<<

Dinoflagellate cysts of the shallow marineNeogene succession in the Kalmthout well, northernBelgium

STEPHEN LOUWYE & PIETER LAGA

Louwye, S. & Laga, P.: Dinoflagellate cysts of the shallow marine Neogene suc­cession in the Kalmthout well, northern . Bulletin of the Geological So­ciety of Denmark, Vol. 45, pp. 73-86. Copenhagen, 1998-09-25. https://doi.org/10.37570/bgsd-1998-45-08 The dinoflagellate cyst associations from the Neogene succession in the Kalmthout well allow a correlation with biozonations and key dinocyst events from the North Sea area and the eastcoast of the USA. The recovered cyst assemblages suggest that an Early Miocene (late Aquitanian - early Burdigalian) age can be attributed to the Berchem Formation, while the Diest Formation is of Late Miocene (late Tortonian - Messinian) age. The age of the Kattendijk Formation remains unclear.T he Lillo Formation in the Kalmthout well is of Pliocene age and possi­ bly not younger than early Late Pliocene. Keywords: Dinoflagellates, Neogene, SouthernNort h Sea, Belgium.

S. Louwye [stephen. [email protected]], Laboratoryfor Palaeontology, Univer­ sity of Ghent, Krijgslaan 281/SB, B-9000 Ghent, Belgium. P.La ga [email protected]], Geological Survey of Belgium, Jenner­straat 13, B-1000 , Belgium. 8 April 1998.

Neogene sediments in Belgium are only foundin the shore Neogene deposits of the Antwerpen area with area north of and the area (Fig.1). the deeper marine Neogene of The is The deposition took place along the southernmostrim given by Doppert et al. (1979). Nuyts (1990) com­ of the North Sea Basin in nearshore environments. mented upon the distribution of benthic foraminifera The lithologies are dominated by medium- to coarse­ in Pliocene deposits at Kallo near Antwerpen. More grained sands, often very glauconitic and intercalated recently, Hooyberghs (1996) has dealt with the plank­ with shell beds. Decalcificationcan locally be impor­ tonic foraminiferalassociations and the stratigraphi­ tant. The occurrenceof gravellayers in the Neogene cal position of the early Miocene Sands sequence points to a discontinuous sedimentation, (Berchem Formation). All these micropalaeontologi­ which started in the Early Miocene after a long pe­ cal studies led to but restricted chronostratigraphical riod of non-deposition caused by Late Oligocene tec­ interpretations for the Belgian Neogene. Correlation tonic uplift (Vandenberghe et al. in press). According with the international standard biozonations is diffi­ to these authors, the combined effectof tectonic up­ cult due to the boreal character of the foraminiferal lift of Northern Belgium with fluctuating sea levels associations in the Antwerp area. No biostratigraphi­ caused the Neogene units to be incomplete, at least in caldata on calcareous nannofossils or dinoflagellate the base of the succession. The generally monotonous, cysts have been published so far. This paper describes uniform lithology and the patchy distribution of the the dinoflagellate cystassociations fromthe Neogene units hamper a correlation on a regional scale. formations in the Kalmthout well. The Neogene suc­ The Neogene succession of NorthernBelgium have cession in the Kalmthout well is considered to be a been the subject of marine microfossilbiostratigraphi­ referencesection forthe Antwerp area. cal studies since 1970. Planktonic foraminiferalasso­ ciations fromoutcrops and boreholes in the Antwerp area were described by De Meuter & Laga (1970) and Hooyberghs & De Meuter (1972). Six benthic fo­ raminiferal assemblage zones for the Miocene and Lithostratigraphy and lithology Pliocene succession of the Antwerp area were defined De Meuter & Laga (1976) redefinedand formalised by De Meuter & Laga (1976).A correlation between the lithostratigraphicframework of the Neogene sed­ the benthic foraminiferalbiostratigraphy of the near- iments based on observations of large temporary out-

Louwye & Laga: Neogene dinoflagellate cysts 73 6"E Southern North Sea The Netherlands

I

10 Km u

Fig. 1. Location of the Kalmthout well. Dashed line = southem limit of Neogene deposits in northern Belgium (modified after Tavemier & De Heinzelin 1963). crops in the Antwerp area (Fig. 2). The cored Kalmt- on the Oligocene Boom Formation and consists of hout well (no. 6E-110 of the Geological Survey of glauconitic medium-grained sands with phosphate Belgium) is located north of Antwerp near the border nodules and marine shell beds. De Meuter & Laga with The Netherlands (Fig. 1). Marine Neogene sedi- (1976) redefined three members (Edegem Sands, Kiel ments are present between 52.7 m and 137 m depth Sands and Antwerp Sands) in the type area around (Fig. 3). The Berchem Formation rests unconformable Antwerp. This formation is interpreted as a discon- tinuous unit characterised by short hiatuses (Wouters & Vandenberghe 1994). The unconformity between Series the Berchem Formation and the overlying Diest For- Lithostratigraphy mation is marked by a grave1 intercalation at 112 m. Antwerp area The Diest Formation is 35 m thick and consists of coarse-grained non-calcareous glauconitic sands and Liilo Formation Zandvliet Sands Upper scattered fragments of marine shells. The sediments Sands of this formation are considered to be gully deposits. Kruisschans Sands Pliocene According to Wouters and Vandenberghe (1994), the Oorderen Sands gully formed during Middle Miocene times and is the Luchtbal Sands Lower result of strongly eroding tidal currents parallel to the Kattendijk Formation coast. The infilling of the gully is thought to be of Late Miocene age. The Kattendijk Formation lies Diest Formation UpPer Miocene unconformably on the Diest Formation and is found Deurne Sands between 77 m and 75 m. The lithology consists of me- Berchem Formation Middle dium- to coarse-grained glauconitic sands with nu- Miocene merous Ditrupa. The Lillo Formation compnses the Antwerpen Sands upper part of the Neogene sequence between 75 m and 52.7 m and consists of fine- to medium-grained Lower Kiel Sands Miocene sand with clay intercalations, shell layers and scat- Edegem Sands tered shells. The members of the Lillo Formation (Fig. (Burcht gravel) 2) were not identified in the Kalmthout well.The Lillo Fig. 2. Lithostratigraphy of the Neogene of the Antwerp Formation is considered to have been deposited in a area, northem Belgium (after De Meuter & Laga 1976). very shallow marine environment.

74 Bulletin of the Geological Society of Denmark Table 1. Distribution and frequency (%) of dinocyst taxa in the Kalmthout well. Reworked cysts are marked with an asterisk. Kt = Kattendijk.

Formations Berchem Diest Kt Lillo

Depth in m below surface 136,6 130,5 126,4 124 118 112 110,5 107,5 101,5 92,5 87 82 78 76 73,3 70,7 68,1 64 62,6 r Acanthaulax spp. indet. 0,7 1,7 Achilleodinium biformoides 0,8 0,8 0,5 00 Achomosphaera alcicomu alcicomu 0,7 1,3 1,1 6,1 1,7 r. Achomosphaera andalousiensis andalousiensis PI. 2, Fig. 3 8,7 11,6 7,1 1,9 1,4 0,4 1,5 1,5 15,4 0,4 0,7 0,6 Achomosphaera andalousiensis suttonensis 7,5 Achomosphaera crassipellis 1,7 0,9 0,8 I? Achomosphaera ramulifera ramulifera 0,3 0,7 2,3 0,4 0,4 Achomosphaera sp. A 0,3 « Achomosphaera sp. B 0,4 0,3 Achomosphaera sp. Head 1996 1,2 0,7 Achomosphaera sp. Head 1997 0,4 0,7 Achomosphaera spp. indet. 0,3 1,5 4,7 1,3 1,1 1,6 0,5 0,5 0,4 0,5 0,4 0,4 0,8 1,1 Adnatosphaeridiummultispinosum* 0,3 Adnatosphaeridium robustum* 0,5 0,3 Algidasphaeridiumi sp. A 0,5 1,2 Amiculosphaera umbracula PI. 2, Fig. 1 0,5 0,4 4,4 3,8 2,6 0,8 1,7 I Apectodinium homomorphum* 1,2 0,3 2,8 o Apteodinium australiense PI. 1, Fig. 1 7,4 2,8 3,6 0,7 1,5 0,5 0,4 1,6 0,5 0,4 Apteodinium cf. granulatum* 0,4 Apteodinium spiridoides PI. 1, Figs 4-5 0,4 1,1 22,4 5,2 0,4 Apteodinium tectatum 1,3 0,9 0,6 1,0 0,4 Apteodinium spp. indet. 0,3 0,1 Areoligera cf. semicirculata* 0,3 Areoligera sp. A* 0,1 Areoligera spp. indet.* 1,1 Ascostomocystis potane* 0,1 1,6 Alaxiodinium zevenboomii PI. 1, Figs 10-11 1,0 0,8 4,5 1,4 Ataxiodinium sp. A 0,4 Ataxiodinium sp. B 0,4 cf. Ataxiodinium sp. indet. 0,4 Barssidinium graminosum 1,9 4,3 7,1 1,0 1,0 Barssidinium wrennii PI. 1, Fig. 3 0,7 5,3 6,5 2,0 12,2 3,8 3,8 5,9 2,4 1,5 Barssidinium sp. A 0,4 Barssidinium sp. B 0,3 Batiacasphaera cf. granospina* 0,1 Batiacasphaera hirsuta 0,3 0,3 0,7 0,4 0,5 Batiacasphaera cf. hirsuta 0,7 1,1 Batiacasphaera micropapillata 1,7 1,6 0,6 1,6 3,0 0,7 1,6 1,2 1,3 0,8 Batiacasphaera minuta PI. 2, Fig. 6 0,7 5,7 2,0 14,8 14,7 4,4 Batiacasphaera sphaerica 0,3 0,1 1,0 1.2 2,6 0,5 Batiacasphaera sp. A 0,1 Batiacasphaera sp. B 0,4 0,4 Batiacasphaera spp. indet. 0,4 0,5 0,8 0,3 Bitectatodinium raedwaldii PI. 2, Figs 11-12 1,7 2,0 1,9 5,7 3,1 Bitectatodinium serratum PI. 2, Fig. 8 1,4 1,5 Bitectatodinium tepikiense 2,2 0,8 Bitectatodinium sp. A 3,8 1,1 7,6 2,8 1,1 Brigantedinium cariacoense 0,5 0,8 cf. Brigantedinium sp. Head etal. 1989 0,8 Caligodinium amiculum PI. 1, Fig. 13 0,3 Caligodinium cf. pychnum 0,1 Caligodinium sp. A 0,3 Cerebrocystai cf. namocensis 0,4 2 2 O m-N m^ 3 2 00 Om. 2 6- 2

Tm \o X a0 120 2 l- 2 m- l- X 2 Nk 2 2 X 2 d wl- "l R O m 0- m. t l- 2 'f b O

N &i 2. Nlll- l-. YN ?V?00 ^O m o- o- -7 3 2 oo 2 b "? m 2 d q4 22 2 2 C-om

N- '9 w- m e 2 r;- "? c) O 2- 2 Ol-- X O-- X X O?'t 0- v, ll 2 X d 2- g. X 0't -c

2 "? T N N

2 N d d m e4 2 2 m- l=O 2

4 22 "qO O E- 2 kO '-? OY m.O O 29 2 2 2 c Q- m. m. m- m u! 22 2- 2 W-" y- ??W-?- Y 00-000 O b0 -- - 0000- - 2 2 V! 0 d 11 l-* "2 ----m-----? 2 '"W* " " 2 2 $ 1' " "" -!? r: o- O000-- O 0000000 000 N O 00 - 00 00 2 r: O 0~2Ob-?~~r;-zz~l-- o00 O m

d m 3 * - m m B 3 'B w V] F4 9 2w w VI S .- O 8 VI .* m e

76 Bulletin of the Geological Society of Denmark Louwye & Laga: Neogene dinoflagellate cysts 77 Depth in m below surface 136.6 130.5 126.4 124 118 112 110.5 107,5 1013 92.5 87 82 78 76 73.3 70.7 68.1 64 62,6

Operculodinium sp. II Manum 1976 0,4 Operculodinium? sp. l 0.3 Operculodinium sp. 3 de Verteuil & Noms 1996 2.1 0,4 0.6 0,3 Operculodinium sp. A 0,1 Operculodinium sp. indet. 0.3 PaIaeocystodinium golzowense 0,7 0,3 0,3 0.4 Paralecaniella indentata 2,O 0.8 0.7 1,l 4,6 2.3 8,8 0.4 6.4 7.1 0,5 1.4 1.7 1.2 Paucisphaeridium? sp. A 0.3 Paucisphaeridium? sp. B 0.4 0.3 Paucisphaeridium? sp. C O,5 0.4 Pentadinium laticinctum laticinctum 0.7 0,3 0.3 0.3 0.4 0,2 0.4 Pentadinium? sp. 1 O,7 Pentadinium sp. indet. 03 Perisseiasphaeridium pannosum* 0.4 Phthanoperidinium sp. indet. 0.3 Polysphaeridium zoharyi zoharyi 0.3 Polysphaeridium? sp. Head 1997 0.8 Polysphaeridium sp. A 04 Protoperidinium sp. A 5.9 8.5 4.6 0.4 3.9 6.5 Ptemdinium sp. indet. 0, 1 Pyxidiella sp. A 0.1 Pyxidinopsis cf. pastelliformis 0.7 Pyxidinopsis tuberculata 1.3 0.8 1.3 0.7 0,4 Pyxidinopsis sp. A 3.9 Reticulatosphaera actinocoronata Pl. 2, Fig. 7 0.7 1,2 1.5 0.3 2.2 3.6 2.3 3.3 1.5 3.2 3.6 0.2 0.4 Reticulatosphaera sp. A 0.3 Rhombodinium longimanum* 0.3 Riculacysta perforata 0,3 Samlandia chlamydophora 0.3 Samlandia reticulifera* 0.4 Selenopemphix armageddonensis Pl. 1, Fig. 7 1.2 1.2 Selenopemphix? armageddonensis 0.4 Selenopemphix brevispinosa brevispinosa Pl. 1. Fig. 6 2.5 0,4 0.4 4.3 2.0 Sebnopemphix coronata 1.2 Selenopemphix dionaeacysta Pl. 1, Fig. 8 1.5 3.8 14,9 1.5 0.4 Selenopemphix nephmides 0.5 1.9 Selenopemphix quanta 1.0 Selenopemphix? sp. 2 Head 1993 0.1 0.3 0.2 0.4 0.4 1.2 0.3 1.1 Selenopemphix sp. A 0,s 4.2 4.3 1.0 Selenopemphix spp. indet. 1.3 Spinifprites bentorii bentorii 0.2 Spiniferites bulloideus 0.3 0.4 2.1 3'1 0.4 0.7 Spiniferites cf. elongatus 0.8 0.3 Spiniferites hyperacanthus 0,7 0,l 0.8 1,l 0.5 0.7 1.6 0.7 0.4 0.5 0.4 0.9 2.8 0.6 Spiniferites membranaceus 2.3 1.3 0.4 0,5 0.7 0.3 Spiniferites mirabilis 0.3 0.5 0,6 0.5 2.3 0.4 1,2 0.2 0.4 2.0 1.2 1.8 0.4 0.3 Spiniferites ramosus granomembranaceus* 0.2 Spiniferites ramosus granosus 2.3 2.8 0,5 2.3 O,7 1.2 0.4 Spiniferites ramosus ramosus 4.3 0.4 2.8 3.6 5.6 12.8 2.9 7.5 4.1 33 5.6 2.2 0.8 3,4 1.2 2.2 1.2 8.3 0.6 Spiniferites sp. B Wrenn & Kokinos 1986 0.4 2.8 Spiniferites spp. indet. 12.4 34.4 2.7 6.3 13.5 25.5 18.6 23,l 18,O 12.8 3.6 8.9 3.6 24,4 26.9 2.3 7.8 2.5 9.4 Stoveracysta? sp. indet. 0.1 Sumatradinium druggii Pl. 1, Fig. 9 0.6 1.6 0.7 Sumatradinium hamulatum Pl. 2, Figs 9-10 03 Sumatradinium hispidum 0.4 Sumatradinium aff. hispidum 0.1 Sumatradinium soucouyantae Pl. 1, Fig. 2 1,3 1.5 1.7 0.7 1.9 'e ?^Z Material and methods M o-- Twenty-three core samples distributed over the ma- . *- mmm nne Neogene sequence were prepared for palynologi- 3 -O O os% cal analysis using standard maceration techniques. The 1 n preservation of the dinoflagellate cysts ranges from w 2 n m N moderate to good and 243 species were recorded. Ta- y P ble l gives in alphabetical order the percentage of the t- t N O O species recorded in the investigated section (see also Pl. 1-2). Four samples were not rich enough to count 3 tO 8N a minimum of 200 specimens. Reworked dinocysts are marked with an asterisk. Reworking is never im- n '? ^V? \Ot- O 00 NO portant, but most apparent in the Berchem and Lillo Formations. A ful1 account dealing with dinocyst tax- m w* w- onomy is in preparation. We followed Lentin & Wil- t- OT z. + 5 liams (1993) for the nomenclature of the dinocysts. VIN 22- g. 0; Two barren samples (1 14 m and 116 m) are located at we4 00 d the top of the Berchem Fonnation and mother two at w the top of the Lillo Formation (58 m and 54.5 m). t- \4 q 2 m N m e 2 The recovered associations allow a comparison and '? interregional correlation with contiguous areas. We re- No\ ferred to zonations, dinocyst events and other studies T from northwest Europe (Costa & Manum, 1988; o g t-- P- k TG d O O O ON Powell, 1992), northern Germany (Lund et al. 1993), V? England (Head 1993,1996,1997), The Netherlands OT d- 53 2 ON (Herngreen, 1987) and the Nonvegian Sea (Manum et al., 1989). The comprehensive biozonation of Powell 2 0- (1992) was calibrated with earlier biozonations from d 3 s' the British Isles and northwest Europe. A comparison w W" with the eastcoast of the USA (de Verteuil & Nonis, 24 m 2 1996) is also proposed. The dinocyst associations and

2 t-- d biostratigraphy are discussed per formation. -2 2 d GN d22 22 2 m 2 t- Dinoflagellate cyst associations and 2 mmt-- -- m. m m- 2 mn Z o- -i 000 correlation "22 t- 0.- C1 "4 w 00 00 P Berchem Formation (136.6 to 118 m) The basal two samples contain species with a known $3 Si z Z a highest occurrence (HO) in the Lower Miocene, such as Caligodinium amiculum, Cordosphaeridium can- tharellus, Cribroperidinium tenuitabulatum, Deflan- drea phosphoritica phosphoritica, Dinopterygium cladoides sensu Morgenroth (1966), Homotryblium vallum and Sumatradinium hamulatum. A break in the dinocyst associations is noted between sarnples 118 2 and 112 m (Fig. 3). The following stratigraphically sig- M s.d nificant species have their H0in the top of the Ber- Yi 5 N * 3 .-U chem Formation: Apteodinium spiridoides, Chiropte- E .-e W 5 * B; ridium galea, Cousteaudinium aubryae, Exochosphae- U 80 s G s EJ$ O 'i;2 E ridium insigne, Lingulodinium multivirgaturn, Oper- 8 ';S g Z'C 2 .se E U 2%. u u. culodinium longispinigerum, Operculodinium pi- $5.'g.? eu 9,: &'"s .e.;.gd2 g 4,a~dzS ",F3 u.-u..mo aseckii, Palaeocystodinium golzowense, Sumatradin- -," u J 3 5 g E. S.^ ium druggii and Sumatradinium soucouyantae. It is $&3,!; e e $gaga:; ;i; 5 $.g%% not clear whether Chiropteridium galea, D. phospho- 6 sss.- ritica phosphoritica and H. vallum are reworked or . zu~P',**,uctuur*.%.I.I.$.Ig*o****ra~>~~-----&g+$$$;~$sss~ :'.*.;SS oo O oL.- W W W W UD not in the Berchem Formation. de Verteuil & Noms g 22s ~ssss.z.z.z.zs$$$$$$g ~~L~L~LL~~LLL~SSS~SZ(1966) give an ovemiew of the occurrences of these

Louwye & Laga: Neogene dinoflagellate cysts 79

Hystrichosphaeropsis obscura Operculodinium longispinigerum Operculodinium piaseckii Surnatradinium soucouyanfae

Ataxiodinium zevenboomii Amiculosphaera umbracula Hystrichosphaeropsis rigaudiae rigaudke Tuberculodinium vancampoae

DN 2 top DN 9 - DN 10 de Verteuil & Noms 1996 (eastcoast USA)

Fig. 3. Stratigraphy, lithology, disiribution of selected dinoflagellate cysts in the Kalmthout well and comparison with other biozonations (R: probably reworked; Kt: Kattendijk; Pg: Paleogene; BF: Boom Formation).

Louwye & Laga: Neogene dinoflagellate cysts %te 2. F+ l. AmieiiIsspb dm& sample 70.7, S& x. Pig. ZDIsratddhiann padmm, wmgiu 1244, JOY x, F& f. AWW.ph#m McPa~~f4'mb1Pr$glo&Cpnsie, sample I 15 W x. Frg,4. Wh%Whimvdmmpm, sample! 124.4,500 x. Fa-S.D~IdnhmT drikharan, sample 181.5,506 x. Fig, 6. &stlacm@mm mhta, sample 2S.4, 1400x.Pig3, ' mIOn.u~oma,wmplelOl.5, W'rr&g.B, Bbcmkitwn s- sampie. 82,506 x. Pigs MO. &e 130.5,5M x. Pigp 0-12.BihCt@dijrimr mdwiddii, ~.82.Wx.

Bulletin of the Geulogicd Society of Denmark species in Lower Miocene strata from several locali- cies with a known H0 in the Middle or Upper Mio- ties. An indirect argument for possible reworking is cene; they disappear at the top of the Berchem For- the occasional occurrence in the Berchem Formation mation and were not encountered in the Diest Forma- of other pre-Neogene species, such as Homotryblium tion. Stratigraphical important species with a restricted pallidum, Homotryblium plectilum and Chiropteri- range and a LO in the Middle or Upper Miocene, such dium lobospinosum. as Cannosphaeropsis passio (= Cannosphaeropsis The Berchem Formation can be placed within the utinensis sensu Brown & Downie 1985), C.poulsenii Tuberculodinium vancampoae (Tva) Interval Biozone (= Gen. et sp. nov. of Piasecki 1980), Gramocysta of Powell(1992) (Fig. 3). The lower boundary of this verricula, Labyrinthodinium truncatum truncatum and zone is marked by the first appearance of the nomi- Unipontedinium aquaductum are not found in the nate species, which has its lowest occurrence (LO) in Diest and Berchem Formations in the Kalmthout well. 136.6 m at the base of the formation. The upper bound- The ranges of Selenopemphix armageddonensis and ary of this zone is defined by the first occurrence of Selenopemphix brevispinosa brevispinosa are limited Labyrinthodinium truncatum truncatum, a species ab- to the Diest Formation. No other stratigraphically im- sent in the Kalmthout we1l.A. spiridoides and C. can- portant species with a H0 or LO in this formation are tharellus disappear resp. within and at the upper noted. boundary of the Tva Biozone. No diagnostic species The Diest Formation falls within the Amiculos- of the above lying Labyrinthodinium truncatum phaera umbracula (Aum) Interval Biozone of Powell tncncatum (LTr) Interval Biozone are recorded. Powell (1992), based on diagnostic indices, such as Amicu- (1992) calibrated his biozonation with the biozonation losphaera umbracula, Reticulatosphaera actinocoro- of Costa & Manum (1988) and correlates the Tva In- nata and Selenopemphix brevispinosa brevispinosa (= terval Biozone with Biozone D16 and biozonal unit Selenopemphix sp. A sensu Brown & Downie 1985) D16117 (pars). and the absence of others, such as Apteodinium tec- The lowerpart of the Berchem Formation (136.6 to tatum, Gerlachidinium aechmophorum, G. verricula, 126.4 m) falls within the Impagidiniumpatulum Zone P. golzowense, S. placacantha and U. aquaductum. of Manum et al. (1989), even though the nominate The upper part of the Aum Interval biozone (above species which defines the Iower boundary of the zone, the H0 of R. actinocoronata) is most probably not is absent. The H0 of C. cantharellus marks the upper present in the Diest Formation. The nominate species boundary of this zone and the lower boundary of the of the Aum Interval Biozone has its LO in sample 82 next Apteodinium spiridoides Zone. The upper part of and is poorly represented in the Diest Formation. Its the Berchem Formation can placed within the Apte- absence in the lower samples could be environmen- odinium spiridoides Zone, although the upper bound- tally controlled, since this formation was deposited in ary cannot be recognised because of the absence of L. a nearshore environment. According to Head (1996), truncatum truncatum. A. umbracula has an oceanic to outer nentic prefer- The associations allow to place the Berchem For- ence. The Aum Interval Biozone is calibrated by mation in de Verteuil & Norris' (1996) Sumatradin- Powell(1992) with Biozones D19 (pars) and D20 of ium soucouyantae Zone DN2, if C. galea, D. phos- Costa & Manum (1988). phoriticaphosphoritica, H. vallum are regarded as re- The Diest Formation can be correlated with the worked. S. druggii CO-occurswith characteristic spe- Achomosphaera andalousiensis Zone of Manum et al. cies of the Zone DN2, where in the type locality (1989), based on the LO of the nominate species. The (eastcoast of the USA) its LO is at the lower bound- upper boundary of this zone is not defined. R. actino- ary of the overlying Cousteaudinium aubryae Zone coronata has its H0 within this zone according to DN3. The absence in the Berchem Formation of other Manum et al. (1989). species such as Cerebrocysta poulsenii, Impagidinium The presence of A. andalousiensis andalousiensis, arachnion, L. truncatum truncatum and Labyrintho- D. pseudocolligerum, O.? eirikianum and S. brevi- dinium truncatum modicum exclude the presence of spinosa brevispinosa and the HO's of H. obscura, Zones DN3 and DN4. Operculodiniumpiaseckii,P. golzowense, Sumatradin- ium soucouyantae, Sumatradinium druggii place the Diest Formation within the upper part of de Verteuil & Norris' (1996) Hystrichosphaeropsis obscura Zone Diest Formation (112 to 78 m) DN9 and in the Selenopemphix armageddonensis Zone Few species have their H0 near or at the top of the DN10. Diest Formation, such as Dapsilidinium pseudocol- A correlation of the Diest Formation with deposits ligerum and Reticulatosphaera actinocoronata. Strati- of the regional Miocene Gram and Sylt stages in the graphical important species appearing in the base of Nieder Ochtenhausen well (Lund et al. 1993) is based the Diest Formation are Achomosphaera andalousien- on the occurrences of S. brevispinosa brevispinosa and sis andalousiensis and Operculodinium? eirikianum. R. actinocoronata (Fig. 4).The absence of H. obscura Hystrichosphaeropsis obscura, Palaeocystodinium in the Diest Formation hampers a more detailed cor- golzowense and Systematophoraplacacantha are spe- relation.

Louwye & Laga: Neogene dinoflagellate cysts 83 Fig. 4. Correlation of the Broeksittard well Kalmthout well Nieder Ochtenhausen well Neogene Formations in the SE Netheriands Northern Belgium Northem Germany Kalmthout w# with the Herngreen (1987) Lund et al. (1993) Formations Neogene Formations in the Formations "Stufe" Broeksittard well (SE Netherlands) and the Nieder Ochtenhausen well (north- ern Germany) (Kt.: Kat- tendijk; Q: Quatemw).

The occurrences of P. golzowense and Pentadinium sis, Geonettia? sp. Head (1997) and Operculodinium laticinctum laticinctum in the Broeksittard well in SE tegillatum). Netherlands (Herngreen 1987) correlate tentatively the The Lillo Formation falls within the Melitasphaer- deposits of the Diest Formation partly with the Breda idium choanophorum (Mch) Interval Biozone of Formation and the Inden Formationin the Ruhr Val- Powell (1992), even though the species defining the ley Graben (Fig. 4). lower and upper zonal boundaries are not recognised (resp. Spiniferi fes cf. pseudofurcatus and Spiniferites elongatus). The diagnostic species of this zone with a H0in the Lillo Formation are H. rigaudiae rigaudiae, Kattendijk Formation (76 m) Z. lacrymosa and M. choanophorum. Batiacasplzaera sphaerica is the only species with a H0in the Kattendijk Formation. The joint occurrence with Achomosphaera andalousiensis andalousiensis places the Kattendijk Formation also in the Achomo- sphaera andalousiensis Zone of Manum et al. (1989). Age of the formations in the Kalmthout The H0 of Reticulatosphaera actinocoronata at 78 well m suggest that the Kattendijk Formation may be cor- An early Miocene age can be proposed for the Ber- related with the Melitasphaeridium choanophorum chem Formation (Powell1992, Costa & Manum 1988 (Mch) Interval Biozone of Powell(1992). and Manum et al. 1989lThecorrelation with the DN2 Zone of de Verteuil h~oms(1996) indicates a late Aquitanian to early Burdigalian age for the formation (Fig. 5). Lillo Formation (73.3 to 62.6 m) The correlation of the Diest Formation with the Aum The Lillo Formation is characterised by the H0 of Interval Biozone of Powell (1992) points to a Torto- Ataxiodinium zevenboomii, Bitectatodinium raedwal- nian - Messinian age, while a correlation with the up- dii, Bitectatodinium serratum, Habibacysta? sp. Head per part of de Verteuil & Norris' (1996) DN9 Zone (1994), Hystrichokolpoma rigaudiae rigaudiae and and with the succeeding DNIO Zone indicates a late Znvertocysta lacrymosa. The range of three strati- Tortonian - Messinian age. graphical important species is restricted to the Lillo A comparison with the zonation of Manum et al. Formation (Achomosphaera andalousiensis suttonen- (1989) indicates a possible Late Miocene age for the

84 Bulletin of the Geological Society of Denmark Acknowledgements We are indebted to J. De Coninck for stimulating dis- cussions on dinoflagellate cyst taxonomy and mor- phology. J. Powell, S. Piasecki, J. Samuelsson and J. Vernieres are thanked for their constructive reviews of the manuscript.

Dansk sammendrag Neogene dinoflagellat selskaber i Kalmthout borin- gen i det nordlige Belgien beskrives på basis af 23 prover fra Berchem, Diest, Kattendijk og Lillo Formationerne. Disse selskaber kan korreleres med dinoflagellat zonationer og vigtige dinoflagellat events kendt fra Nordsoen og Østkysten af USA. På grund- lag af dinoflagellat selskaberne kan Berchem For- mationen henfØres til Nedre Miocæn (0vre Aquita- nien-Nedre Burdigalien), mens Diest Formationen er fra 0vre Miocæn (0vre Tortonien-Messinien). Alde- ren af Kattendijk Formationen er usikker. Lillo For- mationen i Kalmthout boringen er af Pliocæn alder and sandsynligvis ikke yngre end tidlig Sen Pliocæn.

References Berggren, W. A., Kent, D. V., Swisher, K. C. C. & Aubry, M.-P. 1995: A revised Cenozoic geochronology and chronostratigraphy. Society for Sedimentary Geology, Special Publication 54, 129-212. Brown, S. & Downie, C. 1985: Dinoflagellate cyst stratig- raphy of Paleocene to Miocene sediments from the Goban Spur (Sites 548-550, Leg 80). In Graciansky, P. Fig. 5. Age of the Neogene Formations from the Kalmthout C. de & Poag, C. W. (eds.) Initial Reports of the Deep well. Time scale after Berggren et al. (1995) (Kt.: Kat- Sea Dnlling Project, Volume LXXX, 643-651. US Gov- tendijk). The question marks indicate the uncertain posi- ernment Printing Office Washington. tion of the Kattendijk Formation. Costa, L. & Manum, S. 1988: The description of the interregional zonation of the Paleogene (Dl-D15) and the Miocene (D16-D20). Geologisches Jahrbuch A 100, Kattendijk Formation. The assignment of the Kat- 321-330. tendijk and Lillo Formations to the Mch Interval De Meuter, F. & Laga, P. 1970: Coiling ratios and other Biozone of Powell (1992) indicates thus a Pliocene variation of Globigerina pachydema (Ehrenberg 1861) age. and the stratigraphical significance in the Neogene de- posits of the Antwerpen area (Belgium). Bulletin Bel- Head (1993,1996,1997) has described the dinoflag- gische Vereniging voor Geologie 79, 175-184. ellate cyst associations of several Pliocene deposits De Meuter, F. & Laga, P. 1976: Lithostratigraphy and bios- in outcrops and boreholes in East Anglia and gave a tratigraphy based on benthonic foraminifera of the detailed overview of the ranges of the stratigraphi- Neogene deposits in Northem Belgium. Bulletin Bel- cally important species found there in the Lillo For- gische Vereniging voor Geologie 85, 133-152. mation (see above). The ranges allow to attribute to de Verteuil, L. & Noms, G. 1996: Miocene dinoflagellate the sequence below 64 m an age not younger than the stratigraphy and systematics of Maryland and Virginia. early late Pliocene (early Piacenzian). A younger age Micropaleontology 42, Supplement, 172 p. for 62.6 m cannot be excluded. If the presence of A. Doppert, J. W. C., Laga, P. & De Meuter,F. 1979: Correla- zevenboomii (as "Ataxiodinium elongatum" in Zeven- tion of the biostratigraphy of marine Neogene deposits, based on benthonic foraminifera, established in Belgium boom 1995 MS) in the Late Miocene of The Nether- and The Netherlands. Mededelingen Rijks Geologische lands proves indeed to be doubtful, then a Pliocene Dienst 31, 1-8. age (Zanclean to Piacenzian) can be attributed to the Head, M. 1993: Dinoflagellates, sporomorphs, and other Kattendijk Formation and Lillo Formation, palynomorphs from the Upper Pliocene St Erth Beds of

Louwye & Laga: Neogene dinofiagellate cysts 85 Comwall, southwestem England. The Paleontological Zevenboom, D. 1995: Dinoflagellate cysts from the Medi- Society Memoir 31, 1-63. terranean Late Oligocene and Miocene. CIP-gegevens Head, M. 1994: Morphology and paleoenvironmental sig- Koninklijke Bibliotheek Den Haag, 221 pp. University nificance of the Cenozoic dinoflagellate genera Tectato- of Utrecht, The Netherlands. dinium and Habibacysta. Micropaleontology 40, 289- 321. Head, M. 1996: Late Cenozoic dinoflagellates from the Royal Society Borehole at Ludham, Norfolk, Eastem England. Joumal of Paleontology 70,543-570. Head, M. 1997: Thermophilic dinoflagellate assemblages from the Mid-Pliocene of Eastem England. Journal of Paleontology 7 1, 165-193. Hemgreen, G. F. W. 1987: Correlation between Miocene beds of the SE Netherlands and Italy based on dinoflag- ellate biozonation. Mededelingen Werkgroep Tertiaire en Kwartaire Geologie 24, 3 1-40. Hooyberghs, H. & De Meuter,E 1972: Biostratigraphy and interregional correlation of the Miocene deposits of Northem Belgium based on planktonic foraminifera; the Oligocene - Miocene boundary on the southem edge of the North Sea Basin. Mededelingen van de Koninklijke Academie voor Wetenschappen, Letteren en Schone Kun- sten van Belgie, Klasse der Wetenschappen 34, 1-47. Hooyberghs, H. 1996: The stratigraphical position of the Edegem sands (Berchem Formation, Miocene) in its type area at Wilnjk (N Belgium), based on planktonic fo- raminifera. Geologie en Mijnbouw 75, 33-42. Lentin, J. K. & Williams,G.L. 1993: Fossil dinoflagellates: index to genera and species. AASP Contributions Series 28, 1-856. Lund, J. J., Lund-Christensen, J. & Strauss,C. 1993: Dino- flagellate cyst biostratigraphy and paleoenvironmental analysis in the Miocene of the RCNNS research well Nieder Ochtenhausen, NW Germany. Museum fur Naturkunde Berlin 1993,27-37. Manum, S. B., Boulter, M. C., Gunnarsdottir, H., Rangnes, K. & Scholze, A. 1989: Eocene to Miocene palynology of the Norwegian Sea (ODP Leg 104). In Eldholm, O., Thiede, J., Taylor,E., et al. (eds.) Proceedings ODP Sci- entific Results 104,611-662. College Station TX Ocean Driliing Program. Morgemoth, P. 1966: Mikrofossilien und Konkretionen des nordwesteuropaischen Untereozans. Palaeontographica Abteilung B119, 1-53. Nuyts,H. 1990: Note on the biostratigraphy (benthic fora- minifera) and lithostratigraphy of Pliocene deposits at Kallo (Oost-Vlaanderen, Belgium). Contributions Terti- ary and Quatemary Geology 27, 17-24. Piasecki, S. 1980: Dinoflagellate cyst stratigraphy of the Miocene Hodde and Gram Formations, Denmark. Bul- letin of the Geological Society of Denmark 29,53-76. Powe1l.A. J. 1992: Dinoflagellate cysts of the Tertiary Sys- tem. In Powell, A. J. (ed.) A stratigraphic index of dino- flagellate cysts 155-251. London: Chapman & Hall. Tavemier,R. & de Heinzelin, J. 1963: Introduction au Néo- gene de la Belgique. Mémoire de la Société belge de Géologie, de Paléontologie et d'Hydrologie 8, 7-30. Vandenberghe, N., Laga, P., Steurbaut, E., Hardenbol, J. & Vail, P. in press: Tertiary sequence stratigraphy at the southem border of the North Sea basin in Belgium. So- ciety Economic Paleontologist and Mineralogist. Spe- cial publication 60. Wouters, & Vandenberghe, N. 1994: Geologie van de Kempen. 208 pp. Bmssei: Niras.

Bulletin of the Geological Society of Denmark