Improving Computer Network Operations Through Automated Interpretation of State

Total Page:16

File Type:pdf, Size:1020Kb

Improving Computer Network Operations Through Automated Interpretation of State University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses July 2020 Improving Computer Network Operations Through Automated Interpretation of State Abhishek Dwaraki University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Digital Communications and Networking Commons Recommended Citation Dwaraki, Abhishek, "Improving Computer Network Operations Through Automated Interpretation of State" (2020). Doctoral Dissertations. 1946. https://doi.org/10.7275/az4a-vq94 https://scholarworks.umass.edu/dissertations_2/1946 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. IMPROVING COMPUTER NETWORK OPERATIONS THROUGH AUTOMATED INTERPRETATION OF STATE A Dissertation Presented by ABHISHEK DWARAKI Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2020 Electrical and Computer Engineering © Copyright by Abhishek Dwaraki 2020 All Rights Reserved IMPROVING COMPUTER NETWORK OPERATIONS THROUGH AUTOMATED INTERPRETATION OF STATE A Dissertation Presented by ABHISHEK DWARAKI Approved as to style and content by: Tilman Wolf, Chair Lixin Gao, Member James F. Kurose, Member Ramesh Sitaraman, Member Christopher Hollot, Department Head Electrical and Computer Engineering DEDICATION To my parents We are at the very beginning of time for the human race. It is not unreasonable that we grapple with problems. But there are tens of thousands of years in the future. Our responsibility is to do what we can, learn what we can, improve the solutions, and pass them on. Richard Feynman ACKNOWLEDGMENTS A lot of people have been instrumental in me being where I am today. Thanking all the people would demand a lengthy article by itself. But there are some that have had a sig- nificant and immeasurable bearing on my Ph.D, both in research direction and motivation. This is raising it to them. I would like to express my special appreciation and thanks to Prof. Tilman Wolf, ad- visor, mentor, guide, career counselor extraordinaire. This space cannot do justice to my gratitude for your efforts in reading all my doctoral work, specially my dissertation. I have learned to be a better writer, thinker, and a methodologist from your guidance and men- toring. I would like to thank you for encouraging my research and more importantly, for allowing me to grow as a researcher. You knew when to push me and when to let me find my way. Prof. Sitaraman, my sincere thanks to you for believing in my ideas. Your insights, guidance, thought-provoking research questions, while being grounded in practicality, have contributed invaluably in shaping my main project, and by extension, this dissertation. I would like to thank Prof. Jim Kurose for agreeing to be on my committee and helping me strike one thing off my bucket list. To try and measure the value of your and Prof. Lixin Gao’s inputs would be doing injustice. I am grateful for your insightful comments and encouragement, and for the hard questions that pushed me to widen my research from different perspectives. I thank Dr. Sriram Natarajan for getting me to “drink the SDN Kool-Aid”, as my advisor puts it. You have guided me through some of the hardest moments of my academic and professional life. My research directions would not have been possible without you. vi Additionally, I would be remiss if I did not thank Dr. Puneet Sharma and Eric Crawley. Without the both of you, we would never have gone to the Innovation-Corps cohort, and this dissertation would have been but a figment of my imagination. I can imagine my advisor at this point asking me why my acknowledgments section ap- pears to be a “thank-you festival”. I have had the great privilege of working with some ex- tremely intelligent and gifted individuals. Divyashri Bhat, Arman Pouraghily and Supreeth Shashtri, Drs. in their own right, have been influential in enabling me to think “out-of- the-box” and analytically challenging my work, constantly helping it improve. I would like to thank them for the endless stream of support and being my go-to people for brain- storming. I am glad your time here at UMass Amherst overlapped with mine and that we shared thoughts, ideas and workspaces. Your help and support has also helped shape this dissertation to what it is today. Priyanka Dattatri, I cannot state, or for that matter, even measure the importance of your friendship, presence, constant support and encouragement in pushing me towards my goals, academic and otherwise. You are a terrific role model and an inspiration to me. Much of my research would be lacking but for my collaborators and co-authors, Drs. Xinming Chen and Richard Freedman. Xinming, you have a knack of tackling and solving hard problems quite elegantly. As for Rick, you somehow make the complex math behind machine learning not so complex after all. Finally, I would like to thank my mother, who encouraged me to become a doctor (if not one who actually saves lives) and my father, who have always let me chart my own path. vii ABSTRACT IMPROVING COMPUTER NETWORK OPERATIONS THROUGH AUTOMATED INTERPRETATION OF STATE MAY 2020 ABHISHEK DWARAKI B.E., VISVESWARAYA TECHNOLOGICAL UNIVERSITY, KARNATAKA, INDIA M.S., UNIVERSITY OF MASSACHUSETTS, AMHERST Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Tilman Wolf Networked systems today are hyper-scaled entities that provide core functionality for distributed services and applications spanning personal, business, and government use. It is critical to maintain correct operation of these networks to avoid adverse business out- comes. The advent of programmable networks has provided much needed fine-grained network control, enabling providers and operators alike to build some innovative network- ing architectures and solutions. At the same time, they have given rise to new challenges in network management. These architectures, coupled with a multitude of devices, protocols, virtual overlays on top of physical data-plane etc. make network management a highly chal- lenging task. Existing network management methodologies have not evolved at the same pace as the technologies and architectures. Current network management practices do not provide adequate solutions for highly dynamic, programmable environments. We have a viii long way to go in developing management methodologies that can meaningfully contribute to networks becoming self-healing entities. The goal of my research is to contribute to the design and development of networks towards transforming them into self-healing entities. Network management includes a multitude of tasks, not limited to diagnosis and trou- bleshooting, but also performance engineering and tuning, security analysis etc. This re- search explores novel methods of utilizing network state to enhance networking capabili- ties. It is constructed around hypotheses based on careful analysis of practical deficiencies in the field. I try to generate real-world impact with my research by tackling problems that are prevalent in deployed networks, and that bear practical relevance to the current state of networking. The overarching goal of this body of work is to examine various approaches that could help enhance network management paradigms, providing administrators with a better understanding of the underlying state of the network, thus leading to more informed decision-making. The research looks into two distinct areas of network management, trou- bleshooting and routing, presenting novel approaches to accomplishing certain goals in each of these areas, demonstrating that they can indeed enhance the network management experience. ix TABLE OF CONTENTS Page ACKNOWLEDGMENTS ...................................................... vi ABSTRACT ................................................................. viii LIST OF TABLES ............................................................ xv LIST OF FIGURES .......................................................... xvi CHAPTER 1. MACHINE LEARNING MEETS PROGRAMMABLE NETWORKING ...... 1 1.1 A Brief History of Programmable Networking . .2 1.2 A Motivating Example . .4 1.3 Problem Statement and Approach . .6 1.4 The Contributing Role of NSF Innovation-Corps . .8 1.5 Dissertation Outline . .9 2. THE CHALLENGES IN MANAGING PROGRAMMABLE NETWORKS .......................................................... 11 2.1 Mandatory Requirements . 12 2.2 Flexibility in Networks: A Double Edged Sword? . 13 2.3 Visibility: How Much More is More? . 14 2.4 Statistical Machine Learning Methods . 15 3. ADAPTIVE SERVICE-CHAIN ROUTING FOR VIRTUALIZED NETWORK FUNCTIONS ............................................. 16 3.1 Introduction . 16 3.2 Related Work. 18 3.3 Order-Constrained Network Function Routing Problem . 18 3.3.1 Problem Statement . 19 3.3.2 Constraints and Optimization Metrics . 20 x 3.4 Adaptive Service Routing . 20 3.4.1 Network Graph Transformation . 20 3.4.2 Adaptive Service Routing Algorithm . 21 3.4.2.1 Communication Delay . 23 3.4.2.2 Processing Delay . 24 3.5 Evaluation . 25 3.5.1 Theoretical Model . 25 3.5.2 Prototype Implementation . 29 3.6 Summary and Conclusion . 29 4. MULTI-CRITERIA ROUTING IN NETWORKS WITH PATH
Recommended publications
  • The Security and Management of Computer Network Database In
    The Security and Management of Computer Network Database in Coal Quality Detection Jianhua SHI1, a, Jinhong SUN2 1Guizhou Agency of Quality Supervision and Inspection of Coal Product,Liupanshui city 553001,China [email protected] Keywords: Computer Network Database; Database Security; Coal Quality Detection Abstract. This paper research the results of quality management information system at home and abroad, through the analysis of the domestic coal enterprises coal quality management links and management information system development present situation and existing problems, combining with related theory and system development method of management information system, and according to the coal mining enterprises of computer network security and management, analysis and design of database, and the implementation steps and the implementation of the coal quality management information system of the problem are given their own countermeasure and the suggestion, try to solve demand for management information system of coal enterprise management level, thus improve the coal quality management level and economic benefit of coal enterprise. Introduction With the improvement of China's coal mining mechanization degree and the increase of mining depth, coal quality is on the decline as a whole. At the same time, the user of coal product utilization way more and more widely, use more and more diversified, more and higher to the requirement of coal quality. In coal quality issue, therefore, countless contradictions increasingly acute, the gap of
    [Show full text]
  • LAB MANUAL for Computer Network
    LAB MANUAL for Computer Network CSE-310 F Computer Network Lab L T P - - 3 Class Work : 25 Marks Exam : 25 MARKS Total : 50 Marks This course provides students with hands on training regarding the design, troubleshooting, modeling and evaluation of computer networks. In this course, students are going to experiment in a real test-bed networking environment, and learn about network design and troubleshooting topics and tools such as: network addressing, Address Resolution Protocol (ARP), basic troubleshooting tools (e.g. ping, ICMP), IP routing (e,g, RIP), route discovery (e.g. traceroute), TCP and UDP, IP fragmentation and many others. Student will also be introduced to the network modeling and simulation, and they will have the opportunity to build some simple networking models using the tool and perform simulations that will help them evaluate their design approaches and expected network performance. S.No Experiment 1 Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool. 2 Study of Network Devices in Detail. 3 Study of network IP. 4 Connect the computers in Local Area Network. 5 Study of basic network command and Network configuration commands. 6 Configure a Network topology using packet tracer software. 7 Configure a Network topology using packet tracer software. 8 Configure a Network using Distance Vector Routing protocol. 9 Configure Network using Link State Vector Routing protocol. Hardware and Software Requirement Hardware Requirement RJ-45 connector, Climping Tool, Twisted pair Cable Software Requirement Command Prompt And Packet Tracer. EXPERIMENT-1 Aim: Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool.
    [Show full text]
  • Applied Combinatorics 2017 Edition
    Keller Trotter Applied Combinatorics 2017 Edition 2017 Edition Mitchel T. Keller William T. Trotter Applied Combinatorics Applied Combinatorics Mitchel T. Keller Washington and Lee University Lexington, Virginia William T. Trotter Georgia Institute of Technology Atlanta, Georgia 2017 Edition Edition: 2017 Edition Website: http://rellek.net/appcomb/ © 2006–2017 Mitchel T. Keller, William T. Trotter This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 Interna- tional License. To view a copy of this license, visit http://creativecommons.org/licenses/ by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Summary of Contents About the Authors ix Acknowledgements xi Preface xiii Preface to 2017 Edition xv Preface to 2016 Edition xvii Prologue 1 1 An Introduction to Combinatorics 3 2 Strings, Sets, and Binomial Coefficients 17 3 Induction 39 4 Combinatorial Basics 59 5 Graph Theory 69 6 Partially Ordered Sets 113 7 Inclusion-Exclusion 141 8 Generating Functions 157 9 Recurrence Equations 183 10 Probability 213 11 Applying Probability to Combinatorics 229 12 Graph Algorithms 239 vii SUMMARY OF CONTENTS 13 Network Flows 259 14 Combinatorial Applications of Network Flows 279 15 Pólya’s Enumeration Theorem 291 16 The Many Faces of Combinatorics 315 A Epilogue 331 B Background Material for Combinatorics 333 C List of Notation 361 Index 363 viii About the Authors About William T. Trotter William T. Trotter is a Professor in the School of Mathematics at Georgia Tech. He was first exposed to combinatorial mathematics through the 1971 Bowdoin Combi- natorics Conference which featured an array of superstars of that era, including Gian Carlo Rota, Paul Erdős, Marshall Hall, Herb Ryzer, Herb Wilf, William Tutte, Ron Gra- ham, Daniel Kleitman and Ray Fulkerson.
    [Show full text]
  • Steps Toward a National Research Telecommunications Network
    Steps Toward a National Research Telecommunications Network Gordon Bell Introduction Modern science depends on rapid communica- In response to provisions in Public Law tions and information exchange. Today, many major 99-383, which was passed 21 June 1986 by national and international networks exist using the 99th Congress, an inter-agency group some form of packet switching to interconnect under the auspices of the Federal Coordin- host computers. State and regional networks are ating Council for Science, Engineering, and proliferating. NSFNET, an "internet" designed initially Technology (FCCSET) for Computer Research to improve access to supercomputer centers, has and Applications was formed to study the in the space of two years, forged links among 17 following issues: the networking needs of state, regional, and federal agency networks. the nation's academic and federal research In the early 1980s, the lack of access to super- computer programs, including supercomputer computing power by the research community caused programs, over the next 15 years, addressing the formation of the NSF Office of Advanced Sci- requirements in terms of volume of data, entific Computing, which funded five centers for reliability of transmission, software supercomputers. Given the highly distributed loca- compatibility, graphics capabilities, and tion of users, the need for a national wide area transmission security; the benefits and network for computer access and for the inter- opportunities that an improved computer change of associated scientific information (such network would offer for electronic mail, as mail, files, databases) became clear. file transfer, and remote access and com- Further, it immediately became obvious that munications; and the networking options existing agency networks both lacked the inherent available for linking academic and research capacity and were overloaded.
    [Show full text]
  • Components of a Computer Network
    CS 536 Park Introduction What is a computer network? Components of a computer network: • hosts (PCs, laptops, handhelds) • routers & switches (IP router, Ethernet switch) • links (wired, wireless) • protocols (IP, TCP, CSMA/CD, CSMA/CA) • applications (network services) • humans and service agents Hosts, routers & links form the hardware side. Protocols & applications form the software side. Protocols can be viewed as the “glue” that binds every- thing else together. CS 536 Park A physical network: CS 536 Park Protocol example: low to high • NIC (network interface card): hardware → e.g., Ethernet card, WLAN card • device driver: part of OS • ARP, RARP: OS • IP: OS • TCP, UDP: OS • OSPF, BGP, HTTP: application • web browser, ssh: application −→ multi-layered glue What is the role of protocols? −→ facilitate communication or networking CS 536 Park Simplest instance of networking problem: Given two hosts A, B interconnected by some net- work N, facilitate communication of information between A & B. A N B Information abstraction • representation as objects (e.g., files) • bytes & bits → digital form • signals over physical media (e.g., electromagnetic waves) → analog form CS 536 Park Minimal functionality required of A, B • encoding of information • decoding of information −→ data representation & a form of translation Additional functionalities may be required depending on properties of network N • information corruption → 10−9 for fiber optic cable → 10−3 or higher for wireless • information loss: packet drop • information delay: like toll
    [Show full text]
  • Introduction to Bioinformatics (Elective) – SBB1609
    SCHOOL OF BIO AND CHEMICAL ENGINEERING DEPARTMENT OF BIOTECHNOLOGY Unit 1 – Introduction to Bioinformatics (Elective) – SBB1609 1 I HISTORY OF BIOINFORMATICS Bioinformatics is an interdisciplinary field that develops methods and software tools for understanding biologicaldata. As an interdisciplinary field of science, bioinformatics combines computer science, statistics, mathematics, and engineering to analyze and interpret biological data. Bioinformatics has been used for in silico analyses of biological queries using mathematical and statistical techniques. Bioinformatics derives knowledge from computer analysis of biological data. These can consist of the information stored in the genetic code, but also experimental results from various sources, patient statistics, and scientific literature. Research in bioinformatics includes method development for storage, retrieval, and analysis of the data. Bioinformatics is a rapidly developing branch of biology and is highly interdisciplinary, using techniques and concepts from informatics, statistics, mathematics, chemistry, biochemistry, physics, and linguistics. It has many practical applications in different areas of biology and medicine. Bioinformatics: Research, development, or application of computational tools and approaches for expanding the use of biological, medical, behavioral or health data, including those to acquire, store, organize, archive, analyze, or visualize such data. Computational Biology: The development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological, behavioral, and social systems. "Classical" bioinformatics: "The mathematical, statistical and computing methods that aim to solve biological problems using DNA and amino acid sequences and related information.” The National Center for Biotechnology Information (NCBI 2001) defines bioinformatics as: "Bioinformatics is the field of science in which biology, computer science, and information technology merge into a single discipline.
    [Show full text]
  • Application of Bioinformatics Methods to Recognition of Network Threats
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Paper Application of bioinformatics methods to recognition of network threats Adam Kozakiewicz, Anna Felkner, Piotr Kijewski, and Tomasz Jordan Kruk Abstract— Bioinformatics is a large group of methods used in of strings cacdbd and cawxb, character c is mismatched biology, mostly for analysis of gene sequences. The algorithms with w, both d’s and the x are opposite spaces, and all developed for this task have recently found a new application other characters are in matches. in network threat detection. This paper is an introduction to this area of research, presenting a survey of bioinformatics Definition 2 (from [2]) : A global multiple alignment of methods applied to this task, outlining the individual tasks k > 2 strings S = S1,S2,...,Sk is a natural generalization and methods used to solve them. It is argued that the early of alignment for two strings. Chosen spaces are inserted conclusion that such methods are ineffective against polymor- into (or at either end of) each of the k strings so that the re- phic attacks is in fact too pessimistic. sulting strings have the same length, defined to be l. Then Keywords— network threat analysis, sequence alignment, edit the strings are arrayed in k rows of l columns each, so distance, bioinformatics. that each character and space of each string is in a unique column. Alignment is necessary, since evolutionary processes intro- 1. Introduction duce mutations in the DNA and biologists do not know, whether nth symbol in one sequence indeed corresponds to When biologists discover a new gene, its function is not al- the nth symbol of the other sequence – a shift is probable.
    [Show full text]
  • INTRODUCTION E-Commerce Is a Technology-Mediated Exchange
    INTRODUCTION E-commerce is a technology-mediated exchange between parties (individuals or organizations) as well as the electronically based intra-or inter- organizational activities that facilitate such exchanges. It is the business option in which the transactions take place via telecommunications networks. It changes the way you shop, learn, interact and transact business; this wave of emerging technology affects every facet of your lifestyle, home as well as your workplace. E-commerce is directly or indirectly applicable in all areas of our life be it banking, entertainment, on line orders processing cycle or SCM (Supply Chain Management). Due to its wide variety of applications e-commerce has gained a lot of popularity over the decade. It has drawn the attention of researchers regarding the new technologies and resolving the security issues regarding the electronic transactions. Fig 1.1 Different Application areas of E-Commerce E-commerce has been defined broadly as the business transactions of business over the achieving greater efficiencies within their organization using information technology, the last half of this decade is seeing a new wave of increased efficiencies by extending the information technology to the Web, both to the trading partners, as well as to end consumers. While efficiencies lead to increased profitability, the Web offers other advantages, such as a greater reach, short-term relationships, one-to-one marketing, re-intermediation, disintermediation etc. which are either difficult, or impossible to do in the traditional physical economy. Obviously, electronic commerce will first pass through the phase of “electronification” of current trading practices, and only later evolve into something radically different from its physical counterpart.
    [Show full text]
  • Application of Bioinformatics Methods to Recognition of Network Threats
    Paper Application of bioinformatics methods to recognition of network threats Adam Kozakiewicz, Anna Felkner, Piotr Kijewski, and Tomasz Jordan Kruk Abstract— Bioinformatics is a large group of methods used in of strings cacdbd and cawxb, character c is mismatched biology, mostly for analysis of gene sequences. The algorithms with w, both d’s and the x are opposite spaces, and all developed for this task have recently found a new application other characters are in matches. in network threat detection. This paper is an introduction to this area of research, presenting a survey of bioinformatics Definition 2 (from [2]) : A global multiple alignment of methods applied to this task, outlining the individual tasks k > 2 strings S = S1,S2,...,Sk is a natural generalization and methods used to solve them. It is argued that the early of alignment for two strings. Chosen spaces are inserted conclusion that such methods are ineffective against polymor- into (or at either end of) each of the k strings so that the re- phic attacks is in fact too pessimistic. sulting strings have the same length, defined to be l. Then Keywords— network threat analysis, sequence alignment, edit the strings are arrayed in k rows of l columns each, so distance, bioinformatics. that each character and space of each string is in a unique column. Alignment is necessary, since evolutionary processes intro- 1. Introduction duce mutations in the DNA and biologists do not know, whether nth symbol in one sequence indeed corresponds to When biologists discover a new gene, its function is not al- the nth symbol of the other sequence – a shift is probable.
    [Show full text]
  • An Overview of the Netware Operating System
    An Overview of the NetWare Operating System Drew Major Greg Minshall Kyle Powell Novell, Inc. Abstract The NetWare operating system is designed specifically to provide service to clients over a computer network. This design has resulted in a system that differs in several respects from more general-purpose operating systems. In addition to highlighting the design decisions that have led to these differences, this paper provides an overview of the NetWare operating system, with a detailed description of its kernel and its software-based approach to fault tolerance. 1. Introduction The NetWare operating system (NetWare OS) was originally designed in 1982-83 and has had a number of major changes over the intervening ten years, including converting the system from a Motorola 68000-based system to one based on the Intel 80x86 architecture. The most recent re-write of the NetWare OS, which occurred four years ago, resulted in an “open” system, in the sense of one in which independently developed programs could run. Major enhancements have occurred over the past two years, including the addition of an X.500-like directory system for the identification, location, and authentication of users and services. The philosophy has been to start as with as simple a design as possible and try to make it simpler as we gain experience and understand the problems better. The NetWare OS provides a reasonably complete runtime environment for programs ranging from multiprotocol routers to file servers to database servers to utility programs, and so forth. Because of the design tradeoffs made in the NetWare OS and the constraints those tradeoffs impose on the structure of programs developed to run on top of it, the NetWare OS is not suited to all applications.
    [Show full text]
  • Mathematical Foundations of Computer Networking the Addison-Wesley Professional Computing Series
    Mathematical Foundations of Computer Networking The Addison-Wesley Professional Computing Series Visit informit.com/series/professionalcomputing for a complete list of available publications. The Addison-Wesley Professional Computing Series was created in 1990 to provide serious programmers and networking professionals with well-written and practical reference books. There are few places to turn for accurate and authoritative books on current and cutting-edge technology. We hope that our books will help you understand the state of the art in programming languages, operating systems, and networks. Consulting Editor Brian W. Kernighan Make sure to connect with us! informit.com/socialconnect Mathematical Foundations of Computer Networking Srinivasan Keshav Upper Saddle River, NJ • Boston • Indianapolis • San Francisco New York • Toronto • Montreal • London • Munich • Paris • Madrid Capetown • Sydney • Tokyo • Singapore • Mexico City Many of the designations used by manufacturers and sellers to distin- Editor-in-Chief guish their products are claimed as trademarks. Where those designa- Mark L. Taub tions appear in this book, and the publisher was aware of a trademark Senior Acquisitions Editor claim, the designations have been printed with initial capital letters or in Trina MacDonald all capitals. Managing Editor The author and publisher have taken care in the preparation of this book, John Fuller but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inciden- Full-Service Production tal or consequential damages in connection with or arising out of the use Manager of the information or programs contained herein. Julie B. Nahil The publisher offers excellent discounts on this book when ordered in Copy Editor quantity for bulk purchases or special sales, which may include electronic Evelyn Pyle versions and/or custom covers and content particular to your business, Indexer training goals, marketing focus, and branding interests.
    [Show full text]
  • Computer Networks As Human System Interface
    +6, 5]HV]RZ3RODQG0D\ Computer Networks as Human System Interface Nam Pham1, Bogdan M. Wilamowski2, A. Malinowski3 1 2Electrical and Computer Engineering, Auburn University, Alabama, USA 3Electrical and Computer Engineering, Bradley University, Peoria Illinois, USA [email protected] [email protected] [email protected] years, network software has also evolved and many Abstract – With the dramatic increase of network technologies have been tried and applied to network bandwidth and decrease of network latency and because of software development [6]. Computer networks have been development of new network programming technologies, the changing the philosophy of not only the engineering view dynamic websites provide dynamic interaction to the end user and at the same time implement asynchronous client-server but also the business view as well. Nowadays, many communication in the background. Many applications are companies rely on computer systems and networks for being deployed through the computer and are becoming more functions such as order entry, order processing, customer popular and are effective means in computing and simulation. support, supply chain management, and employee Running software over the Internet introduced in this paper is administration, etc. Therefore, reliability and availability of one of the applications of computer networks which enhance such systems and networks are becoming critical factors of interaction between human and CAD tools while computer networks are used as a human system interface. Instead of the the present-day enterprises or institutions [7]. The required design, software must be installed and license improvement of network security, network speed, etc opens purchased for each computer where software is used, now the possibility for new kinds of applications.
    [Show full text]