems along with the analysis of those algorithms. This analysis includes necessary and sufficient conditions for the existence of optimal solutions. Optimization problems are expressed in terms of variables (degrees of freedom) and the domain; objective function1 to be optimized; and, possibly, constraints. In unconstrained optimization, the optimum value is sought of an objective function of several variables without any constraints. If, in addition, constraints (equations, inequalities) are present, we have a constrained optimization problem. Often, the optimum value of such a problem is found on the boundary of the region defined by inequality constraints. In many cases, the domain X of the unknown variables x is X = IR n. For such problems the reader is referred to Fletcher (1987), Gill et al. (1981), and Dennis & Schnabel (1983). Problems in which the domain X is a discrete set, e.g., X = IN o r X = ZZ, belong to the field of discrete optimization ; cf. Nemhauser & Wolsey (1988). Dis- crete variables might be used, e.g., to select different physical laws (for instance, different limb-darkening laws) or models which cannot be smoothly mapped to each other. In what follows, we will only consider continuous domains, i.e., X = IR n. In this appendix we assume that the reader is familiar with the basic concepts of calculus and linear algebra and the standard nomenclature of mathematics and theoretical physics.
    [Show full text]
  • Lecture 8 Constrained Optimization and Integer Programming
    Lecture 8 Constrained optimization and integer programming Weinan E1,2 and Tiejun Li2 1Department of Mathematics, Princeton University, [email protected] 2School of Mathematical Sciences, Peking University, [email protected] No.1 Science Building, 1575 Examples Constrained optimization Integer programming Outline Examples Constrained optimization Integer programming Examples Constrained optimization Integer programming Constrained optimization I Suppose an investor own a block of S shares that we want to sell over the next N days. The total expected value of our shares is N X V (s) = ptst t=1 where (s1, ··· , sN ) is the amount that we sell on each day and (p1, ··· , pN ) are the prices on each day. Moreover, the price pt follows the following dynamics pt = pt−1 + αst, t = 1, ··· ,N How should the investor sell his block of shares ? I Mathematical formulation: N X max ptst t=1 N X Subject to the constraint st = S, pt = pt−1 +αst, st ≥ 0, t = 1, ··· ,N; t=1 I A constrained nonlinear optimization. Examples Constrained optimization Integer programming 0-1 Knapsack problem I The thief wants to steal n items. The i-th item weights wi and has value vi. The problem is to take most valuable load with limit of weight W . I Mathematical formulation: n X max V = vj xj j=1 n X wj xj ≤ W j=1 xj = 0 or 1, j = 1, . , n I xj must be integers. An integer programming problem. Examples Constrained optimization Integer programming Assignment problem I Assign n persons to finish n jobs. The cost for the i-th person to do j-th job is cij .
    [Show full text]