Recent Development of Open-Source Speech Recognition Engine Julius

Total Page:16

File Type:pdf, Size:1020Kb

Recent Development of Open-Source Speech Recognition Engine Julius Recent Development of Open-Source Speech Recognition Engine Julius Akinobu Lee¤ and Tatsuya Kawaharay ¤ Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan E-mail: [email protected] y Kyoto University, Kyoto 606-8501, Japan E-mail: [email protected] ! ! 6 $ $ + 1)7 17" " % # % " Abstract—Julius is an open-source large-vocabulary speech recognition software used for both academic research and in- ¥ ¨© ©¨ §¨© ¦ ¨ dustrial applications. It executes real-time speech recognition of ¦ a 60k-word dictation task on low-spec PCs with small footprint, ¨ and even on embedded devices. Julius supports standard lan- guage models such as statistical N-gram model and rule-based ! "# grammars, as well as Hidden Markov Model (HMM) as an ! . + "# " acoustic model. One can build a speech recognition system of his / ¢ £ ( $ ¤ ¡¡ &' )" own purpose, or can integrate the speech recognition capability % 0 + + + ' 1) 1& - - * + to a variety of applications using Julius. This article describes + " & #% " , an overview of Julius, major features and specifications, and 5 4 2 2¨ 2¨ 2 3 summarizes the developments conducted in the recent years. ¦ ! ! + + ''%1 ) '%1 ) I. INTRODUCTION ' ”Julius”1 is an open-source, high-performance speech recog- nition decoder used for both academic research and indus- Fig. 1. Overview of Julius. trial applications. It incorporates major state-of-the-art speech recognition techniques, and can perform a large vocabulary continuous speech recognition (LVCSR) task effectively in site. The current development snapshot is also available via real-time processing with a relatively small footprint. CVS. There is also a web forum for developers and users. It also has much versatility and scalability. One can easily This article first introduces general information and the build a speech recognition system by combining a language history of Julius, followed by its internal system architecture model (LM) and an acoustic model (AM) for the task, from and decoding algorithm. Then, the model specification is fully a simple word recognition to a LVCSR task with tens of described to show what type of the speech recognition task it thousands of words. Standard file formats are adopted to cope can execute. The way of integrating Julius with other appli- with other standard toolkits such as HTK (HMM Toolkit)[1], cations is also briefly explained. Finally, recent developments CMU-Cam SLM toolkit[2] and SRILM[3]. are described as a list of updates. Julius is written in pure C language. It runs on Linux, Win- II. OVERVIEW dows, Mac OS X, Solaris and other unix variants. It has been ported to SH-4A microprocessor[4], and also runs on Apple's An overview of Julius system is illustrated in Fig. 1. Given iPhone[5]. Most of the research institutes in Japan uses Julius a language model and an acoustic model, Julius functions as for their research[6][7], and it has been applied for various a speech recognition system of the given task. languages such as English, French[8], Mandarin Chinese[9], Julius supports processing of both audio files and a live Thai[10], Estonian[11], Slovenian[12], and Korean[13]. audio stream. For the file input, Julius assumes one sentence Julius is available as open-source software. The license term utterance per input file. It also supports auto-splitting of the is similar to the BSD license, no restriction is imposed for input by long pauses, where pause detection will be performed research, development or even commercial purposes2. based on level and zero cross thresholds. Audio input via a The web page3 contains the latest source codes and pre- network stream is also supported. compiled binaries for Windows and Linux. Several acoustic A language model and an acoustic model is needed to run and language models for Japanese can be obtained from the Julius. The language model consists of a word pronunciation dictionary and a syntactic constraint. Various types of language model are supported: word N-gram model, rule-based gram- 1Julius was named after “Gaius Julius Caesar”, who was a ”dictator” of the Roman Republic in 100 B.C. mars and a simple word list for isolated word recognition. 2See the license term included in the distribution package for details. Acoustic models should be HMM defined for sub-word units. 3http://julius.sourceforge.jp It fully supports HTK HMM definition file: any number of states, any state transition and any parameter tying scheme speech applications. Now, the software is used as a reference can be treated as the same as HTK. of the speech technologies. Applications can interact with Julius in two ways, socket- It had been developed as a part of the free software platform based server-client messaging and function-based library em- for Japanese LVCSR funded by IPA, Japan[17] from 1997 bedding. In either case, the recognition result will be fed to 2000. The decoding algorithm was refined to improve into the application as soon as the recognition process ends the recognition performance in this period (ver. 3.1p2)[18]. for an input. The application can get the live status and After that, the Continuous Speech Recognition Consortium statistics of the Julius engine, and control it. The latest version (CSRC)[19] was founded to maintain the software repository also supports a plug-in facility so that users can extend the for Japanese LVCSR. A grammar-based version of Julius capability of Julius easily. named “Julian” was developed in the project, and the al- gorithms were further refined, and several new features for A. Summary of Features a spontaneous speech recognition were implemented (ver. Here is a list of major features based on the current version. 3.4.2)[20]. Performance: In 2003, the effort was continued with the Interactive Speech ² Real time recognition of 60k-word dictation on PCs, Technology Consortium (ISTC)[21]. A number of features PDAs and handheld devices were added for real-world speech recognition: robust voice ² Small footprint (about 60MB for 20k-word Japanese tri- activity detection (VAD) based on GMM, lattice output, and phone dictation, including N-gram of 38MB on memory) confidence scoring. ² No machine-specific or hard-coded optimization The latest major revision 4 was released in 2007. The entire Functions: source code was re-organized from a stand-alone application to a set of libraries, and modularity was significantly improved. ² Live audio input recognition via microphone / socket The details are fully described in section VI. ² Multi-level voice activity detection based on power / The current version is 4.1.2, released in February 2009. Gaussian mixture model (GMM) / decoder statistics ² Multi-model parallel recognition within single thread III. INSIDE JULIUS ² Output N-best list / word graph / confusion network ² Forced alignment in word, phone or HMM-state level A. System Architecture ² Confidence scoring The internal module structure of Julius is illustrated in Fig. ² Successive decoding for long input by segmenting with 2. The top-level structure is “engine instance”, which contains short pauses all the modules required for a recognition system: audio input, Supported Models and Features: voice detection, feature extraction, language model, acoustic ² N-gram language model with arbitrary N model and search process. ² Rule-based grammar An “AM process instance” holds an acoustic HMM and ² Isolated word recognition work area for acoustic likelihood computation. The “MFCC ² Triphone HMM / tied-mixture HMM / phonetic tied- instance” is generated from the AM process instance to extract mixture HMM with any number of states, mixtures and a feature vector sequence from speech waveform input. The models supported in HTK. “LM process instance” holds a language model and work area ² Most mel-frequency cepstral coefficients (MFCC) and its for the computation of the linguistic likelihoods. The “Recog- variants supported in HTK. nition process instance” is the main recognition process, using ² Multi-stream HMM and MSD-HMM[14] trained by the AM process instance and the LM process instance. These HTS[15] modules will be created in the engine instance according to Integration / API: the given configuration parameters. When doing multi-model recognition, a module can be shared among several upper ² Embeddable into other applications as C library instances for efficiency. ² Socket-based server-client interaction ² Recognition process control by clients / applications B. Decoding Algorithm ² Plug-in extension Julius performs a two-pass forward-backward search[16]. B. History The overview of the decoding algorithm is illustrated in Fig. Julius was first released in 1998, as a result of a study 3. on efficient algorithms for LVCSR[16]. Our motivation to On the first pass, a tree-structured lexicon assigned with develop and maintain such an open-source speech recognition language model constraint is applied with a standard frame- engine comes from the public requirement of sharing a base- synchronous beam search algorithm. For efficient decoding, line platform for speech research. With a common platform, the reduced LM constraint that concerns only the word-to- researchers on acoustic models or language models can easily word connection, ignoring further context, is used on this demonstrate and compare their works by speech recognition pass. The actual constraint depends on the LM type: when performances. Julius is also intended for easy development of using an N-gram model, 2-gram probabilities will be applied 2 ' ' $ ./.011/3 * F D55 E C - %&%(%)+%,( ?G 8 limit of the hypotheses generation count at every sentence = @ 45 65 7 C <A 89:;< 8? B > length, to avoid search failures for long inputs. T L U K J Julius basically assumes one sentence utterance per input. H I I J However, in natural spontaneous speech such as lectures K ¡ ¢£¤¥¦§§ ¨ ¨ ¥¤ © ¤© ¦ and meetings, the input segment is sometimes uncertain and ¨ !! ©§ ©¥¦ £¤¥¦§§ ¢ often gets long. To handle them, Julius has a function to ¨ § ©¥¦ © perform successive decoding with short-pause segmentation, ## ¡" M ¡ N ¢£¤¥¦§§ ¨ ¨ automatically splitting the long input on the way of recognition ©§ ©¥¦ ©§ ©¥¦ R S Q L by short pauses.
Recommended publications
  • Speech Recognition Systems: a Comparative Review
    IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 19, Issue 5, Ver. IV (Sep.- Oct. 2017), PP 71-79 www.iosrjournals.org Speech Recognition Systems: A Comparative Review Rami Matarneh1, Svitlana Maksymova2, Vyacheslav V. Lyashenko3 , Nataliya V. Belova 3 1(Department of Computer Science, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabi) 2(Department of Computer-Integrated Technologies, Automation and Mechatronics, Kharkiv National University of RadioElectronics, Kharkiv, Ukraine) 3(Department of Informatics, Kharkiv National University of RadioElectronics, Kharkiv, Ukraine) Abstract: Creating voice control for robots is very important and difficult task. Therefore, we consider different systems of speech recognition. We divided them into two main classes: (1) open-source and (2) close-source code. As close-source software the following were selected: Dragon Mobile SDK, Google Speech Recognition API, Siri, Yandex SpeechKit and Microsoft Speech API. While the following were selected as open-source software: CMU Sphinx, Kaldi, Julius, HTK, iAtros, RWTH ASR and Simon. The comparison mainly based on accuracy, API, performance, speed in real-time, response time and compatibility. the variety of comparison axes allow us to make detailed description of the differences and similarities, which in turn enabled us to adopt a careful decision to choose the appropriate system depending on our need. Keywords: Robot, Speech recognition, Voice systems with closed source code, Voice systems with open source code --------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 13-10-2017 Date of acceptance: 27-10-2017 --------------------------------------------------------------------------------------------------------------------------------------- I. Introduction Voice control will make your application more convenient for user especially if a person works with it on the go or his hands are busy.
    [Show full text]
  • Speech-To-Text System for Phonebook Automation
    Speech-to-Text System for Phonebook Automation Thesis submitted in partial fulfillment of the requirements for the award of degree of Master of Engineering in Computer Science and Engineering Submitted By Nishant Allawadi (Roll No. 801032017) Under the supervision of: Mr. Parteek Bhatia Assistant Professor COMPUTER SCIENCE AND ENGINEERING DEPARTMENT THAPAR UNIVERSITY PATIALA – 147004 June 2012 i ii Abstract In the daily use of electronic devices, generally, the input is given by pressing keys or touching the screen. There are a lot of devices which give output in the form of speech but the way of giving input by speech is very new and it has been seen in a few of our latest devices. The speech input technology needs a Speech-to-Text system to convert input speech into its corresponding text and speech output technology needs a Text-to- Speech system to convert input text into its corresponding speech. In the work presented, a Speech-to-Text system has been developed with a Text-to- Speech module to enable speech as input as well as output. A phonebook application has also been developed to add new contacts, update previously saved contacts, delete saved contacts and call the saved contacts. This phonebook application has been integrated with Speech-to-Text system and Text-to-Speech module to convert the phonebook application into a complete speech interactive system. The first chapter, the basic introduction of the Speech-to-Text system has been presented. The second chapter discusses about the evolution of the Speech-to-Text technology along with the existing Speech-to-Text systems.
    [Show full text]
  • Multipurpose Large Vocabulary Continuous Speech Recognition Engine Julius
    Multipurpose Large Vocabulary Continuous Speech Recognition Engine Julius rev. 3.2 (2001/12/03) Copyright (c) 1997-2000 Information-Technology Promotion Agency, Japan Copyright (c) 1991-2001 Kyoto University Copyright (c) 2000-2001 Nara Institute of Science and Technology All rights reserved. Translated from the original Julius-3.2-book by Ian Lane – Kyoto University Julius Julius is a high performance continuous speech recognition software based on word N-grams. It is able to perform recognition at the sentence level with a vocabulary in the tens of thousands. Julius realizes high-speed speech recognition on a typical desktop PC. It performs at near real time and has a recognition rate of above 90% for a 20,000-word vocabulary dictation task. The best feature of the Julius system is that it is multipurpose. By recombining the pronunciation dictionary, language and acoustic models one is able to build various task specific systems. The Julius code also is open source so one should be able to recompile the system for other platforms or alter the code for one's specific needs. Platforms currently supported include Linux, Solaris and other versions of Unix, and Windows. There are two Windows versions, a Microsoft SAPI 5.0 compatible version and a Windows DLL version. This documentation relates to the Unix version of Julius. For documentation on the Windows versions see the Julius for SAPI README (CSRC CD-ROM) (Japanese), or the Julius for SAPI homepage (Kyoto University) (Japanese). 1 Contacts/Links Contacts/Links Home Page: http://winnie.kuis.kyoto-u.ac.jp/pub/julius/ (Japanese) E-mail: [email protected] Developers Original System/Unix version: Akinobu Lee ([email protected]) Windows Microsoft SAPI version: Takashi Sumiyoshi Windows (DLL version): Hideki Banno 2 System Structure and Features System Structure The structure of the Julius speech recognition system is shown in the diagram below: N-gram language models and a HMM acoustic model are used.
    [Show full text]
  • The Wavesurfer Automatic Speech Recognition Plugin
    The WaveSurfer Automatic Speech Recognition Plugin Giampiero Salvi and Niklas Vanhainen KTH, School of Computer Science and Communication, Department of Speech Music and Hearing, Stockholm, Sweden fgiampi, [email protected] Abstract This paper presents a plugin that adds automatic speech recognition (ASR) functionality to the WaveSurfer sound manipulation and visualisation program. The plugin allows the user to run continuous speech recognition on spoken utterances, or to align an already available orthographic transcription to the spoken material. The plugin is distributed as free software and is based on free resources, namely the Julius speech recognition engine and a number of freely available ASR resources for different languages. Among these are the acoustic and language models we have created for Swedish using the NST database. Keywords: Automatic Speech Recognition, Free Software, WaveSurfer 1. Introduction Automatic Speech Recognition (ASR) is becoming an im- portant part of our lives, both as a viable alternative for humans-computer interaction, but also as a tool for linguis- tics and speech research. In many cases, however, it is trou- blesome, even in the language and speech communities, to have easy access to ASR resources. On the one hand, com- mercial systems are often too expensive and not flexible enough for researchers. On the other hand, free ASR soft- ware often lacks high quality resources such as acoustic and language models for the specific languages and requires ex- pertise that linguists and speech researchers cannot afford. In this paper we describe a plugin for the popular sound manipulation and visualisation program WaveSurfer1 (Sjolander¨ and Beskow, 2000) that attempts to solve the above problems.
    [Show full text]
  • Speech Phonetization Alignment and Syllabification (SPPAS): a Tool for the Automatic Analysis of Speech Prosody Brigitte Bigi, Daniel Hirst
    SPeech Phonetization Alignment and Syllabification (SPPAS): a tool for the automatic analysis of speech prosody Brigitte Bigi, Daniel Hirst To cite this version: Brigitte Bigi, Daniel Hirst. SPeech Phonetization Alignment and Syllabification (SPPAS): a tool for the automatic analysis of speech prosody. Speech Prosody, May 2012, Shanghai, China. pp.19-22. hal-00983699 HAL Id: hal-00983699 https://hal.archives-ouvertes.fr/hal-00983699 Submitted on 25 Apr 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. SPeech Phonetization Alignment and Syllabification (SPPAS): a tool for the automatic analysis of speech prosody. Brigitte Bigi, Daniel Hirst Laboratoire Parole et Langage, CNRS & Aix-Marseille Université [email protected], [email protected] Abstract length, pitch and loudness of the individual sounds which make up an utterance”. [7] SPASS, SPeech Phonetization Alignment and Syllabifi- cation, is a tool to automatically produce annotations Linguists need tools for the automatic analysis of at which include utterance, word, syllable and phoneme seg- least these three prosodic features of speech sounds. In mentations from a recorded speech sound and its tran- this paper we concentrate on the tool for the automatic scription.
    [Show full text]
  • A Fully Decentralized, Peer-To-Peer Based Version Control System As a Solution to Overcome Issues of Currently Available Systems
    A FULLY DECENTRALIZED, PEER-TO-PEER BASED VERSIONCONTROLSYSTEM Vom Fachbereich Elektrotechnik und Informationstechnik der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genemigte dissertationsschrift von dipl.-inform. patrick mukherjee geboren am 1. Juli 1976 in Berlin Erstreferent: Prof. Dr. rer. nat. Andy Schürr Korreferent: Prof. Dr.-Ing. Bernd Freisleben Tag der Einreichung: 27.09.2010 Tag der Disputation: 03.12.2010 Hochschulkennziffer D17 Darmstadt 2011 Dieses Dokument wird bereitgestellt von This document is provided by tuprints, E-Publishing-Service, Technischen Universität Darmstadt. http://tuprints.ulb.tu-darmstadt.de [email protected] Bitte zitieren Sie dieses Dokument als: Please cite this document as: URN: urn:nbn:de:tuda-tuprints-2488 URL: http://tuprints.ulb.tu-darmstadt.de/2488 Die Veröffentlichung steht unter folgender Creative Commons Lizenz: Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 3.0 Deutschland This publication is licensed under the following Creative Commons License: Attribution – Noncommercial – No Derivs 3.0 http://creativecommons.org/licenses/by-nc-nd/3.0/de/ http://creativecommons.org/licenses/by-nc-nd/3.0/ Posveeno mojoj Sandri, koja me uvek i u svakom pogledu podrava i qini moj ivot ispu¨enim. ABSTRACT Version control is essential in collaborative software development today. Its main functions are to track the evolutionary changes made to a project’s files, manage work being concurrently undertaken on those files and enable a comfortable and complete exchange of a project’s data among its developers. The most commonly used version control systems are client-server based, meaning they rely on a centralized machine to store and manage all of the content.
    [Show full text]
  • Recent Development of Open-Source Speech Recognition Engine Julius
    Proceedings of 2009 APSIPA Annual Summit and Conference, Sapporo, Japan, October 4-7, 2009 Recent Development of Open-Source Speech Recognition Engine Julius Akinobu Lee¤ and Tatsuya Kawaharay ¤ Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan E-mail: [email protected] y Kyoto University, Kyoto 606-8501, Japan E-mail: [email protected] ! ! 6 $ $ + 1)7 17" " % # % " Abstract—Julius is an open-source large-vocabulary speech recognition software used for both academic research and in- ¥ ¨© ©¨ §¨© ¦ ¨ dustrial applications. It executes real-time speech recognition of ¦ a 60k-word dictation task on low-spec PCs with small footprint, ¨ and even on embedded devices. Julius supports standard lan- guage models such as statistical N-gram model and rule-based ! "# grammars, as well as Hidden Markov Model (HMM) as an ! . + " "# acoustic model. One can build a speech recognition system of his / ¢ £ ( $ ¤ ¡¡ &' )" own purpose, or can integrate the speech recognition capability % 0 + + + 1) 1& ' - - * + to a variety of applications using Julius. This article describes + & #% " " , an overview of Julius, major features and specifications, and 5 4 2 2¨ 2¨ 2 3 summarizes the developments conducted in the recent years. ¦ ! ! + + ) %1 '' ) %1 ' I. INTRODUCTION ' ”Julius”1 is an open-source, high-performance speech recog- nition decoder used for both academic research and indus- Fig. 1. Overview of Julius. trial applications. It incorporates major state-of-the-art speech recognition techniques, and can perform a large vocabulary continuous speech recognition (LVCSR) task effectively in site. The current development snapshot is also available via real-time processing with a relatively small footprint. CVS. There is also a web forum for developers and users.
    [Show full text]
  • Open Source Notices This Product Contains Computer Programs (Also Referred to As “Software”) Owned by Or Licensed to Panasonic
    Open Source Notices This product contains computer programs (also referred to as “Software”) owned by or licensed to Panasonic. In addition to the proprietary computer programs owned by or licensed to Panasonic, this product also may contain one or more Open Source Software libraries or components, or portions thereof, developed by third parties and licensed under a corresponding Open Source Software License. Open Source Software files are protected by copyright. The right to use any Open Source Software is governed by the relevant Open Source Software license. In the event of any conflict between your license to use this product and any applicable Open Source Software license, the Open Source Software license shall prevail with respect to the Open Source Software portions of the software. Panasonic provides no warranty for the Open Source Software programs contained in this device if such programs are used in any manner other than as intended by Panasonic. Panasonic, its affiliates and subsidiaries, disclaim any and all warranties and representations with respect to such Open Source Software, whether express, implied, statutory or otherwise, including without limitation, any implied warranties of title, non-infringement, merchantability, satisfactory quality, accuracy or fitness for a particular purpose. Panasonic shall not be liable to make any corrections or modifications to the Open Source Software, or to provide any support or assistance with respect to it. Panasonic disclaims any and all liability arising out of or in connection with the use of the Open Source Software. This statement, however, does not in any way impair or enhance any warranty or disclaimer which Panasonic provides in respect of any product that incorporates Open Source Software.
    [Show full text]
  • Understanding and Auditing the Licensing of Open Source Software Distributions
    Understanding and Auditing the Licensing of Open Source Software Distributions Daniel M. German†, Massimiliano Di Penta‡, Julius Davies† † Dept. of Computer Science, University of Victoria, Canada ‡ Dept of Engineering, University of Sannio, Italy [email protected], [email protected], [email protected] Abstract—Free and open source software (FOSS) is often When one installs a new application/library in a Unix distributed in binary packages, sometimes part of GNU/Linux system, this is often done from what is known as a bi- operating system distributions, or part of products dis- nary package (such as RPM packages in Fedora/Redhat-like tributed/sold to users. FOSS creates great opportunities for users, developers and distributions or .deb packages in Debian-like distributions). integrators, however it is important for them to understand the Other than the various artifacts composing the applica- licensing requirements of any package they use. Determining tion/library, the package also contains metadata describing, the license of a package and assessing whether it depends among other things, (i) under what open source license the on other software with incompatible licenses is not trivial. package is distributed (which we call the declared license Although this task has been done in a labor intensive manner by software distributions, automatic tools to perform this of the binary package), and (ii) the list of other packages analysis are highly desired. required in order to successfully install and use the current This paper proposes a method to understand licensing com- package (its required packages) [2]. patibility issues in software packages, and reports an empirical From a legal point of view, modifying and redistributing study aimed at auditing licensing issues in binary packages of a FOSS package poses two important issues: the Fedora-12 GNU/Linux distribution.
    [Show full text]
  • Recent Development of Open-Source Speech Recognition Engine Julius
    Recent Development of Open-Source Speech Recognition Engine Julius Akinobu Lee¤ and Tatsuya Kawaharay ¤ Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan E-mail: [email protected] y Kyoto University, Kyoto 606-8501, Japan E-mail: [email protected] ! ! 6 $ $ + 1)7 17" " % # % " Abstract—Julius is an open-source large-vocabulary speech recognition software used for both academic research and in- ¥ ¨© ©¨ §¨© ¦ ¨ dustrial applications. It executes real-time speech recognition of ¦ a 60k-word dictation task on low-spec PCs with small footprint, ¨ and even on embedded devices. Julius supports standard lan- guage models such as statistical N-gram model and rule-based ! "# grammars, as well as Hidden Markov Model (HMM) as an ! . + "# " acoustic model. One can build a speech recognition system of his / ¢ £ ( $ ¤ ¡¡ &' )" own purpose, or can integrate the speech recognition capability % 0 + + + ' 1) 1& - - * + to a variety of applications using Julius. This article describes + " & #% " , an overview of Julius, major features and specifications, and 5 4 2 2¨ 2¨ 2 3 summarizes the developments conducted in the recent years. ¦ ! ! + + ''%1 ) '%1 ) I. INTRODUCTION ' ”Julius”1 is an open-source, high-performance speech recog- nition decoder used for both academic research and indus- Fig. 1. Overview of Julius. trial applications. It incorporates major state-of-the-art speech recognition techniques, and can perform a large vocabulary continuous speech recognition (LVCSR) task effectively in site. The current development snapshot is also available via real-time processing with a relatively small footprint. CVS. There is also a web forum for developers and users. It also has much versatility and scalability.
    [Show full text]
  • Cryptography in C and C++
    APress/Authoring/2005/04/10:10:11 Page iv For your convenience Apress has placed some of the front matter material after the index. Please use the Bookmarks Download from Wow! eBook <www.wowebook.com> and Contents at a Glance links to access them. APress/Authoring/2005/04/10:12:18 Page v Contents Foreword xiii About the Author xv About the Translator xvi Preface to the Second American Edition xvii Preface to the First American Edition xix Preface to the First German Edition xxiii I Arithmetic and Number Theory in C 1 1 Introduction 3 2 Number Formats: The Representation of Large Numbers in C 13 3 Interface Semantics 19 4 The Fundamental Operations 23 4.1 Addition and Subtraction . 24 4.2 Multiplication............................ 33 4.2.1TheGradeSchoolMethod................. 34 4.2.2 Squaring Is Faster . 40 4.2.3 Do Things Go Better with Karatsuba? . 45 4.3 DivisionwithRemainder...................... 50 5 Modular Arithmetic: Calculating with Residue Classes 67 6 Where All Roads Meet: Modular Exponentiation 81 6.1 FirstApproaches.......................... 81 6.2 M-aryExponentiation....................... 86 6.3 AdditionChainsandWindows................... 101 6.4 Montgomery Reduction and Exponentiation . 106 6.5 Cryptographic Application of Exponentiation . 118 v APress/Authoring/2005/04/10:12:18 Page vi Contents 7 Bitwise and Logical Functions 125 7.1 ShiftOperations.......................... 125 7.2 All or Nothing: Bitwise Relations . 131 7.3 Direct Access to Individual Binary Digits . 137 7.4 ComparisonOperators....................... 140 8 Input, Output, Assignment, Conversion 145 9 Dynamic Registers 157 10 Basic Number-Theoretic Functions 167 10.1 Greatest Common Divisor . 168 10.2 Multiplicative Inverse in Residue Class Rings .
    [Show full text]
  • An Open Source Real-Time Large Vocabulary Recognition Engine
    Julius - an Open Source Real-Time Large Vocabulary Recognition Engine Akinobu Lee*, Tatsuya Kawahara*ぺKiyohiro Shikano本 * Graduate School of Information Science, Nara Institute of Science and Technology, Japan ** School of Informatics, Kyoto University, Japan [email protected] Abstract 園田園・・・園田・・E圃・-・l:l!n'幽血此量ffiIl止�岨E唱a圃園田E・E・-圃圃園田- 川lUt speechf ile : .. / . ./ IP向99/testr'Ul1/sa叩le/EF043∞2.hs.wav 579'ηs調ples (3.62 sec.) Julius is a high-performance, two-pass LVCSR decoder 111 speechlysis (同νeforlll ->門FCC) for researchers and developers. Based on word 3-gram length: 360 fr棚田(3.60 sec.) attach �1FCC_E_D_Z->円FCC_E_N_D_Z and context-dependent HMM, it can perform almost real­ iI## Reco2nition: 1st pass (LR be掛川th 2-l>ra,,) time decoding on most cuπent PCs in 20k word dicta­ tion task. M勾or search techniques are fully inco中orated pa酷ssl_b槌es抗t: ꨫF匠のf指旨導力カが、問われるところだ pa暗隠s l b加es試t_wωordおs閃: <sఉ 匠+シシヨ一+2の+ノt6釘7 t旨導+シド一+ぺ1げ7 such as tree lexicon, N-gram factoring, cross-word con­ 指 力t IJヨグt2お8が+ガt5臼B 問め-トワ+問う+叫44ν/β21/3れる+ じJルレい+叫4給6/舟6/ρ2 ず β text dependency handling, enveloped beam search, Gaus­ ところ+トコロ+22だだ:+グ+70/48/2 , +, t74 </s> pass1_best_同市コ間関eseq: silB I sh i sh 0: I n 0 I sh i d 0: I ry sian pruning, Gaussian selection, etc. Besides search okulg alt oωa I r e r u I t 0k 0 r 0 I d a I sp I sil E efficiency, it is also modularized carefully to be inde­ pass1_best_score: -8926.回1641 pendent from model structures, and various HMM types 1## Recognit ion: 2円d pass (RL heuristic best-first with 3-gram) are supported such as shared-state triphones and tied­ S訓plen岨=おO sentence1: 首相の指導力が関われるところだ.
    [Show full text]