Pest Categorisation of Non‐EU Cicadomorpha Vectors of Xylella Spp

Total Page:16

File Type:pdf, Size:1020Kb

Pest Categorisation of Non‐EU Cicadomorpha Vectors of Xylella Spp SCIENTIFIC OPINION ADOPTED: 22 May 2019 doi: 10.2903/j.efsa.2019.5736 Pest categorisation of non-EU Cicadomorpha vectors of Xylella spp. EFSA Panel on Plant Health (PLH), Claude Bragard, Katharina Dehnen-Schmutz, Francesco Di Serio, Paolo Gonthier, Marie-Agnes Jacques, Josep Anton Jaques Miret, Annemarie Fejer Justesen, Christer Sven Magnusson, Panagiotis Milonas, Juan A Navas-Cortes, Stephen Parnell, Roel Potting, Philippe Lucien Reignault, Hans-Hermann Thulke, Wopke Van der Werf, Antonio Vicent Civera, Jonathan Yuen, Lucia Zappala, Chris Malumphy, Joao~ Roberto Spotti Lopes, Ewelina Czwienczek and Alan MacLeod Abstract The Panel on Plant Health performed a group pest categorisation of non-EU Cicadomorpha vectors of Xylella spp. known to be associated with plant diseases. Although all the insects considered in this categorisation are proven vectors of Xylella spp., additional vectors within the order Hemiptera most probably exist but have not been associated with any Xylella spp. disease yet. Currently, the group consists of 50 taxa (49 at species level and one at genus level) from the families Aphrophoridae, Cicadellidae and Membracidae (Arthropoda: Hemiptera: Cicadomorpha) for which reliable identification methods exist. Members of the group can be found in the Americas, Asia, Africa and Oceania. Only one of them, Homalodisca vitripennis is considered invasive. Species in the group are mostly polyphagous; many are known to feed on several plant families. Hosts can include broadleaf trees, herbaceous plants and grasses. Breeding takes place on herbaceous hosts and eggs are inserted into plant tissues. Nymphs emerge to feed on sap of the natal host. Adults move from breeding hosts to food hosts and can spread Xylella spp. causing a variety of diseases. Three of the species are listed in Annex IAI of Council Directive 2000/29/EC as examples of Cicadellidae (non-EU) known to be vector of Pierce’s disease (caused by Xylella fastidiosa). Plants for planting, cut branches, flowers and fruit are potential pathways for entry into the EU. However, there are no records of EU interceptions of any members of the group. EU biotic and abiotic conditions are conducive for establishment and spread of these insects. Were members of the group to establish and spread, impact on several cultivated species (e.g. grapevine, citrus, Prunus spp.) and ornamentals (e.g. Polygala myrtifolia) could be expected as these insect species are efficient vectors of Xylella spp. Considering the criteria within the remit of EFSA to assess their regulatory plant health status, the group of non-EU Cicadomorpha vectors of Xylella spp. meets all the criteria assessed by EFSA for consideration as potential Union quarantine pests. The group does not meet all the criteria assessed by EFSA for consideration as regulated non-quarantine pests, as members of the group are not present in the EU. © 2019 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority. Keywords: Pest risk, quarantine, spittlebug, planthopper, treehopper, olive quick decline syndrome, citrus variegated chlorosis, bacterial leaf scorch Requestor: European Commission Question number: EFSA-Q-2018-00792 Correspondence: [email protected] www.efsa.europa.eu/efsajournal EFSA Journal 2019;17(6):5736 Non-EU Cicadomorpha vectors of Xylella spp.: Pest categorisation Panel members: Claude Bragard, Katharina Dehnen-Schmutz, Francesco Di Serio, Paolo Gonthier, Marie-Agnes Jacques, Josep Anton Jaques Miret, Annemarie Fejer Justesen, Alan MacLeod, Christer Sven Magnusson, Panagiotis Milonas, Juan A. Navas-Cortes, Stephen Parnell, Roel Potting, Philippe L Reignault, Hans-Hermann Thulke, Wopke Van der Werf, Antonio Vicent, Jonathan Yuen and Lucia Zappala. Suggested citation: EFSA PLH Panel (EFSA Panel on Plant Health), Bragard C, Dehnen-Schmutz K, Di Serio F, Gonthier P, Jacques M-A, Jaques Miret JA, Justesen AF, Magnusson CS, Milonas P, Navas- Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H-H, Van der Werf W, Civera AV, Yuen J, ZappalaL, Malumphy C, Lopes JRS, Czwienczek E and MacLeod A, 2019. Scientific Opinion on the pest categorisation of non-EU Cicadomorpha vectors of Xylella spp. EFSA Journal 2019;17(6):5736, 53 pp. https://doi.org/10.2903/j.efsa.2019.5736 ISSN: 1831-4732 © 2019 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority. This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made. The EFSA Journal is a publication of the European Food Safety Authority, an agency of the European Union. www.efsa.europa.eu/efsajournal 2 EFSA Journal 2019;17(6):5736 Non-EU Cicadomorpha vectors of Xylella spp.: Pest categorisation Table of Contents Abstract................................................................................................................................................... 1 1. Introduction................................................................................................................................4 1.1. Background and Terms of Reference as provided by the requestor.................................................. 4 1.1.1. Background ................................................................................................................................4 1.1.2. Terms of reference ...................................................................................................................... 4 1.1.2.1. Terms of Reference: Appendix 1................................................................................................... 5 1.1.2.2. Terms of Reference: Appendix 2................................................................................................... 6 1.1.2.3. Terms of Reference: Appendix 3................................................................................................... 7 1.2. Interpretation of the Terms of Reference....................................................................................... 8 2. Data and methodologies .............................................................................................................. 9 2.1. Data........................................................................................................................................... 9 2.1.1. Literature search ......................................................................................................................... 9 2.1.2. Database search ......................................................................................................................... 9 2.2. Methodologies............................................................................................................................. 9 3. Pest categorisation ...................................................................................................................... 11 3.1. Identity and biology of the pest.................................................................................................... 11 3.1.1. Identity and taxonomy................................................................................................................. 11 3.1.2. Biology of the pest ...................................................................................................................... 14 3.1.3. Intraspecific diversity................................................................................................................... 16 3.1.4. Detection and identification of the pest......................................................................................... 16 3.2. Pest distribution .......................................................................................................................... 16 3.2.1. Pest distribution outside the EU.................................................................................................... 16 3.2.2. Pest distribution in the EU............................................................................................................ 20 3.3. Regulatory status ........................................................................................................................ 20 3.3.1. Council Directive 2000/29/EC ....................................................................................................... 20 3.3.2. Legislation addressing the organisms vectored by non-EU Cicadomorpha (Directive 2000/29/EC) ...... 20 3.3.3. Legislation addressing the hosts of non-EU Cicadomorpha, vector of Xylella spp. ............................. 21 3.4. Entry, establishment and spread in the EU .................................................................................... 21 3.4.1. Host range.................................................................................................................................. 21 3.4.2. Entry .......................................................................................................................................... 21 3.4.3. Establishment ............................................................................................................................. 22 3.4.3.1. EU distribution of main host plants ............................................................................................... 22 3.4.3.2. Climatic conditions affecting establishment...................................................................................
Recommended publications
  • Diabrotica Barberi
    EPPO Datasheet: Diabrotica barberi Last updated: 2020-11-26 IDENTITY Preferred name: Diabrotica barberi Authority: Smith & Lawrence Taxonomic position: Animalia: Arthropoda: Hexapoda: Insecta: Coleoptera: Chrysomelidae Other scientific names: Diabrotica longicornis barberi Smith & Lawrence Common names: northern corn rootworm view more common names online... EPPO Categorization: A1 list view more categorizations online... more photos... EU Categorization: A1 Quarantine pest (Annex II A) EPPO Code: DIABLO Notes on taxonomy and nomenclature The subfamily Galerucinae (Coleoptera; Chrysomelidae) includes the economically important genus Diabrotica which comprises over 400 described species (including 107 valid species in North and Central America), and is one of the most speciose leaf beetle genera in the New World. Many Diabrotica species feed on flowers, leaves and roots of a wide variety of herbaceous plants, including agricultural crops, vegetables, fruits and ornamentals and are vectors of plant diseases (Derunkov et al., 2013) such as Squash mosaic virus (Krysan & Miller, 1986) or Fusarium spp. (Chiang, 1973). A key to separate Diabrotica from related genera is presented by Derunkov et al. (2015) but despite their bright colours and various patterns, Diabrotica species are notoriously difficult to identify at the species level. Diabrotica barberi Smith & Lawrence (the northern corn rootworm) was originally described as Galleruca longicornis by Say in 1824 and was subsequently transferred to the genus Diabrotica Chevrolat, 1843, considered only as a subspecies of Diabrotica longicornis (Say). However, based on laboratory and ?eld studies, Krysan et al. (1983) elevated the taxon to species level. They concluded that even when the two species occur in the same geographic areas, adults are found in different habitats and they show a clear sexual isolation that supports the decision to elevate D.
    [Show full text]
  • Planthopper and Leafhopper Fauna (Hemiptera: Fulgoromorpha Et Cicadomorpha) at Selected Post-Mining Dumping Grounds in Southern Poland
    Title: Planthopper and leafhopper fauna (Hemiptera: Fulgoromorpha et Cicadomorpha) at selected post-mining dumping grounds in Southern Poland Author: Marcin Walczak, Mariola Chruściel, Joanna Trela, Klaudia Sojka, Aleksander Herczek Citation style: Walczak Marcin, Chruściel Mariola, Trela Joanna, Sojka Klaudia, Herczek Aleksander. (2019). Planthopper and leafhopper fauna (Hemiptera: Fulgoromorpha et Cicadomorpha) at selected post-mining dumping grounds in Southern Poland. “Annals of the Upper Silesian Museum in Bytom, Entomology” Vol. 28 (2019), s. 1-28, doi 10.5281/zenodo.3564181 ANNALS OF THE UPPER SILESIAN MUSEUM IN BYTOM ENTOMOLOGY Vol. 28 (online 006): 1–28 ISSN 0867-1966, eISSN 2544-039X (online) Bytom, 05.12.2019 MARCIN WALCZAK1 , Mariola ChruśCiel2 , Joanna Trela3 , KLAUDIA SOJKA4 , aleksander herCzek5 Planthopper and leafhopper fauna (Hemiptera: Fulgoromorpha et Cicadomorpha) at selected post- mining dumping grounds in Southern Poland http://doi.org/10.5281/zenodo.3564181 Faculty of Natural Sciences, University of Silesia, Bankowa Str. 9, 40-007 Katowice, Poland 1 e-mail: [email protected]; 2 [email protected]; 3 [email protected] (corresponding author); 4 [email protected]; 5 [email protected] Abstract: The paper presents the results of the study on species diversity and characteristics of planthopper and leafhopper fauna (Hemiptera: Fulgoromorpha et Cicadomorpha) inhabiting selected post-mining dumping grounds in Mysłowice in Southern Poland. The research was conducted in 2014 on several sites located on waste heaps with various levels of insolation and humidity. During the study 79 species were collected. The paper presents the results of ecological analyses complemented by a qualitative analysis performed based on the indices of species diversity.
    [Show full text]
  • Lamp-Revisi Permentan 15-New 10 JUNI 2012 2 Final
    LAMPIRAN PERATURAN MENTERI PERTANIAN NOMOR : 42/Permentan/OT.140/6/2012 TANGGAL : 13 Juni 2012 JENIS BUAH SEGAR DAN SAYURAN BUAH SEGAR, LALAT BUAH DAERAH SEBAR DAN TINDAKAN PERLAKUAN NO. BUAH SEGAR DAN SAYURAN LALAT BUAH DAERAH SEBAR PERLAKUAN BUAH SEGAR 1 Alpokat Anastrepha fraterculus (Wied).; America : Argentina, Bolivia, Brazil, 1. Pendinginan (Cold (Avocado ), (=Acrotoxa fraterculus =Anastrepha Colombia, Costa Rica, Ecuador, Treatment) : Persea braziliensis =Anthomyia frutalis Guatemala, Guyana, Mexico, 2 – 3o C/16 – 20 hari; americana =Dacus fraterculus =Tephritis mellea Panama, Paraguay, Peru, Suriname, atau =Trypeta fraterculus =Trypeta Trinidad-Tobago, USA, Uruguay, 2. Fumigasi (CH 3Br) : unicolor =Anastrepha peruviana Venezuela. 4 lb/1000 ft 3/21 oC/4 =A.soluta) ; Diptera: Tephritidae; jam; atau South American fruitfly, West 3. Vapour Heat Indian fruitfly Treatment (VHT) : 44oC/360 menit; atau Anastrepha ludens (Loew); America : Belize, Costa Rica, El 4. Iradiasi : (=Acrotoxa ludens =Trypeta ludens) ; Salvador, Guatemala, Honduras, 150 gray Diptera: Tephritidae; Mexican Mexico, Nicaragua, USA. fruitfly Anastrepha serpentina Wied.; America : Argentina, Brazil, (=Dacus serpentinus =Leptoxys Colombia, Costa Rica, Dominica, serpentina =Acrotoxa serpentinus Equador, Guyana France, =Trypeta serpentina =Urophora Guatemala, Guyana, Mexico, Antilles vittithorax) ; Diptera: Tephritidae; Netherlands, Panama, Peru, sapodilla fruitfly, sapote fruitfly, Suriname, Trinidad-Tobago, dark fruitfly, black fruitfly, USA,Venezuela 1 orange fruitfly
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 03 PARIS, 2014-03-01 CONTENTS _______________________________________________________________________ Pests & Diseases 2014/045 - First report of Heterodera elachista on maize in Italy: addition to the EPPO Alert List 2014/046 - First report of Halyomorpha halys in Hungary 2014/047 - New insect vectors of Elm yellows (associated with ‘Candidatus Phytoplasma ulmi’) 2014/048 - First report of Potato spindle tuber viroid and Tomato apical stunt viroid on solanaceous ornamentals in Poland 2014/049 - First report of Tomato chlorosis virus in China 2014/050 - First report of Cucumber vein yellowing virus in Lebanon 2014/051 - First report of Pseudocercospora angolensis in Ghana 2014/052 - First report of Monilinia fructicola in Chile 2014/053 - New data on quarantine pests and pests of the EPPO Alert List 2014/054 - EPPO report on notifications of non-compliance 2014/055 - International Symposium on the European outbreak of Xylella fastidiosa in olive (Gallipoli, IT, 2014-10-21/24) CONTENTS ________________________________________________________________________ Invasive Plants 2014/056 - New record of Alternanthera philoxeroides in the Vaucluse department (France) 2014/057 - Designing invasive alien plants’ containment strategies 2014/058 - An updated assessment of Cabomba caroliniana in the Netherlands 2014/059 - An updated guide on invasive waterplants in the Netherlands 2014/060 - Invasive alien species in Norway 2014/061 - Publication of the book ‘Plant invasions in protected areas’ 21 Bld Richard Lenoir Tel: 33 1 45 20 77 94 E-mail: [email protected] 75011 Paris Fax: 33 1 70 76 65 47 Web: www.eppo.int EPPO Reporting Service 2014 no.
    [Show full text]
  • Pseudotsuga Menziesii
    SPECIAL PUBLICATION 4 SEPTEMBER 1982 INVERTEBRATES OF THE H.J. ANDREWS EXPERIMENTAL FOREST, WESTERN CASCADE MOUNTAINS, OREGON: A SURVEY OF ARTHROPODS ASSOCIATED WITH THE CANOPY OF OLD-GROWTH Pseudotsuga Menziesii D.J. Voegtlin FORUT REJEARCH LABORATORY SCHOOL OF FORESTRY OREGON STATE UNIVERSITY Since 1941, the Forest Research Laboratory--part of the School of Forestry at Oregon State University in Corvallis-- has been studying forests and why they are like they are. A staff or more than 50 scientists conducts research to provide information for wise public and private decisions on managing and using Oregons forest resources and operating its wood-using industries. Because of this research, Oregons forests now yield more in the way of wood products, water, forage, wildlife, and recreation. Wood products are harvested, processed, and used more efficiently. Employment, productivity, and profitability in industries dependent on forests also have been strengthened. And this research has helped Oregon to maintain a quality environment for its people. Much research is done in the Laboratorys facilities on the campus. But field experiments in forest genetics, young- growth management, forest hydrology, harvesting methods, and reforestation are conducted on 12,000 acres of School forests adjacent to the campus and on lands of public and private cooperating agencies throughout the Pacific Northwest. With these publications, the Forest Research Laboratory supplies the results of its research to forest land owners and managers, to manufacturers and users of forest products, to leaders of government and industry, and to the general public. The Author David J. Voegtlin is Assistant Taxonomist at the Illinois Natural History Survey, Champaign, Illinois.
    [Show full text]
  • Rhagoletis Pomonella
    Agence Fédérale pour la Sécurité de la Chaîne Alimentaire DG Politique de Contrôle Direction Protection des Végétaux et Sécurité des Produits Végétaux Rhagoletis pomonella I. IDENTITÉ Synonymes: Spilographa pomonella, UE-catégorie: Organisme de quarantaine de Trypeta pomonella, Zonosema pomonella l’UE (Annexe II, partie A du Règlement (UE) Noms courants: Mouche de la pomme 2019/2072) ; Organisme de quarantaine (FR), Appelboorvlieg (NL), Apple Fruit Fly prioritaire (Règlement (UE) 2019/1702) AFF (EN) EPPO-code: RHAGPO Classement taxonomique: Ne pas confondre avec: Rhagoletis fausta, Insecta: Diptera: Tephritidae R. cerasi, R. cingulata II. DESCRIPTION DE L’ORGANISME ET SA RÉPARTITION GÉOGRAPHIQUE Rhagoletis pomonella est un organisme de quarantaine de l’Union Européenne (UE) identifié comme constituant une priorité absolue à cause de l'impact économique, environnemental et social qu’il est susceptible d’engendrer s’il est introduit sur le territoire de l'UE. R. pomonella est une mouche de la famille des Tephritidae (espèces non européennes). Cette famille contient de nombreuses espèces, parmi lesquelles certaines sont des organismes nuisibles importants. En particulier, le genre Rhagoletis contient 77 espèces qui sont répandues en Asie et Amérique. Lorsque la culture de pommier a été introduite en Amérique du Nord au milieu du 19ième siècle, R. pomonella s’est déplacée de sa plante-hôte naturelle Crataegus (aubépine) vers les fruits du pommier domestique, ce qui a permis la dissémination de cette mouche sur tout le continent nord- américain (Canada, Etats-Unis, Mexique). Actuellement, R. pomonella est le plus grave des ravageurs parmi les mouches des fruits en Amérique du Nord. Malgré le fait que 4,400 interceptions ont été généralement attribuées à des Tephritidae pendant la période 1995–2020, aucun foyer de R.
    [Show full text]
  • The Influence of Fire on Illinois Hill Prairie Auchenorrhyncha (Insecta
    J Insect Conserv (2012) 16:433–445 DOI 10.1007/s10841-011-9430-7 ORIGINAL PAPER The influence of fire on Illinois hill prairie Auchenorrhyncha (Insecta: Hemiptera) diversity and integrity Adam M. Wallner • Brenda Molano-Flores • Christopher H. Dietrich Received: 25 January 2011 / Accepted: 23 July 2011 / Published online: 12 August 2011 Ó Springer Science+Business Media B.V. 2011 Abstract Prescribed burning has been important in than sites undergoing burn management. In order for land maintaining the structure of plant communities in the managers to maintain the prairie Auchenorrhyncha com- tallgrass prairie. However, implementation of these burn munity and conserve vascular plants, this study recom- regimes often overlooks responses of other taxa, particu- mends infrequent rotational burning with a minimum of larly arthropods. In this study, the timing and frequency of 3–5 years; although additional studies are needed to burns were examined on one of the most diverse and determine the appropriate number of years between each abundant groups of herbivorous insects, Auchenorrhyncha. burn. These insects are ideal candidates in understanding the effects of fire on prairie arthropods because they are among Keywords Auchenorrhyncha Á Habitat quality index Á the most numerous invertebrate herbivores in the prairie Tallgrass prairie Á Prescribed burning Á Hill prairie and they have ecological characteristics that confer a wide range of responses to prescribed burning. A total of 19 Illinois hill prairies were sampled along the Mississippi and Introduction Sangamon Rivers in the summer of 2006 using a modified leaf-blower vacuum. These sites exhibited a wide range of Historically, fire has played a significant role in the burn management, from unburned to recently burned, and maintenance of North American tallgrass prairies (Gleason having been burned multiple times.
    [Show full text]
  • Rhagoletis Completa
    Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Rhagoletis completa IDENTITY • Rhagoletis completa Name: Rhagoletis completa Cresson Synonyms: Rhagoletis suavis subsp. completa Cresson Taxonomic position: Insecta: Diptera: Tephritidae Common names: Walnut husk fly (English) Mouche des brous du noyer (French) Notes on taxonomy and nomenclature: In the previous edition of this data sheet (EPPO/CABI, 1992), R. suavis was treated as a synonym of R. completa. In this edition, it is treated as a separate species (see below). Bayer computer code: RHAGCO EU Annex designation: I/A1 • Rhagoletis suavis Name: Rhagoletis suavis (Loew) Synonyms: Trypeta suavis Loew Bayer computer code: RHAGSU EU Annex designation: I/A1 HOSTS • Rhagoletis completa The principal hosts are Juglans spp. In North America, J. nigra, J. californica and J. hindsii are attacked (Bush, 1966). Under certain conditions peaches (Prunus persica) may be attacked (Bush, 1966) but the significance of this is not clear. Wild hosts are other Juglans spp. (Foote, 1981). In the EPPO region, the only economically significant host might be walnuts (J. regia). Although there was only one old record, possibly a misidentification, on this host in North America (Cresson, 1929), there were records of high levels of infestation of walnut fruits in 1991 in some Italian orchards. • Rhagoletis suavis Recorded from Juglans ailanthifolia, J. cinerea, J. nigra and walnuts (J. regia) (Bush, 1966). Peaches (Prunus persica) are also an occasional host (Dean, 1969). GEOGRAPHICAL DISTRIBUTION R. completa and R. suavis are indigenous to North America. The former species has very recently been introduced into the EPPO region and has become established in a limited area.
    [Show full text]
  • Parameters for Successful Parental Rnai As an Insect Pest Management Tool in Western Corn Rootworm, Diabrotica Virgifera Virgifera
    G C A T T A C G G C A T genes Article Parameters for Successful Parental RNAi as An Insect Pest Management Tool in Western Corn Rootworm, Diabrotica virgifera virgifera Ana M. Vélez 1,*, Elane Fishilevich 2, Natalie Matz 1, Nicholas P. Storer 2, Kenneth E. Narva 2 and Blair D. Siegfried 3 1 Department of Entomology, University of Nebraska, 103 Entomology Hall, Lincoln, NE 68583, USA; [email protected] 2 Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268, USA; [email protected] (E.F.); [email protected] (N.P.S.); [email protected] (K.E.N.) 3 Entomology and Nematology Department, University of Florida, Charles Steinmetz Hall, PO Box 110620, Gainesville, FL 32611, USA; bsiegfried1@ufl.edu * Correspondence: [email protected]; Tel.: +1-412-472-2152 Academic Editor: Wenyi Gu Received: 12 November 2016; Accepted: 19 December 2016; Published: 24 December 2016 Abstract: Parental RNAi (pRNAi) is an RNA interference response where the gene knockdown phenotype is observed in the progeny of the treated organism. pRNAi has been demonstrated in female western corn rootworms (WCR) via diet applications and has been described as a potential approach for rootworm pest management. However, it is not clear if plant-expressed pRNAi can provide effective control of next generation WCR larvae in the field. In this study, we evaluated parameters required to generate a successful pRNAi response in WCR for the genes brahma and hunchback. The parameters tested included a concentration response, duration of the dsRNA exposure, timing of the dsRNA exposure with respect to the mating status in WCR females, and the effects of pRNAi on males.
    [Show full text]
  • Arthropods As Vector of Plant Pathogens Viz-A-Viz Their Management
    Int.J.Curr.Microbiol.App.Sci (2018) 7(8): 4006-4023 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 08 (2018) Journal homepage: http://www.ijcmas.com Review Article https://doi.org/10.20546/ijcmas.2018.708.415 Arthropods as Vector of Plant Pathogens viz-a-viz their Management Ravinder Singh Chandi, Sanjeev Kumar Kataria* and Jaswinder Kaur Department of Entomology, Punjab Agricultural University, Ludhiana-141 004, Punjab, India *Corresponding author ABSTRACT An insect which acquires the disease causing organism by feeding on the diseased plant or by contact and transmit them to healthy plants are known as insect vectors of plant diseases. Most of the insect vectors belong to the order Hemiptera, Thysonaptera, Coleoptera, Orthoptera and Dermaptera. Homopteran insects alone are known to transmit K e yw or ds about 90 per cent of the plant diseases. About 94 per cent of animals known to transmit plant viruses are arthropods. On the basis of the method of transmission and persistence in Insect vectors, Plant pathogens, the vector, viruses may be classified into three categories viz. non-persistent, semi persistent and persistent viruses. Irrespective of the type of transmission, virus-vector Management relationship is highly specific and spread of vector borne diseases also depends upon Article Info potential of vector to spread the disease. Also for transmission of virus, activity of insect vectors is more important rather than their number. There is a high degree of specificity of Accepted: 22 July 2018 phytoplasma to insects and interaction between these two is complex and variable.
    [Show full text]
  • Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives
    insects Review Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives Francesca Scolari 1,* , Federica Valerio 2 , Giovanni Benelli 3 , Nikos T. Papadopoulos 4 and Lucie Vaníˇcková 5,* 1 Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, I-27100 Pavia, Italy 2 Department of Biology and Biotechnology, University of Pavia, I-27100 Pavia, Italy; [email protected] 3 Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; [email protected] 4 Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou st., N. Ionia, 38446 Volos, Greece; [email protected] 5 Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic * Correspondence: [email protected] (F.S.); [email protected] (L.V.); Tel.: +39-0382-986421 (F.S.); +420-732-852-528 (L.V.) Simple Summary: Tephritid fruit flies comprise pests of high agricultural relevance and species that have emerged as global invaders. Chemical signals play key roles in multiple steps of a fruit fly’s life. The production and detection of chemical cues are critical in many behavioural interactions of tephritids, such as finding mating partners and hosts for oviposition. The characterisation of the molecules involved in these behaviours sheds light on understanding the biology and ecology of fruit flies and in addition provides a solid base for developing novel species-specific pest control tools by exploiting and/or interfering with chemical perception. Here we provide a comprehensive Citation: Scolari, F.; Valerio, F.; overview of the extensive literature on different types of chemical cues emitted by tephritids, with Benelli, G.; Papadopoulos, N.T.; a focus on the most relevant fruit fly pest species.
    [Show full text]
  • Pine Pitch Canker and Insects: Relationships and Implications for Disease Spread in Europe
    Review Pine Pitch Canker and Insects: Relationships and Implications for Disease Spread in Europe Mercedes Fernández-Fernández 1,2,* , Pedro Naves 3 , Johanna Witzell 4 , Dmitry L. Musolin 5 , Andrey V. Selikhovkin 5,6, Marius Paraschiv 7, Danut Chira 7, Pablo Martínez-Álvarez 2,8 , Jorge Martín-García 8,9, E. Jordán Muñoz-Adalia 10 , Aliye Altunisik 11, Giuseppe E. Massimino Cocuzza 12, Silvia Di Silvestro 13 , Cristina Zamora 2,8 and Julio J. Diez 2,8 1 Department of Agroforestry, ETSIIA Palencia, University of Valladolid, Avenida de Madrid 44, 34071 Palencia, Spain 2 Sustainable Forest Management Research Institute, University of Valladolid-INIA, Avenida de Madrid 44, 34071 Palencia, Spain 3 Instituto Nacional de Investigação Agrária e Veterinária, INIAV, Av. da República, Quinta do Marquês, 2780-505 Oeiras, Portugal 4 Swedish University of Agricultural Sciences. Southern Swedish Forest Research Centre, P.O. Box 49 SE-230 53 Alnarp, Sweden 5 Department of Forest Protection, Wood Science and Game Management, Saint Petersburg State Forest Technical University, Institutskiy per., 5 St. Petersburg 194021, Russia 6 Department of Biogeography and Environmental Protection, Saint Petersburg State University. 13B Universitetskaya Emb., St. Petersburg 199034, Russia 7 National Institute for Research and Development in Forestry “Marin Dracea”, Bras, ov Research Station, 13 Clos, ca Str., 500040 Bras, ov, Romania 8 Department of Plant Production and Forest Resources, University of Valladolid, Avenida de Madrid 44, 34071 Palencia, Spain 9 Department of Biology, CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal 10 Forest Sciences Center of Catalonia (CTFC), Carretera St.
    [Show full text]